JTAG-Booster for NetSilicon NS9xxx

P.O: Box 1103 Kueferstrasse 8 Tel. +49 (7667) 908-0 sales@fsforth.de

- D-79200 Breisach, Germany
- D-79206 Breisach, Germany
- Fax +49 (7667) 908-200
- http://www.fsforth.de

Copyright © 1995..2004:

FS FORTH-SYSTEME GmbH Postfach 1103, D-79200 Breisach, Germany

Release of Document: November 22, 2004
Author: Dieter Fögele
Filename: JTAG_NS9xxxb.doc

Program Version: 4.xx

All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of FS FORTH-SYSTEME GmbH.

Table of Contents

1.	General	5
	1.1. Ordering Information	6
	1.2. System Requirements	6
	1.3. Contents of Distribution Disk	7
	1.4. Connecting your PC to the target system	
	1.5. First Example with NetSilicon NS9750/NS9775	
	1.6. First Example with NetSilicon NS9360	
	1.7. Trouble Shooting	
	1.8. Error Messages	
	1.9. Initialization file JTAG9xxx.INI	
	1.10. Supported flash devices	
_		
2.	JTAG9xxx Parameter Description	
	2.1. Program a Flash Device	
	2.2. Read a Flash Device to file	
	2.3. Verify a Flash Device with file	
	2.4. Dump target memory	
	2.5. Program a Serial Device (I ² C/SPI/MicroWire)	
	2.6. Read a Serial Device to file (I ² C/SPI/MicroWire)	
	2.7. Verify a Serial Device with file (I ² C/SPI/MicroWire)	
	2.8. Dump a Serial Device (I ² C/SPI/MicroWire)	
	2.9. Toggle CPU pins	
	2.10. Polling CPU pins	
	2.11. Polling CPU pins while the CPU is running	59
	2.12. Show status of all CPU pins while the CPU is running	60
3	Implementation Information	63
•	3.1. Implementation Information NetSilicon NS9750/NS9775	
	3.2. Implementation Information NetSilicon NS9360	
4.	Converter Program HEX2BIN.EXE	68
5	Support for Windows NT, Windows 2000 and Windows XP	70
٠.	5.1. Installation on a clean system	
	5.2. Installation with already installed version 5.x/6.x of Kithara	
	5.3. Installation with already installed version 4.x of Kithara	

IT/	AG-Roo	ster for	NetSilicon	NSQVVV
J I F	へくコーロしし	SIEL IOI	TAGICOULGO I	111.7.7111

5.4. De-Installation version 5.x/6.x:71

1. General

The programs JTAG9750.EXE and JTAG9360.EXE use the IEEE 1149.1 JTAG port of the NetSilicon NS9xxx microcontrollers in conjunction with the small JTAG-Booster:

- to program data into flash memory
- to verify and read the contents of a flash memory
- to make a memory dump
- to access a serial device (I²C/SPI/MicroWire)
- to test CPU signals

All functions are done without any piece of software running in the target. No firmware or BIOS must be written. Bootstrap software may be downloaded to initially unprogrammed memories.

As this tool uses boundary scan, it is extremely simple and very powerful. It assists you in bringing-up new hardware. Even if there are essential bugs in the hardware (i.e. RAM not reliable working, soldering problems with the BGA package), in many cases you are able to load small test programs into flash, which helps you to analyze hardware problems. Or if you have a flash memory, which is not connected correctly to the, we can support you with a special adapted version of the JTAG-Booster.

The JTAG-BOOSTER's software is highly optimized to the JTAG chain of a specific target CPU. To give support for all processors of the NetSilicon NS9xxx family, there are two different programs on the distribution disk:

- JTAG9750.EXE : Tool for NetSilicon NS9750/NS9775
- JTAG9360.EXE : Tool for NetSilicon NS9360

Please contact us, if you need support for other members of the NetSilicon NS9xxx family.

For latest documentation please refer to the file README.TXT on the distribution disk.

1.1. Ordering Information

The following related products are available

 9051 JTAG-Booster NetSilicon NS9xxx, 3.3V, NetSilicon NS9750, NS9775, NS9360 DOS/Win9x/WinNT/Win2000/WinXP, delivered with adapter type 285 and adapter/converter for ARM type 360

1.2. System Requirements

To successfully run this tool the following requirements must be met:

- MSDOS, WIN3.x, WIN9x, WinNT, Win2000 or WindowsXP (WinNT/Win2000/WindowsXP is supported with an additional tool, see chapter 5 "Support for Windows NT, Windows 2000 and Windows XP")
- Intel 80386 or higher
- 205 kByte of free DOS memory
- Parallel Port

1.3. Contents of Distribution Disk

• JTAG9750.EXE Tool for NetSilicon NS9750/NS9775 JTAG9750.OVL JTAG9750.INI Template configuration file for NetSilicon NS9750/NS9775. See chapter 1.9 "Initialization file JTAG9xxx.INI" JTAG9360.EXE Tool for NetSilicon NS9360 JTAG9360.OVL JTAG9360.INI Template configuration file for NetSilicon NS9360. See chapter 1.9 "Initialization file JTAG9xxx.INI" Support for Windows NT, Windows 2000 and Windows WinNT.zip XP. See chapter 5 "Support for Windows NT, Windows 2000 and Windows XP" List of all supported Flash devices JTAG_V4xx_FLAS HES.pdf

README.txt Release notes, new features, known problems

1.4. Connecting your PC to the target system

The JTAG-Booster can be plugged into standard parallel ports (LPT1-3) with a DB25-Connector.

The target end of the cable has the following reference:

1	2*	3	4	5	6	7	8
TCK	GND	TMS	TRST#	NC	TDI	TDO	+3.3V

*PIN 2 can be detected by the thick cable.

To connect your design to the JTAG-BOOSTER you need a single row berg connector with a spacing of 2.54mm on your PCB. The names refer to the target: Pin 7 is the target's TDO pin and is connected to the JTAG-Booster's TDI pin.

The 3.3V version of the JTAG-Booster (FS part number 285) is delivered together with this package. Don't use the 5V version of the JTAG-Booster (FS part number 227) with a 3.3V target. **Don't apply 5V to the 3.3V version of the JTAG-Booster!**

Your target must be able to power the JTAG-Booster, it draws about 100mA.

Before you start the program, the JTAG-BOOSTER must be plugged to a parallel interface of your PC and to the 8 pin JTAG connector on the target.

JTAG NS9xxxb.doc

The NS9750 must be configured to work in **scan mode**: CPU signals **BIST_EN#** and SCAN_EN# must be switched to **low level**, while the signal PLL_TEST# must be at high level. (For enabling the **ARM debug** mode, **BIST_EN#** must be switched to **high level**.)

The utility is started with the general command line format: JTAGxxx

JTAG9xxx /function [filename] [/option_1] ... [/option_n].

Note that the function must be the first argument followed (if needed) by the filename.

If you want to cancel execution of JTAG9xxx, press CTRL-Break-Key.

On any error the program aborts with an MSDOS error level of one.

1.5. First Example with NetSilicon NS9750/NS9775

In the following simple example it is assumed that the JTAG-Booster is connected to LPT1 of your PC and target power is on.

Typing

JTAG9750 /P MYAPP.BIN

at the DOS prompt results in the following output:

JTAG9750 --- JTAG utility for NetSilicon NS9750/NS9775 Copyright © FS FORTH-SYSTEME GmbH, Breisach Version 4.xx of mm/dd/yyyy

- (1) Configuration loaded from file JTAG9750.INI
- (2) Target: Generic Target
- (3) Using LPT at I/O-address 0378h
- (4) JTAG Adapter detected
- (5) 1 Device detected in JTAG chain

Device 0: IDCODE=09104031 NetSilicon NS9750/NS9775, Scan Mode, Revision 0

- (6) Sum of instruction register bits: 3
 (7) CPU position: 0
 (8) Instruction register offset: 0
 (9) Length of boundary scan reg: 464
- (10) Boundary Scan used

Looking for a known flash device. Please wait..

- (11) Dual STM 29W320B, 3.3V, Boot Block Bottom detected
- (12) Bus size is 32 Bit
- (13) Erasing Flash-EPROM Block #:0 1 2
 Programming File MYAPP.BIN
 65536 Bytes programmed successfully

Erase Time : 0.8 sec Programming Time : xx.8 sec

- (1) The initialization file JTAG9750.INI was found in the current directory.
- (2) The target identification line of the initialization file is printed here.
- (3) The resulting I/O-address of the parallel port is printed here. With WinNT/Win2000/WinXP you must specify the option /LPT2 to access to the standard address 378h.
- (4) A JTAG-Booster is found on the parallel port
- (5) The JTAG chain is analyzed. There may be several parts in the JTAG chain. The chain is analyzed and all parts except the NetSilicon NS9750/NS9775 are switched to bypass mode.
- (6) The length of all instruction registers in the JTAG chain are added.
- (7) The position of the NetSilicon NS9750/NS9775 in the JTAG chain is assumed to be zero, if not specified in the command line (see option /CPUPOS=).
- (8) The position of the JTAG instruction register of the NetSilicon NS9750/NS9775 is assumed to be zero, if not specified in the command line (see option /IROFFS=).
- (9) The real length of the boundary scan register is displayed here and compared with the boundary scan register length of a NetSilicon NS9750/NS9775.
- (10) The NetSilicon NS9750/NS9775 is configured to work in boundary scan mode instead of working in debug mode by having the configuration pins set to: PLL_TEST# = 1, BIST_EN# = 0 and SCAN_EN# = 0).
- (11) Two flashes STM 29W320B selected with EXT_CS1# where found.
- (12) The resulting data bus size is printed here.
- (13) In this example 3 blocks must be erased.

1.6. First Example with NetSilicon NS9360

In the following simple example it is assumed that the JTAG-Booster is connected to LPT1 of your PC and target power is on.

Typing

JTAG9360 /P MYAPP.BIN

at the DOS prompt results in the following output:

JTAG9360 --- JTAG utility for NetSilicon NS9360 Copyright © FS FORTH-SYSTEME GmbH, Breisach Version 4.xx of mm/dd/yyyy

- (1) Configuration loaded from file JTAG9360.INI
- (2) Target: Generic Target
- (3) Using LPT at I/O-address 0378h
- (4) JTAG Adapter detected
- (5) 1 Device detected in JTAG chain

Device 0: IDCODE=09105031 NetSilicon NS9360, Scan Mode, Revision 0

- (6) Sum of instruction register bits : 3
 (7) CPU position : 0
 (8) Instruction register offset : 0
 (9) Length of boundary scan reg : 312
- (10) Boundary Scan used

Looking for a known flash device. Please wait..

- (11) Dual STM 29W320B, 3.3V, Boot Block Bottom detected
- (12) Bus size is 32 Bit
- (13) Erasing Flash-EPROM Block #:0 1 2

Programming File MYAPP.BIN

65536 Bytes programmed successfully

Erase Time : 0.8 sec Programming Time : xx.9 sec

- (1) The initialization file JTAG9360.INI was found in the current directory.
- (2) The target identification line of the initialization file is printed here.
- (3) The resulting I/O-address of the parallel port is printed here.
- (4) A JTAG-Booster is found on the parallel port
- (5) The JTAG chain is analyzed. There may be several parts in the JTAG chain. The chain is analyzed and all parts except the NetSilicon NS9360 are switched to bypass mode.
- (6) The length of all instruction registers in the JTAG chain are added.
- (7) The position of the NetSilicon NS9xxx in the JTAG chain is assumed to be zero, if not specified in the command line (see option /CPUPOS=).
- (8) The position of the JTAG instruction register of the NetSilicon NS9xxx is assumed to be zero, if not specified in the command line (see option /IROFFS=).
- (9) The real length of the boundary scan register is displayed here and compared with the boundary scan register length of a NetSilicon NS9360.
- (10) The NetSilicon NS9360 is configured to work in boundary scan mode instead of working in debug mode by having the configuration pins set to: PLL_TEST# = 1, BIST_EN# = 0 and SCAN_EN# = 0).
- (11) Two flashes STM 29W320B selected with EXT_CS1# where found.
- (12) The resulting data bus size is printed here.
- (13) In this example 3 blocks must be erased.

1.7. Trouble Shooting

The NetSilicon NS9xxx must be configured to work in scan mode instead of having ARM debug mode enabled (PLL_TEST# = 1, BIST_EN# = 0, SCAN_EN# = 0).

Avoid long distances between your Host-PC and the target. If you are using standard parallel extension cable, the JTAG-BOOSTER may not work. Don't use Dongles between the parallel port and the JTAG-BOOSTER.

Switch off all special modes of your printer port (EPP, ECP, ...) in the BIOS setup. Only standard parallel port (SPP) mode is allowed.

If there are problems with autodetection of the flash devices use the /DEVICE= option. To speed up autodetection specify one of the options /8BIT /16BIT or /32BIT.

Don't use hardware protected flash memories.

The used chip selects must be defined as output and inactive in the initialization file (see chapter 1.9 "Initialization file JTAG9xxx.INI"). Also the address bits must be defined as output.

Use the option /NOWRSETUP to speed up flash programming.

If you have problems using the option /CFI (Common Flash Interface) add the command line option /CFIDEBUG and redirect the program output into a file. Sending us this file helps in solving problems.

1.8. Error Messages

80386 or greater required

The JTAG-BOOSTER does not work on a 8088/8086 or a 80286 platform.

Cable not connected or target power fail

The JTAG-Booster (or one of the simple Parallel Port JTAG adapters selected with the options /LATTICE /WIGGLER /PLS) wasn't found. Please check connection to parallel port and connection to target. Check target power. Check the command line options. Check your BIOS-Setup. If you are using this program with WinNT, Win2000 or WinXP you must specify /LPT2 or /LPT-BASE=378 to get access to the standard printer port.

Can't open x:\yyy\zzz\JTAG9xxx.OVL

The overlay file JTAG9xxx.OVL must be in the same directory as JTAG9xxx.EXE.

Configuration file XYZ not found.

The file specified with the option /INI= wasn't found.

Device offset out of range

The value specified with the option /OFFSET= is greater than the size of the detected flash device.

Disk full

Writing a output file was aborted as a result of missing disk space.

• Do not specify option /NOCS with any other chip select

There is a conflict in the command line.

Do not specify option /BYTE-MODE. Flash device does not have a byte mode pin.

The flash device specified with the option /DEVICE= does not support switching between 16 (or 32) bit mode and 8 bit mode. In practice it does not have a pin with the name BYTE#

• Error creating file:

The output file could not be opened. Please check free disk space or write protection.

• Error: Pin-Name is an output only pin

The specified pin cannot be sampled. Check the command line. Check the initialization file.

• Error: Pin-Name is an input only pin

The specified pin cannot be activated. Check the command line. Check the initialization file.

• Error: Pin-Name may not be read back

The specified pin can be switched to tristate, but cannot be read back. Check the command line.

• illegal function:

The first parameter of the command line must be a valid function. See chapter 2 "JTAG9xxx Parameter Description" for a list of supported functions.

• illegal number:

The specified number couldn't be interpret as a valid number. Check the relevant number base.

illegal option:

See chapter 2 "JTAG9xxx Parameter Description" for a list of supported options.

illegal Pin Type:

The name specified with the option /PIN= must be one of the list of chapter 1.9 "Initialization file JTAG9xxx.INI"

• illegal Flash Type:

The name specified with the option /DEVICE= must be one of the list of chapter 1.10 "Supported flash devices".

• Input file not found:

The specified file cannot be found

• Input file is empty:

Files with zero length are not accepted

• " " is undefined

Please check the syntax in your configuration file. (See chapter 1.9 "Initialization file JTAG9xxx.INI").

LPTx not installed

The LPT port specified with /LPTx cannot be found. Please check the LPT port or specify a installed LPT port. Check your BIOS setup. If you are using this program with WinNT, Win2000 or WinXP you 1st must install the WinNT support package as described in chapter 5 "Support for Windows NT, Windows 2000 and Windows XP"

missing filename

Most functions need a filename as second parameter.

missing option /SERCLK=

Some functions need the option /SERCLK= to be defined.

• missing option /SERDAT=

Some functions need the option /SERDAT= or the options /SERDATO= and /SERDATI= to be defined.

• missing option /SERCS=

Some functions need the option /SERCS= if the option /SPI or the option /MWIRE is specified.

missing option /LENGTH=

Some functions need the option /LENGTH= to be defined.

missing option /PIN=

Some functions need the option /PIN= to be defined.

- More than 9 devices in the JTAG chain or TDO pin stuck at low level
 The JTAG chain is limited to 9 parts. Check target power. Check the target's TDO pin.
- No devices found in JTAG chain or TDO pin stuck at high level
 A stream of 32 high bits was detected on the pin TDO. TDO may stuck at high level. Check the connection to your target. Check the target power. Check the target's TDO pin.

Option /CPUPOS= out of range

The number specified with the option /CPUPOS= must be less or equal to the number of parts minus 1.

• Option /IROFFS= out of range

Please specify a smaller value

Part at specified position is not a NetSilicon NS9xxx

The option /CPUPOS= points to a part not a NetSilicon NS9xxx

Pins specified with /SERCLK= and /SERDAT= must have different control cells

The pin specified with the option /SERDAT= must be able to be switched to high impedance while the pin specified with option /SERCLK= is an active output. See chapter 1.9 "Initialization file JTAG9xxx.INI".

Pins specified with /SERCLK= and /SERDATI= must have different control cells

The pin specified with the option /SERDATI= must be able to be switched to high impedance while the pin specified with option /SERCLK= is an active output. See chapter 1.9 "Initialization file JTAG9xxx.INI".

Pins specified with /SERDATO= and /SERDATI= must have different control cells

The pin specified with the option /SERDATI= must be able to be switched to high impedance while the pin specified with option /SERDATO= is an active output. See chapter 1.9 "Initialization file JTAG9xxx.INI".

• Specify only one of these options:

Some options are exclusive (i.e. /8BIT and /16BIT). Don't mix them.

Sum of instruction register bits to low. Should be at least 3 bits for a NetSilicon NS9xxx

The sum of all instruction register bits in the JTAG chain does not fit to the NetSilicon NS9xxx. Check the target connection. Check the target CPU type. Check the settings for /IROFFS= and /CPUPOS= , if there are several parts in the JTAG chain.

Target no longer connected

There is a cyclic check of the JTAG chain. Check target power. Check target connection.

• There are unknown parts in the JTAG chain. Please use the option /IROFFS= to specify the instr. reg. offset of the CPU.

If there are unknown parts in the JTAG chain, the program isn't able to determine the logical position of the CPU's instruction register.

• There is no NetSilicon NS9xxx in the JTAG chain

No NetSilicon NS9xxx was found in the JTAG chain. Check the target power. Try with option /DRIVER=4 again.

• Value of option /FILE-OFFSET out of range

The value of the option /FILE-OFFSET= points behind end of file.

wrong driver

The value specified with the option /DRIVER= is out of range.

Wrong Flash Identifier (xxxx)

No valid identifier found. Check the specified chip select signal and the bus width. Try with the option /DEVICE= . Use the option /8BIT or /16BIT or /32BIT to specify the correct data bus size.

 Wrong length of boundary scan register. Should be 464 for a NetSilicon NS9750/NS9775. (Should be 312 for a NetSilicon NS9360.)

The length of the boundary scan register of the selected part (if there are more than one in the chain) does not fit to the NetSilicon NS9xxx. Check the target connection. Check the target CPU type. Check the settings for /IROFFS= and /CPUPOS=, if there are several parts in the JTAG chain.

1.9. Initialization file JTAG9xxx.INI

This file is used to define the default direction and level of all CPU signals. This file **must be carefully adapted** to your design with the NetSilicon NS9xxx. The Target-Entry is used to identify your design which is displayed with most commands.

When the program JTAG9xxx.EXE is started it scans the current directory for an existing initialization file named JTAG9xxx.INI. If no entry is found the default values are used. You may also specify the initialization file with the option /INI=. If the specified file isn't found, the program aborts with an error message.

The CPU pins can also be used with the functions /BLINK (chapter 2.9), /PIN? (chapter 2.10) and /SAMPLE (chapter 2.11) to test the signals on your design.

The sample file below represents the values which are used for default initialization when no initialization file could be found in the current directory and no initialization file is specified with the option /INI=.

Changes to the structure of the file could result in errors. Remarks can be added by using //.

Sample File JTAG9750.INI:

```
// Description file for NetSilicon NS9750/ns9775
Target: Generic Target, 2004/09/22
// Adapt this file carefully to your design!!
// All chip select signals are set to output and inactive.
// All signals should be defined. Undefined signals are set to their defaults.
// Pin names are defined in upper case.
// Low active signals are signed with a trailing #.
// The following pins are complete bidirectional pins.
// The direction of each pin can be set independent of the other pins.
// Each pin can be used as an input.
// During flash programming these pins are switched between
// input/inactive and output/active.
// For Flash programming and other memory accesses
// these pins should be set to Input
                          // Data Bus for SDRAM, Static Memory, Peripherals
DATA0
                   Inp
DATA1
                   Inp
                          //
DATA2
                   Inp
                          //
DATA3
                          //
                   Inp
DATA4
                   Inp
                          //
DATA5
                          //
                   Inp
DATA6
                   Inp
                          //
DATA7
                   Inp
                          //
DATA8
                          //
                   Inp
                          //
DATA9
                   Inp
DATA10
                   Inp
                          //
DATA11
                   Inp
                          //
DATA12
                   Inp
                          //
DATA13
                   Inp
                          //
DATA14
                   Inp
                          //
DATA15
                   Inp
                          //
DATA16
                          //
                   Inp
DATA17
                   Inp
                          //
DATA18
                   Inp
                          //
DATA19
                   Inp
                          //
DATA20
                   Inp
                          //
DATA21
                   Inp
                          //
DATA22
                          //
                   Inp
                          //
DATA23
                   Inp
DATA24
                   Inp
                          //
DATA25
                          //
                   Inp
```

```
DATA26
                 Inp
                        //
DATA27
                 Inp
                        //
DATA28
                        //
                 Inp
DATA29
                 Inp
                        //
                        //
DATA30
                 Inp
                        //
DATA31
                 Inp
// The following pins are tristateable outputs.
// These pins are tristateable outputs but can not be read back.
// Each pin can be disabled independent of the other pins.
// For Flash Programming these pins must be set to output
ADDR0
                 Out,Lo // Data Bus for SDRAM, Static memory, Peripherals
ADDR1
                 Out,Lo //
ADDR2
                 Out,Lo //
                 Out,Lo //
ADDR3
                 Out,Lo //
ADDR4
ADDR5
                 Out,Lo //
                 Out,Lo //
ADDR6
                 Out,Lo //
ADDR7
                 Out,Lo //
ADDR8
                 Out,Lo //
ADDR9
                 Out,Lo //
ADDR10
ADDR11
                 Out,Lo //
ADDR12
                 Out,Lo //
ADDR13
                 Out,Lo //
ADDR14
                 Out.Lo //
ADDR15
                 Out.Lo //
                 Out,Lo //
ADDR16
ADDR17
                 Out,Lo //
                 Out,Lo //
ADDR18
                 Out,Lo //
ADDR19
ADDR20
                 Out,Lo //
                 Out,Lo //
ADDR21
                 Out,Lo //
ADDR22
ADDR23
                 Out,Lo //
ADDR24
                 Out,Lo //
ADDR25
                 Out,Lo //
ADDR26
                 Out,Lo //
ADDR27
                 Out,Lo //
```

```
// The following pins are complete bidirectional pins.
// The direction of each pin can be set independent of the other pins.
// Each pin can be used as an input.
RTCK_OUT
                  Inp
                         // ???
RESET_DONE
                         // ???
                  Inp
PCI_INTA#
                  Inp
                         //
PCI INTB#
                  Inp
                         // CCLKRUN#
PCI RESET#
                  Inp
                         //
PCI AD0
                         //
                  Inp
PCI AD1
                  Inp
                         //
PCI AD2
                  Inp
                         //
PCI_AD3
                         //
                  Inp
PCI AD4
                  Inp
                         //
PCI AD5
                         //
                  Inp
PCI_AD6
                  Inp
                         //
PCI_AD7
                  Inp
                         //
PCI_AD8
                  Inp
                         //
PCI_AD9
                  Inp
                         //
PCI_AD10
                  Inp
                         //
PCI_AD11
                  Inp
                         //
PCI_AD12
                  Inp
                         //
PCI_AD13
                  Inp
                         //
PCI_AD14
                  Inp
                         //
PCI AD15
                  Inp
                         //
PCI_AD16
                  Inp
                         //
PCI AD17
                  Inp
                         //
PCI AD18
                  Inp
                         //
PCI_AD19
                  Inp
                         //
PCI AD20
                  Inp
                         //
PCI AD21
                         //
                  Inp
PCI_AD22
                  Inp
                         //
PCI AD23
                  Inp
                         //
PCI AD24
                  Inp
                         //
PCI_AD25
                  Inp
                         //
PCI_AD26
                  Inp
                         //
PCI_AD27
                  Inp
                         //
PCI_AD28
                  Inp
                         //
PCI_AD29
                  Inp
                         //
PCI_AD30
                  Inp
                         //
PCI_AD31
                  Inp
                         //
PCI_CBE0#
                  Inp
                         //
PCI_CBE1#
                  Inp
                         //
PCI_CBE2#
                  Inp
                         //
```

Inp	//
Inp	//
	//
	//
Inp	//
Inp	//
	//
	//
	//
•	//
	//
	//
	//
	//
	//
	//
Inp	//
	//
	//
•	//
Inp	//
	Inp Inp Inp Inp Inp Inp Inp Inp Inp Inp

```
GPIO24
                  Inp
                         //
GPIO25
                  Inp
                         //
                         //
GPIO26
                  Inp
GPIO27
                         //
                  Inp
GPIO28
                  Inp
                         //
GPIO29
                  Inp
                         //
GPIO30
                  Inp
                         //
GPIO31
                  Inp
                         //
GPIO32
                         //
                  Inp
GPIO33
                  Inp
                         //
GPIO34
                  Inp
                         //
GPIO35
                         //
                  Inp
GPIO36
                  Inp
                         //
GPIO37
                  Inp
                         //
GPIO38
                  Inp
                         //
GPIO39
                  Inp
                         //
GPIO40
                  Inp
                         //
GPIO41
                  Inp
                         //
GPIO42
                  Inp
                         //
GPIO43
                  Inp
                         //
GPIO44
                  Inp
                         //
GPIO45
                  Inp
                         //
GPIO46
                  Inp
                         //
GPIO47
                  Inp
                         //
GPIO48
                  Inp
                         //
GPIO49
                  Inp
                         //
12C SCL
                  Inp
                         //
I2C_SDA
                         //
                  Inp
// The following pins are tristateable outputs.
// These pins are tristateable outputs but can not be read back.
// Each pin can be disabled independent of the other pins.
PCI_GNT1#
                  Out,Hi //
PCI_GNT2#
                  Out,Hi //
PCI_GNT3#
                  Out,Hi //
PCI_CLKOUT
                  Inp
                         //
SDM_CLKOUT0
                  Out,Lo // SDRAM clock output
SDM_CLKOUT1
                  Out,Lo // SDRAM clock output
SDM_CLKOUT2
                  Out,Lo // SDRAM clock output
SDM_CLKOUT3
                  Out,Lo // SDRAM clock output
                  Out,Hi // Peripheral chip select
EXT_CS0#
EXT_CS1#
                  Out,Hi // Peripheral chip select
                  Out,Hi // Peripheral chip select
EXT_CS2#
```

JTAG NS9xxxb.doc

```
EXT_CS3#
                 Out,Hi // Peripheral chip select
SDM_CS0#
                 Out,Hi // SDRAM chip select
SDM_CS1#
                 Out,Hi // SDRAM chip select
SDM_CS2#
                 Out,Hi // SDRAM chip select
SDM_CS3#
                 Out,Hi // SDRAM chip select
WE#
                 Out, Hi // Write Enable, SDRAM/Peripheral
EXT_OE#
                 Out,Hi // Peripheral output enable
SDM CAS#
                 Out,Hi // SDRAM column address strobe
SDM_RAS#
                 Out,Hi // SDRAM row address strobe
EXT BE0#
                 Out,Lo // Periperal Byte Enable
EXT_BE1#
                 Out,Lo // Periperal Byte Enable
EXT_BE2#
                 Out,Lo // Periperal Byte Enable
EXT BE3#
                 Out,Lo // Periperal Byte Enable
SDM_DQM0
                 Out,Lo // SDRAM Data Mask
SDM_DQM1
                 Out,Lo // SDRAM Data Mask
SDM_DQM2
                 Out,Lo // SDRAM Data Mask
                 Out,Lo // SDRAM Data Mask
SDM_DQM3
SDM_CKE0
                 Out,Hi // SDRAM clock enable
SDM_CKE1
                 Out,Hi // SDRAM clock enable
                 Out,Hi // SDRAM clock enable
SDM_CKE2
SDM_CKE3
                 Out,Hi // SDRAM clock enable
VIDEO_DATA0
                 Inp
                        //
VIDEO_DATA1
                 Inp
                        //
VIDEO_DATA2
                 Inp
                        //
VIDEO_DATA3
                 Inp
                        //
MII TXD0
                        //
                 Inp
MII TXD1
                        //
                 Inp
MII_TXD2
                 Inp
                        //
MII TXD3
                        //
                 Inp
MII TXEN
                        //
                 Inp
MII_TXER
                        //
                 Inp
MII MDC
                        //
                 Inp
```

```
// The following pins are input only.
// Setting to output of one of these pins results in an error.
// Declaration of the direction of these pins is optional.
PCI_CENTRAL# Inp
                           //
PCI INTD#
                           //
                   Inp
PCI_INTC#
                   Inp
                           //
PCI REQ1#
                   Inp
                           //
PCI REQ2#
                   Inp
                           //
PCI_REQ3#
                           //
                   Inp
PCI CLKIN
                   Inp
                           //
PCI_IDSEL
                   Inp
                           //
SDM_CLKIN0
                   Inp
                           //
SDM CLKIN1
                           //
                   Inp
SDM_CLKIN2
SDM_CLKIN3
EXT_TACK
                           //
                   Inp
                           //
                   Inp
                           // slow peripheral transfer acknowledge
                   Inp
LCD_CLK
                   Inp
                           // External LCD clock input
HSYNC0
                   Inp
                           //
                           //
HSYNC1
                   Inp
                           //
HSYNC2
                   Inp
                           //
HSYNC3
                   Inp
VCLK0
                   Inp
                           //
VCLK1
                   Inp
                           //
VCLK2
                   Inp
                           //
VCLK3
                   Inp
                           //
MII RXCLK
                   Inp
                           //
MII RXD0
                   Inp
                           //
MII_RXD1
                           //
                   Inp
MII RXD2
                   Inp
                           //
MII<sup>R</sup>XD3
                   Inp
                           //
MII_RXDV
                   Inp
                           //
MII RXER
                   Inp
                           //
MII_TXCLK
MII_CRS
                           //
                   Inp
                   Inp
                           //
MII_COL
                   Inp
                           //
MII_INT#
                   Inp
                           // PHY interrupt input
```

Sample File JTAG9360.INI:

```
// Description file for NetSilicon NS9360
Target: Generic Target, 2004/11/05
// Adapt this file carefully to your design!!
// All chip select signals are set to output and inactive.
// All signals should be defined. Undefined signals are set to their defaults.
// Pin names are defined in upper case.
// Low active signals are signed with a trailing #.
// The following pins are complete bidirectional pins.
// The direction of each pin can be set independent of the other pins.
// Each pin can be used as an input.
// During flash programming these pins are switched between
// input/inactive and output/active.
// For Flash programming and other memory accesses
// these pins should be set to Input
SDM CS0#
                  Out,Hi // SDRAM chip select
                          // Data Bus for SDRAM, Static Memory, Peripherals
DATA0
                  Inp
DATA1
                  Inp
DATA2
                  Inp
                          //
                          //
DATA3
                  Inp
DATA4
                  Inp
                          //
                          //
DATA5
                  Inp
                          //
DATA6
                  Inp
DATA7
                  Inp
                          //
                          //
DATA8
                  Inp
DATA9
                  Inp
                          //
DATA10
                  gnl
                          //
DATA11
                  Inp
                          //
DATA12
                  Inp
                          //
DATA13
                  Inp
                          //
DATA14
                  Inp
                          //
DATA15
                          //
                  Inp
                          //
DATA16
                  Inp
DATA17
                  Inp
                          //
DATA18
                  Inp
                          //
DATA19
                  Inp
                          //
DATA20
                  Inp
                          //
DATA21
                          //
                  Inp
                          //
DATA22
                  Inp
DATA23
                  Inp
                          //
DATA24
                          //
                  Inp
```

```
DATA25
                 Inp
                        //
DATA26
                 Inp
                        //
DATA27
                 Inp
                        //
DATA28
                        //
                 Inp
DATA29
                 Inp
                        //
DATA30
                 Inp
                        //
DATA31
                 Inp
                        //
// The following pins are tristateable outputs.
// These pins are tristateable outputs but can not be read back.
// Each pin can be disabled independent of the other pins.
// For Flash Programming these pins must be set to output
                 Out,Lo // Data Bus for SDRAM, Static memory, Peripherals
ADDR0
ADDR1
                 Out,Lo //
ADDR2
                 Out,Lo //
ADDR3
                 Out.Lo //
ADDR4
                 Out,Lo //
                 Out,Lo //
ADDR5
                 Out,Lo //
ADDR6
                 Out,Lo //
ADDR7
                 Out,Lo //
ADDR8
ADDR9
                 Out,Lo //
ADDR10
                 Out,Lo //
ADDR11
                 Out,Lo //
ADDR12
                 Out,Lo //
ADDR13
                 Out.Lo //
ADDR14
                 Out.Lo //
                 Out,Lo //
ADDR15
ADDR16
                 Out,Lo //
                 Out,Lo //
ADDR17
                 Out,Lo //
ADDR18
ADDR19
                 Out,Lo //
ADDR20
                 Out,Lo //
                 Out,Lo //
ADDR21
```

```
// The following pins are complete bidirectional pins.
// The direction of each pin can be set independent of the other pins.
// Each pin can be used as an input.
RTCK_OUT
                 Inp
                         // Return Test Clock
RESET DONE
                         // ???
                 Inp
GPIO0
                 Inp
                         // TXDB
GPIO1
                 Inp
                         // RXDB
GPIO<sub>2</sub>
                 Inp
                         // RTSB#
GPIO3
                 Inp
                         // CTSB#
GPIO4
                 Inp
                         // DTRB#
GPIO5
                 Inp
                         // DSRB#
GPIO6
                         // RIB#
                 Inp
GPIO7
                 Inp
                         // DCDB#
GPIO8
                 Inp
                         // TXDA
GPI09
                 Inp
                         // RXDA
GPIO10
                 Inp
                         // RTSA#
GPIO11
                 Inp
                         // CTSA#
GPIO12
                 Inp
                         // DTRA#
GPIO13
                 Inp
                         // DSRA#
                 Inp
                         // RIA#
GPIO14
GPIO15
                 Inp
                         // DCDA#
GPIO16
                 Inp
                         // USB_OVRCURR
GPIO17
                 Inp
                         // USB_PWR
GPIO18
                 Inp
                         // ETH
GPIO19
                 Inp
                         // ETH
GPIO20
                 Inp
                         // DTRC#
GPIO21
                 Inp
                         // DSRC#
                         // RIC#
GPIO22
                 Inp
GPIO23
                 Inp
                         // DCDC#
GPIO24
                         // DTRD#
                 Inp
GPIO25
                 Inp
                         // DSRD#
GPIO26
                 Inp
                         // RID#
                         // DCDD#
GPIO27
                 Inp
                         // EXT_IRQ1
GPIO28
                 Inp
GPIO29
                 Inp
                         //
GPIO30
                 Inp
                         //
GPIO31
                 Inp
                         //
GPIO32
                 Inp
                         // EXT_IRQ2
GPIO33
                 Inp
                         //
GPIO34
                 Inp
                         // IIC_SCL
GPIO35
                 Inp
                         // IIC_SDA
GPIO36
                 Inp
                         // PWM0
GPIO37
                 Inp
                         // PWM1
```

```
GPIO38
                Inp
                       // PWM2
GPIO39
                Inp
                       // PWM3
GPIO40
                Inp
                       // TXDC
GPIO41
                       // RXDC
                Inp
GPIO42
                Inp
                       // RTSC#
GPIO43
                Inp
                       // CTSC#
GPIO44
                       // TXDD
                Inp
GPIO45
                       // RXDD
                Inp
                       // RTSD#
GPIO46
                Inp
GPIO47
                Inp
                       // CTSD#
GPIO48
                       // USB_SUSP
                Inp
GPIO49
                       // USB_PHYSPEED
                Inp
GPIO50
                       // MII MDIO/RMII MDIO
                Inp
                       // MII RXDV
GPIO51
                Inp
                       // MII RXER/RMII RXER
GPIO52
                Inp
GPIO53
                Inp
                       // MII_RXD0/RMII_RXD0
GPIO54
                       // MII_RXD1/RMII_RXD1/USB_PHYSPEED
                Inp
GPIO55
                Inp
                       // MII_RXD2/USB_PHYSPEED
GPIO56
                Inp
                       // MII_RXD3/USB_RXD+
                       // MII_TXEN/RMII_TXEN/USB_RXD-
GPIO57
                Inp
GPIO58
                Inp
                       // MII_TXER/
GPIO59
                Inp
                       // MII_TXD0/RMII_TXD0
GPIO60
                Inp
                       // MII_TXD1/RMII_TXD1
GPI061
                Inp
                       // MII TXD2
GPIO62
                Inp
                       // MII_TXD3
GPIO63
                       // MII COL
                Inp
GPIO64
                       // MII CRS/RMII CRS DV
                Inp
                       // MII INT#
GPIO65
                Inp
                       // ADDR22
GPIO66
                Inp
                       // ADDR23
GPI067
                Inp
                       // ADDR24/SDM_CLKEN0/EXT_IRQ0
GPI068
                Inp
                       // ADDR25/SDM_CLKEN1/EXT_IRQ1
GPIO69
                Inp
                       // ADDR26/SDM_CLKEN2/IIC_SDA
GPIO70
                Inp
                       // ADDR27/SDM_CLKEN3
GPIO71
                Inp
GPIO72
                Inp
                       // TA_STRB
```

```
// The following pins are tristateable outputs.
// These pins are tristateable outputs but can not be read back.
// Each pin can be disabled independent of the other pins.
                 Out, Hi // Write Enable, SDRAM/Peripheral
WE#
EXT OE#
                 Out,Hi // Peripheral output enable
EXT CS0#
                 Out,Hi // Peripheral chip select
EXT CS1#
                 Out,Hi // Peripheral chip select
EXT CS2#
                 Out,Hi // Peripheral chip select
EXT CS3#
                 Out,Hi // Peripheral chip select
EXT BE0#
                 Out,Lo // Periperal Byte Enable
EXT_BE1#
                 Out,Lo // Periperal Byte Enable
EXT_BE2#
                 Out,Lo // Periperal Byte Enable
EXT BE3#
                 Out,Lo // Periperal Byte Enable
SDM CLKOUT0
                 Out,Lo // SDRAM clock output
SDM_CLKOUT1
                 Out,Lo // SDRAM clock output
SDM_CLKOUT2
                 Out,Lo // SDRAM clock output
SDM_CLKOUT3
                 Out,Lo // SDRAM clock output
SDM_CS0#
                 Out,Hi // SDRAM chip select
SDM_CS1#
                 Out,Hi // SDRAM chip select
SDM_CS2#
                 Out,Hi // SDRAM chip select
SDM_CS3#
                 Out,Hi // SDRAM chip select
SDM_CAS#
                 Out,Hi // SDRAM column address strobe
SDM_RAS#
                 Out,Hi // SDRAM row address strobe
SDM DQM0
                 Out,Lo // SDRAM Data Mask
SDM_DQM1
                 Out,Lo // SDRAM Data Mask
SDM DQM2
                 Out,Lo // SDRAM Data Mask
SDM DQM3
                 Out,Lo // SDRAM Data Mask
MII_MDC
                 Inp
// The following pins are input only.
// Setting to output of one of these pins results in an error.
// Declaration of the direction of these pins is optional.
SDM_CLKIN0
                 Inp
MII_RXCLK
                        // RMII_REFCLK
                 Inp
MII_TXCLK
                 Inp
                        //
SRESET#
                 Inp
                        //
```

1.10. Supported flash devices

Type JTAG9xxx /LIST [optionlist]

to get a online list of all flash types which could be used with the /DEVICE= option. In addition newer flash devices are supported by using the option /CFI.

See separate file JTAG_V4xx_FLASHES.pdf to get a complete list of supported flash types.

2. JTAG9xxx Parameter Description

When you start JTAG9xxx.EXE without any parameters the following help screen with all possible functions and options is displayed:

JTAG9xxx --- JTAG utility for NetSilicon NS9xxx Copyright © FS FORTH-SYSTEME GmbH, Breisach Version 4.xx of mm/dd/yyyy

Programming of Flash-EPROMs and hardware tests on targets with the NetSilicon NS9xxx.

The JTAG-Booster is needed to connect the parallel port of the PC to the JTAG port of the NetSilicon NS9xxx.

Usage: JTAG9xxx /function [filename] [/option_1] ... [/option_n] Supported functions:

/P : Program a Flash Device /R : Read a Flash Device to file /V : Verify a Flash Device with file

/DUMP : Make a target dump

/PNAND : Program a NAND Flash Device /RNAND : Read a NAND Flash Device to file /VNAND : Verify a NAND Flash Device with file /DUMPNAND : Make a dump of NAND Flash Device

/PSER : Program an I2C/SPI/MicroWire Device with file : Read an I2C/SPI/MicroWire Device to file : Verify an I2C/SPI/MicroWire Device with file : Make a dump of an I2C/SPI/MicroWire Device

/BLINK : Toggle a CPU pin /PIN? : Test a CPU pin

/SAMPLE : Test a CPU pin while the CPU is running /SNAP : Test all CPU pins while CPU is running /LIST : Print a list of supported Flash devices

Supported	Options:
-----------	----------

/CS0	/CS1	/CS2	/CS3	/BIG
/NOCS	/NOWRSETUP	/TOP	/BYTE-MODE	/BM
/CFI	/CFIDEBUG	/PAUSE	/P	/NODUMP
/NOERASE	/ERASEALL	/LATTICE	/WIGGLER	/PLS
/LPT1	/LPT2	/LPT3	/LPT-BASE=	/32BIT
/16BIT	/8BIT	/NOMAN	/LENGTH=	L=
/FILE-OFFSET=	/FO=	/OFFSET=	/O=	/DELAY=
/DEVICE-BASE=	/DB=	/DRIVER=	/IROFFS=	/CPUPOS=
/DEVICE=	/PIN=	/SERCS=	/SERCLK=	/SERDAT=
/SERDATI=	/SERDATO=	/SERBUFF=	/SERBIG	/SPI
/MWIRE	/LSB1ST	/SPIERA	/WATCH=	/OUT=
/INI=	/REP			

The following options are valid for most functions:

/DRIVER=x with x = 1,2,3,4

A driver for the interface to the JTAG-BOOSTER on the parallel port may be specified. /DRIVER=1 selects the fastest available driver, /DRIVER=4 selects the slowest one. Use a slower driver if there are problems with JTAG-BOOSTER.

Default: /DRIVER=3

/INI=file

An initialization file may be specified. By default the current directory is searched for the file JTAG9xxx.INI. If this file is not found and no initialization file is specified in the command line, default initialization values are used (see also chapter 1.9 "Initialization file JTAG9xxx.INI").

Note: The initialization file is not loaded for the functions /SAMPLE (chapter 2.11) and /SNAP (chapter 2.12).

Default: /INI=JTAG9xxx.INI

/LATTICE /WIGGLER /PLS

Besides the standard JTAG-Booster interface there are several simple "Parallel-Port-JTAG" interfaces supported. With this interfaces the programming performance, of course, is reduced.

/LPT1 /LPT2 /LPT3

A printer port may be specified where the JTAG-Booster resides. If you are using this program with WinNT, Win2000 or WinXP you must specify /LPT2 or /LPT-BASE=378 to get access to the standard printer port.

Default: /LPT1

/LPT-BASE

The physical I/O-Address of printer port may be specified instead of the logical printer name. Useful option, if you work with WinNT or Win2000, because the standard printer port is mapped as LPT2 here. Use the option /LPT-BASE=378 to get a command line which works independent of the operation system.

/OUT=file or device

All screen outputs are redirected to the specified file or device. Note that you can't redirect to the same parallel port where the JTAG-Booster resides.

Default: /OUT=CON

/PAUSE

With the option /PAUSE you can force the program to stop after each screen. Please do not use this option if you redirect the output to a file.

Abbreviation: /P

/WATCH=

With the option /WATCH= a pin can be specified, which is toggled twice per second, while the program is active. This pin may be the trigger of a watchdog. This pin must be specified as output in the initialization file.

/IROFFS=

Specifies the position of the NetSilicon NS9xxx instruction register within the JTAG chain. In most cases this option is not needed.

Default: /IROFFS=0

/CPUPOS=

Specifies the position of the NetSilicon NS9xxx within the JTAG chain.

Default: /CPUPOS=0

2.1. Program a Flash Device

Usage: JTAG9xxx /P filename [optionlist]

The specified file is programmed into the flash memory. The flash status is polled after programming of each cell (cell=8, 16 or 32 bit, depending on current data bus width). In case of a programming error, the contents of the flash memory is written to a file with the extension DMP.

If you want a complete verify after programming, please use an additional command line with the verify function. See chapter 2.3 "Verify a Flash Device with file". In most cases this additional verify step is not needed.

The type of the flash device is normally detected by the software. When autodetection fails you should use the /DEVICE= option together with /8BIT or /16BIT or /32BIT to set the right flash device and configuration. The known flash devices are shown in chapter 1.10 "Supported flash devices". Use the option /CFI if the flash is not in the list of know devices.

Options:

/DEVICE=devicename

The flash device is detected automatically by switching to autoselect mode. In case of trouble you should select the flash device by using this parameter to avoid autodetection. Combine this option with one of the following options which specify the data bus width and the option /BYTE-MODE if applicable.

/CFI

To be prepared for future flash chips, the JTAG-Booster integrates support for flashes which contain the CFI (Common Flash Interface) information structure. The CFI support is activated by simply adding the option /CFI to the command line. The JTAG-Booster then automatically searches in all available bus widths for all possible flash types and configurations instead of searching for the JEDEC identification code.

In case of an error add the command line option /CFIDEBUG and redirect the program output into a file. Sending us this file helps in solving problems.

/8BIT /16BIT /32BIT

Specifies the data bus width to the target flash device. You can speed up autodetection, if you specify the correct data bus size. You need this option together with the option /DEVICE= to explicit specify a specific flash configuration.

/BYTE-MODE

If there is a flash device connected to the CPU which does have a byte mode pin (8 bit and 16/32 bit bus mode), you can force it to be used as 8 bit mode with the option /BYTE-MODE. In most cases this option will not be needed.

Abbreviation: /BM

/NOMAN

If you use a flash device which is identical to one of the supported parts, but is from a different manufacturer, with this option you can suppress the comparison of the manufacturer identification code. We recommend to use this option together with the /DEVICE= option to avoid failures in autodetection.

/DEVICE-BASE=hhhhhh¹

Here you can specify a flash device starting address. In most cases, where the flash device is selected with one of the CPUs chip select pins, this parameter is not needed. But if there is any decoding logic in your hardware, this option will be needed. Especially, if there are several flash banks connected to one chip select and a sub decoding logic generates chip selects for these flash banks, this option can be used to select a specific flash bank.

Default: /DEVICE-BASE=0

Abbreviation: /DB=

JTAG_NS9xxxb.doc

¹hhhhhh=number base is hex

/OFFSET=hhhhhh

The programming starts at an offset of hhhhhh relative to the start address of the flash device. If the offset is negative, the offset specifies an address relative to the end of the flash device. See also option /TOP

Default: /OFFSET=0

Abbreviation: /O=

/TOP

If the option /TOP is used the option /OFFSET= specifies the address where the programming ends (plus one) instead of the starting address. This option is very important for Intel CPU architectures, because target execution always starts at the top of the address space.

/FILE-OFFSET=hhhhhh

If FILE-OFFSET is specified, the first hhhhhh bytes of the file are skipped and not programmed to target.

Default: /FILE-OFFSET=0

Abbreviation: /FO=

/LENGTH=hhhhhh

The number of programmed bytes may be limited to LENGTH. If no LENGTH is specified the whole file is programmed.

Default: /LENGTH=4000000 (64 MByte)

Abbreviation: /L=

/NODUMP

In case of a verify error the contents of the flash memory is written to a file with the extension .DMP. With /NODUMP you can suppress this feature.

/ERASEALL

Erase the whole flash device. If this option isn't set, only those blocks are erased where new data should be written to.

/NOERASE

This option prevents the flash device from being erased.

/CS0 /CS1 /CS2 /CS3

This options may be used to specify one or more chip select signals to the flash memory. The used chip selects must be defined as output and inactive in the initialization file. (See chapter 1.9 "Initialization file JTAG9xxx.INI".)

Default: /CS1

/NOCS

Use this option to switch off all chip select signals. This may be necessary if the device's chip select is generated via a normal decoder instead of using the NetSilicon NS9xxx chip select unit.

/NOWRSETUP

By default write cycles to the Flash EPROM are realized with three steps: 1. set address/data 2. write strobe active 3. write strobe inactive. In most cases it is possible to set the write strobe coincident with setting of address and data by specifying the option /NOWRSETUP. This increases the programming speed by 50%.

Examples:

JTAG9xxx /P ROMDOS.ROM /L=20000 /TOP

This example programs up to 128 Kbytes of the file ROMDOS.ROM (with i.e. 512 Kbytes) to the top of the boot flash memory.

JTAG9xxx /P CE.ROM /32BIT /CS1

This example programs the file CE.ROM to the 32 Bit Flash-EPROM connected to CS1#.

2.2. Read a Flash Device to file

Usage: JTAG9xxx /R filename [optionlist]

The contents of a flash device is read and written to a file.

The type of the flash device is normally detected by the software. When autodetection fails you should use the /DEVICE= option together with /8BIT or /16BIT or /32BIT to set the right flash device and configuration. The known devices are shown in chapter 1.10 "Supported flash devices". Use the option /CFI if the flash is not in the list of know devices.

Options:

/DEVICE=devicename See function /P (Chapter 2.1)

/CF

See function /P (Chapter 2.1)

/8BIT /16BIT /32BIT See function /P (Chapter 2.1)

/BYTE-MODE See function /P (Chapter 2.1)

/NOMAN See function /P (Chapter 2.1)

/DEVICE-BASE=hhhhhh²
See function /P (Chapter 2.1)

42

JTAG_NS9xxxb.doc

²hhhhhh=number base is hex

/OFFSET=hhhhhh

Reading of the flash memory starts at an offset of hhhhhh relative to the start address of the flash device. If the offset is negative, the offset specifies a address relative to the end of the flash device.

See also option /TOP.

Default: /OFFSET=0

Abbreviation: /O=

/TOP

If the option /TOP is used the option /OFFSET= specifies the address where reading ends (plus one) instead of the starting address.

/LENGTH=hhhhhh

The number of read bytes may be limited to LENGTH. If no LENGTH is specified the whole flash device is read (if no offset is specified).

/CS0 /CS1 /CS2 /CS3

See function /P (Chapter 2.1)

/NOWRSETUP

See function /P (Chapter 2.1)

Please note: In the function /R write cycles are needed to detect the type of the flash memory.

Example:

JTAG9xxx /R BIOS.ABS /L=10000 /TOP

This example may be used to read the upper most 64 Kbyte of the flash memory to the file BIOS.ABS.

2.3. Verify a Flash Device with file

Usage: JTAG9xxx /V filename [optionlist]

The contents of a flash device is compared with the specified file. If there are differences the memory is dumped to a file with the extension DMP.

The type of flash device is normally detected by the software. When autodetect fails you should use the /DEVICE= option together with /8BIT or /16BIT or /32BIT to set the right flash device and configuration. The known devices are shown in chapter 1.10 "Supported flash devices". Use the option /CFI if the flash is not in the list of know devices.

Options:

/DEVICE=devicename See function /P (Chapter 2.1)

/CFI

See function /P (Chapter 2.1)

/8BIT /16BIT /32BIT See function /P (Chapter 2.1)

/BYTE-MODE

See function /P (Chapter 2.1)

/NOMAN

See function /P (Chapter 2.1)

/DEVICE-BASE=hhhhhh See function /P (Chapter 2.1)

/OFFSET=hhhhhh

See function /P (Chapter 2.1)

/TOP

See function /P (Chapter 2.1)

/FILE-OFFSET=hhhhhh

See function /P (Chapter 2.1)

/LENGTH=hhhhhh

See function /P (Chapter 2.1)

/NODUMP

See function /P (Chapter 2.1)

/CS0 /CS1 /CS2 /CS3

See function /P (Chapter 2.1)

/NOWRSETUP

See function /P (Chapter 2.1)

Please note: In the function $\,^{\prime\prime}$ write cycles are needed to detect the type of the flash memory.

Example:

JTAG9xxx /V ROMDOS.ROM /L=20000 /TOP

This example may be used to verify the upper most 128 Kbytes of the flash memory with the file ROMDOS.ROM (with i.e. 512 Kbytes).

2.4. Dump target memory

Usage: JTAG9xxx /DUMP [optionlist]

A Hex-Dump of the target memory is printed on the screen, if not redirected to file or device.

Options:

/8BIT /16BIT /32BIT Default: /32BIT

/OFFSET=hhhhhh

The memory dump starts at an offset of hhhhhh plus the device start address (see option /DEVICE-BASE=).

Default: /OFFSET=0

Abbreviation: /O=

/DEVICE-BASE=hhhhhh³

The device start address is used as an additional offset. This gives the function /DUMP the same behavior as function /P /V and /R.

Default: /DEVICE-BASE=0

Abbreviation: /DB=

/TOP

If the option /TOP is used the option /OFFSET= specifies the address where the dump ends (plus one) instead of the starting address

/LENGTH=hhhhhh

Default: /LENGTH=100

Abbreviation: /L=

/CS0 /CS1 /CS2 /CS3 See function /P (Chapter 2.1)

Default: /CS1

³hhhhhh=number base is hex

Example:

JTAG9xxx /DUMP

This example makes a memory dump of the first 256 bytes of the Boot-EPROM.

2.5. Program a Serial Device (I²C/SPI/MicroWire)

Usage: JTAG9xxx /PSER filename [/SERBIG] [optionlist]

The specified file is programmed to a serial device (i.e. EEPROM) connected to pins of the CPU. Finally a complete verify is done. If the verify fails, the contents of the serial device is written to a file with the extension DMP.

For an I²C device there are two different methods how to connect it to the CPU. The first method uses two CPU pins, one pin for clock output (SERCLK) and one pin for serial data input/output (SERDAT). The second method uses one pin for clock output (SERCLK), one for serial data input (SERDATI) and one for serial data output (SERDATO).

Connecting a SPI/MicroWire device needs four different CPU pins: SERCS is the chip select output of the CPU, SERCLK is the clock output of the CPU, SERDATO is the serial data output of the CPU and must be connected to the SI input at the SPI/MicroWire device and SERDATI is the serial data input to the CPU and must be connected to the SO output of the SPI/MicroWire device.

Options:

/SERBIG

Specify this option if there is a device which needs a three byte address instead of a two byte address. For SPI devices this option is normally needed for devices with more than or equal to 64 kBytes. For I²C devices this option is normally needed for devices with more than 2 kByte.

This option must be the first option after the filename.

/SPI

Specify this option, if there is a SPI device connected instead of an I²C device.

/MWIRE

Specify this option, if there is a MicroWire device connected instead of an I²C device.

Please Note: Actually only the M93C06 and the M93C46 and only in 16 Bit mode are supported.

/DEVICE-BASE=hhhhhh

This option specifies an I²C device starting address. The default values are chosen to access a serial EEPROM. By changing the device starting address different devices can be selected. As SPI/MicroWire devices are selected by the chip select signal instead of an address, this option does not make sense for SPI/MicroWire devices.

Default: /DEVICE-BASE=5000 (if option /SERBIG omitted)
Default: /DEVICE-BASE=500000 (if option /SERBIG specified)
Default: /DEVICE-BASE=0 (for SPI/MicroWire devices)

/OFFSET=hhhhhh

The programming starts at an offset of hhhhhh relative to the start address of the serial device.

Default: /OFFSET=0

Abbreviation: /O=

/FILE-OFFSET=hhhhhh

If FILE-OFFSET is specified, the first hhhhhh bytes of the file are skipped and not programmed to target.

Default: /FILE-OFFSET=0

Abbreviation: /FO=

/LENGTH=hhhhhh

The number of programmed bytes may be limited to LENGTH. If no LENGTH is specified the whole file is programmed.

Abbreviation: /L=

/NODUMP

In case of a verify error the contents of the I²C-Device is written to a file with the extension .DMP. With option /NODUMP you can suppress this feature.

/SERCS=pin_name (SPI/MicroWire mode only)

Specifies the CPU pin used to select the serial device.

In SPI mode SERCS is treated as low active.

In MicroWire mode SERCS is treated as high active.

/SERCLK=pin name

Specifies the CPU pin used for serial clock output.

/SERDAT=pin name (I²C only)

Specifies the CPU pin used for serial data input and output for an I²C device. Pin_name must specify a bidirectional pin otherwise an error message occurs. Instead of one bidirectional pin one pin for serial data input and one for serial data output may be used. See option /SERDATO= and /SERDATI= .

/SERDATO=pin name

Specifies the CPU pin used for serial data output. Pin_name must specify a output pin otherwise an error message occurs. This pin must be connected to the serial data **input** of a SPI/MicroWire device.

/SERDATI=pin_name

Specifies the CPU pin used for serial data input. Pin_name must specify a input pin otherwise an error message occurs. This pin must be connected to the serial data **output** of a SPI/MicroWire device.

/SERBUFF= hhhhhh

For I²C and SPI devices the write page mode can be activated by specifying the option /SERBUFF=. Using this feature increases the programming performance. Please note: Some SPI devices do not support single byte write mode. For these devices the option /SERBUFF= must be specified in the command line.

/LSB1ST

Some devices need the least significant data bit sent/received first (i.e. Altera ECS1 configuration device for FPGAs). Addresses are still sent/received most significant bit first. This option does not affect the behavior of accessing I²C devices.

/SPIERA

Some SPI devices need to be erased before programming. Add option /SPIERA to the command line to perform a chip erase procedure before programming.

Example:

JTAG9xxx /PSER EEPROM.CFG /SERCLK=FLAG0 /SERDAT=FLAG1 This example loads the file EEPROM.CFG to a I²C EEPROM connected to the pins FLAG0 and FLAG1 of the NetSilicon NS9xxx

2.6. Read a Serial Device to file (I²C/SPI/MicroWire)

Usage: JTAG9xxx /RSER filename [/SERBIG] /L=hhhhhh [optionlist]

The contents of a serial device (i.e. EEPROM) is read and written to a file. The option /LENGTH= must be specified.

Options:

/SERBIG

This option must be the first option after the filename.

See function /PSER (Chapter 2.5)

/SPI

Specify this option, if there is a SPI device connected instead of a I²C device.

/MWIRE

Specify this option, if there is a MicroWire device connected instead of an I²C device.

/DEVICE-BASE=hhhhhh

See function /PSER (Chapter 2.5)

/OFFSET=hhhhhh

Reading of the serial device starts at an offset of hhhhhh relative to the start address of the serial device.

Default: /OFFSET=0

Abbreviation: /O=

/LENGTH=hhhhhh

The number of read bytes must be specified otherwise an error message occurs.

Abbreviation: /L=

/SERCS=pin_name

See function /PSER (Chapter 2.5)

/SERCLK=pin_name

See function /PSER (Chapter 2.5)

/SERDAT=pin_name See function /PSER (Chapter 2.5)

/SERDATO=pin_name See function /PSER (Chapter 2.5)

/SERDATI=pin_name See function /PSER (Chapter 2.5)

/LSB1ST See function /PSER (Chapter 2.5)

Example:

JTAG9xxx /RSER EEPROM.CFG /SERCLK=GP26 /SERDAT=GP27 /L=100 This example reads 256 bytes from a I²C EEPROM to the file EEPROM.CFG. The serial EEPROM is connected to the pins CP26 and GP27 of the NetSilicon NS9xxx.

2.7. Verify a Serial Device with file (I2C/SPI/MicroWire)

Usage: JTAG9xxx /VSER filename [/SERBIG] [optionlist]

The contents of a serial device (i.e. EEPROM) is compared with the specified file. If there are differences the contents of the I²C -Device is written to a file with the extension DMP.

Options:

/SERBIG

This option must be the first option after the filename.

See function /PSER (Chapter 2.5)

/SPI

Specify this option, if there is a SPI device connected instead of a I²C device.

/MWIRE

Specify this option, if there is a MicroWire device connected instead of an I²C device.

/DEVICE-BASE=hhhhhh

See function /PSER (Chapter 2.5)

/OFFSET=hhhhhh

See function /PSER (Chapter 2.5)

/FILE-OFFSET=hhhhhh

See function /PSER (Chapter 2.5)

/LENGTH=hhhhhh

See function /SER (Chapter 2.5)

/NODUMP

See function /PSER (Chapter 2.5)

/SERCS=pin_name

See function /PSER (Chapter 2.5)

/SERCLK=pin_name See function /PSER (Chapter 2.5)

/SERDAT=pin_name See function /SER (Chapter 2.5)

/SERDATO=pin_name See function /PI2C (Chapter 2.5)

/SERDATI=pin_name See function /PI2C (Chapter 2.5)

/LSB1ST See function /PSER (Chapter 2.5)

Example:

JTAG9xxx /VSER EEPROM.CFG /SERCLK=GP26 /SERDAT=GP27 This example verifies 256 bytes from a serial EEPROM with the file EEPROM.CFG. The serial EEPROM is connected to the pins CP26 and GP27 of the NetSilicon NS9xxx.

2.8. Dump a Serial Device (I²C/SPI/MicroWire)

Usage: JTAG9xxx /DUMPSER [/SERBIG] [optionlist]

A Hex-Dump of serial device (i.e. EEPROM) is printed on the screen, if not redirected to file or device.

Options:

/SERBIG

This option must be the first option.

See function /PSER (Chapter 2.5)

/SPI

Specify this option, if there is a SPI device connected instead of a I²C device.

/MWIRE

Specify this option, if there is a MicroWire device connected instead of an I²C device.

/DEVICE-BASE=hhhhhh

See function /PSER (Chapter 2.5)

/OFFSET=hhhhhh⁴

The memory dump starts at an offset of hhhhhh.

Default: /OFFSET=0

Abbreviation: /O=

/LENGTH=hhhhhh

Default: /LENGTH=100

Abbreviation: /L=

/SERCS=pin name

See function /PSER (Chapter 2.5)

/SERCLK=pin name

See function /PSER (Chapter 2.5)

JTAG_NS9xxxb.doc

55

⁴hhhhhh=number base is hex

/SERDAT=pin_name See function /SER (Chapter 2.5)

/SERDATO=pin_name See function /PI2C (Chapter 2.5)

/SERDATI=pin_name See function /PI2C (Chapter 2.5)

/LSB1ST See function /PSER (Chapter 2.5)

Example:

JTAG9xxx /DUMPSER /SERCLK=FLAG0 /SERDAT=FLAG1 This example makes a memory dump of the first 100h bytes of a I²C EEPROM connected to the CPU.

2.9. Toggle CPU pins

Usage: JTAG9xxx /BLINK /PIN=pinname [optionlist]

This command allows to test the hardware by blinking with LEDs or toggling CPU signals. Faster signals can be generated by setting the delay option to zero. This can be a very helpful feature to watch signals on an oscilloscope.

The signal on the defined pin has an duty cycle of 1/2: The level is 67% high and 33% low.

Please Note: Not every pin of the NetSilicon NS9xxx may be specified as an output pin.

Options:

/PIN=pin name

CPU pin to toggle. If the option /PIN= is not specified an error message occurs. Most pins of the list in chapter 1.9 "Initialization file JTAG9xxx.INI" can be used. If you type /PIN= without any pin declaration a list of the CPU pins is displayed.

/DELAY=dddddd⁵

Time to wait to next change of signal. This option can be adjusted to get optimum signals for measures with the oscilloscope.

Default: /DELAY=10000

Example:

JTAG9xxx /BLINK /PIN=FLAG3 /DELAY=0

This example toggles the FLAG3 pin very fast which can be followed by the use of an oscilloscope.

JTAG NS9xxxb.doc

57

⁵dddddd=number base is decimal

2.10. Polling CPU pins

Usage: JTAG9xxx /PIN? /PIN=pinname [optionlist]

This command allows to test the hardware by polling CPU signals.

Please Note: Not every pin of the NetSilicon NS9xxx may be specified as an input pin.

Options:

/PIN=pin_name

CPU pin to poll. If the option /PIN= is not specified an error message occurs. Most pins of the list in chapter 1.9 "Initialization file JTAG9xxx.INI" can be used. If you type /PIN= without any pin declaration a list of the CPU pins is displayed.

Example:

JTAG9xxx /PIN? /PIN=RESET#

This example samples the reset pin of the NetSilicon NS9xxx.

2.11. Polling CPU pins while the CPU is running

Usage: JTAG9xxx /SAMPLE /PIN=pinname [optionlist]

This command is similar to the function /PIN?. But with this function any pin can be observed, independent of the pin direction. Furthermore the CPU remains in normal operation.

Options:

/PIN=pin_name

CPU pin to poll. If the option /PIN= is not specified an error message occurs. All pins of the list in chapter 1.9 "Initialization file JTAG9xxx.INI" can be used. If you type /PIN= without any pin declaration a list of the CPU pins is displayed.

Example:

JTAG9xxx /SAMPLE /PIN=FLAG3

This example samples the state of the port pin FLAG3 while the NetSilicon NS9xxx is running.

2.12. Show status of all CPU pins while the CPU is running

Usage: JTAG9xxx /SNAP [optionlist]

This function is similar to the function /SAMPLE, but displays the status of all CPU pins on the screen. The CPU remains in normal operation.

The behavior of the function /SNAP depends on the option /REP: With this option specified, the JTAG-Booster samples and displays the state of the CPU pins repetitive. Without this option the status of the pins is displayed only once.

Options:

/PAUSE

Use this option to stop the output after each displayed screen. Don't use this option together with the option /REP or if the output is redirected to a file. Abbreviation /P

/REP

If this option is specified the status of the pins is sampled and displayed repetitive. In case of many signals the display is separated into several screens. Therefor we recommend to use a video mode with 43 or 50 lines. Use the '+' and the '-' key to switch between different screens. Any other key terminates the program.

Sample output: This is a sample output for a NetSilicon NS9750/NS9775

0 RTCK_OUT	0 PCI_INTB# 0 PCI_GNT2# 0 PCI_GNT2# 0 PCI_AD30 0 PCI_AD26 0 PCI_AD20 0 PCI_AD16 0 PCI_AD16 0 PCI_AD14 0 PCI_AD14 0 PCI_AD10 0 PCI_AD7 0 PCI_AD3 0 DATA4 0 DATA4 0 DATA8 0 DATA420 0 DATA24 0 DATA28 0 DATA24 0 DATA28 0 ADDR12 0 ADDR4 0 ADDR8 0 ADDR12 0 ADDR24 0 ADDR24 0 SDM_CLKOUT0 0 EXT_CS2# 0 SDM_CS2#	0 EXT_CS3# 0 SDM_CS3#	0 PCI_INTD# 0 PCI_GNT3# 0 PCI_GNT1# 0 PCI_GNT1# 0 PCI_CLKIN 0 PCI_AD28 0 PCI_AD24 0 PCI_AD22 0 PCI_AD18 0 PCI_FRAME# 0 PCI_STOP# 0 PCI_CBE1# 0 PCI_AD12 0 PCI_AD12 0 PCI_AD5 0 PCI_AD5 0 PCI_AD5 0 PCI_AD1 0 DATA2 0 DATA6 0 DATA10 0 DATA14 0 DATA18 0 DATA18 0 DATA22 0 DATA30 0 ADDR14 0 ADDR10 0 ADDR10 0 ADDR14 0 ADDR18 0 ADDR22 0 ADDR26 0 EXT_CS1# 0 WE# 0 SDM_CS0# 0 WE#
!			
OSDM_CLKOUT1	0 EXT_CS2#	0 EXT_CS3#	0 SDM_CS0#
. –		_	
0 SDM_CLKOU12 0 SDM_RAS#	0 EXT_OE#	0 SDM_CAS# 0 EXT_BE0#	0 SDM_CLKOUT3
0 SDM_RAS#	0 SDM_CERINO 0 EXT_BE1#	0 EXT_BE0# 0 EXT_BE2#	0 SDM_CLKIN3
0 EXT BE3#	0 SDM DQM0	0 SDM DQM1	0 SDM_DQM2
0 SDM DQM3	0 SDM_CKE0	0 SDM_CKE1	0 SDM_CKE2
0 SDM_CKE3	0 EXT_RP??	0 EXT_TACK	0 LCD_CLK

0 PRINT	0 VCLK1 0 MII_RXCLK 0 MII_RXD0 0 MII_TXD3	0 BP_STAT2 0 VCLK2 0 MII_RXD3 0 MII_RXDV 0 MII_TXD2	0 BP_STAT3 0 VCLK3 0 MII_RXD2 0 MII_RXER 0 MII_TXD1
0 GPIO41	0 GPIO44 0 GPIO40 0 GPIO36 0 GPIO32 0 GPIO28 0 GPIO24 0 GPIO20 0 GPIO16 0 GPIO12 0 GPIO8 0 GPIO6	0 GPIO43 0 GPIO39 0 GPIO35 0 GPIO31 0 GPIO27 0 GPIO23 0 GPIO19 0 GPIO15 0 GPIO11 0 I2C_SCL 0 GPIO5	0 GPIO42 0 GPIO38 0 GPIO34 0 GPIO30 0 GPIO26 0 GPIO22 0 GPIO18 0 GPIO14 0 GPIO10 0 I2C_SDA 0 GPIO4

3. Implementation Information

This chapter summarizes some information about the implementation of the JTAG-Booster and describes some restrictions.

- The JTAG-Booster currently uses Boundary Scan to perform Flash programming. The Debug Interface of the NetSilicon NS9xxx is not used.
- Some board designs do not have a pullup resistors at the TSRT# signal. As there is a weak pull down on the NetSilicon NS9xxx chip, you will get the error message:

"No devices found in JTAG chain or TDO pin stuck at high level". To avoid this error message you need to connect the TSRT# output of the JTAG-Booster with the TRST# input of the NetSilicon NS9xxx. Normally this is the case if you use the standard 8 pin JTAG-Booster connector. If you use the JT_ARM adapter (FS part number 360), the jumper JP2 must be set.

3.1. Implementation Information NetSilicon NS9750/NS9775

 The software assumes the following scheme for connecting the (NOR-) Flash-EPROM to the NetSilicon NS9750/NS9775. Please contact us, if you have used a different method.

NetSilicon NS9750/NS9775 signal	8 Bit (NOR-) Flash	16 Bit (NOR-) Flash	32 Bit (NOR-) Flash
EXT_CS0# EXT_CS1# EXT_CS2# EXT_CS3#	CS#	CS#	CS#
EXT_OE#	OE#	OE#	OE#
WE#	WE#	WE#	WE#
ADDR026	A026	-	-
ADDR026	-	A127	-
ADDR026	-	-	A228
DATA07	D07	-	-
DATA015	-	D015	-
DATA031	-	-	D031

- 1.) The NetSilicon NS9750/NS9775 does adjust the addresses driven out through the address lines according to the selected bus size, this means: While A0 selects between bytes if the bus size is 8 bit, A0 selects between 32 bit words if the bus size is 32 bit.
- 2.) All other signals are hold static during flash programming. The state of these signals is defined in the Initialization file.

 The software assumes the following scheme for connecting the NAND Flash-EPROM to the NetSilicon NS9750/NS9775. Only 8 bit NAND flashes are supported. Please contact us, if you have used a different method.

NetSilicon NS9750/NS9775 signal	8 Bit NAND Flash
EXT_CS1#	FCE#
EXT_OE#	FRE#
WE#	FWE#
ADDR13	ALE
ADDR14	CLE
DATA07	D07
GPIO49	R/B#

- 1.) This scheme fits to the module A9M9750 from FS Forth-Systeme.
- 2.) EXT_OE# and WE# are set according to the memory cycle.
- 3.) All other signals are hold static during flash programming. The state of these signals is defined in the Initialization file.

3.2. Implementation Information NetSilicon NS9360

 The software assumes the following scheme for connecting the (NOR-) Flash-EPROM to the NetSilicon NS9360. Please contact us, if you have used a different method.

NetSilicon NS9360 signal	8 Bit (NOR-) Flash	16 Bit (NOR-) Flash	32 Bit (NOR-) Flash
EXT_CS0# EXT_CS1# EXT_CS2# EXT_CS3#	CS#	CS#	CS#
EXT_OE#	OE#	OE#	OE#
WE#	WE#	WE#	WE#
ADDR021	A021	-	-
ADDR021	-	A122	-
ADDR021	-	-	A223
DATA07	D07	-	-
DATA015	-	D015	-
DATA031	-	-	D031

- 1.) The NetSilicon NS9360 does adjust the addresses driven out through the address lines according to the selected bus size, this means: While A0 selects between bytes if the bus size is 8 bit, A0 selects between 32 bit words if the bus size is 32 bit.
- 2.) All other signals are hold static during flash programming. The state of these signals is defined in the Initialization file.
- 3.) Flash size is actually limited to
 - 4 MByte in 8 bit mode
 - 8 MByte in 16 bit mode
 - 16 MByte in 32 bit mode.

ADDR23..27 are multiplexed with GPIO66..71. Actually no address information is driven on these CPU pins.

 The software assumes the following scheme for connecting the NAND Flash-EPROM to the NetSilicon NS9360. Only 8 bit NAND flashes are supported. Please contact us, if you have used a different method.

NetSilicon NS9360 signal	8 Bit NAND Flash
EXT_CS1#	FCE#
EXT_OE#	FRE#
WE#	FWE#
ADDR13	ALE
ADDR14	CLE
DATA07	D07
GPIO??	R/B#

- 1.) This scheme fits to the module A9M9360 from FS Forth-Systeme.
- 2.) EXT_OE# and WE# are set according to the memory cycle.
- 3.) All other signals are hold static during flash programming. The state of these signals is defined in the Initialization file.

4. Converter Program HEX2BIN.EXE

Since the JTAG-Booster software is not able to handle Intel-HEX or Motorola S-Record files, an separate converter tool is delivered with this product package.

Five types of HEX formats can be converted to BIN file:

I : INTEL HEX format (BYTE oriented)

D : Digital Research

M: MOTOROLA S HEX format (BYTE oriented)

T: TEKTRONICS HEX format (BYTE oriented)

• H: Intel HEX-32

Maximum conversion size is 256 kBytes. A 4th parameter for starting address can be specified to skip out the leading garbage and you will maintain a small size of output binary file.

If you start the HEX2BIN without any additional parameter all necessary parameters will be asked for in a prompt mode:

```
HEX2BIN
Input HEX file name: MYAPP.H86
Output BIN file name[MYAPP.BIN]:
HEX file format
<I>ntel /<M>otorola /<D>igital Research /<T>ektronics /[H] Intel HEX-32[I] : H
Input CODE segment start address[0000000]: 10000
Input CODE segment end address[FFFFFFF]:
Unused bytes will be <1>00 <2>FF [1] : 2
```

Instead of using the prompt mode, you can directly specify all necessary parameters in the command line. This is essential for making batch files:

```
HEX2BIN MYAPP.H86 MYAPP.BIN H 0010000 FFFFFFF 2
```

It is very important to fill unused bytes with 0xFF, because this are simply skipped by the JTAG-Boosters software and so it speeds up the programming performance.

Please Note: **"CODE segment start address"** is interpreted as a Intel x86 architecture segment address: You have to specify a start address of 10000 to start the conversion at 1 MByte.

This converter is a relatively old DOS tool and therefor it has problems with non DOS compliant file and directory names. Avoid names with spaces, limit names to eight characters. Otherwise the converter does not convert the input file, without any error message!!

5. Support for Windows NT, Windows 2000 and Windows XP

A configured run time version of the "Kithara DOS Enabler, Version 6.x" is used to give support for some of our DOS based tools (like the JTAG-Booster) for Windows NT, Windows 2000 and Windows XP. After installation of the "DOS Enabler" the accesses to the LPT ports are allowed for the all programs listed in file Readme_WinNT.txt

Note: Accesses to the ports are only allowed for the programs listed in file Readme_WinNT.txt. If you rename one of our tools, the DOS Enabler does not work.

Important: You need administrator rights to install or de-install this program.

5.1. Installation on a clean system

If you have a clean system without having installed a previous version of the "Kithara Tool Center", this tool is really simple to install. Extract the ZIP file to a new folder and start KSETUP.EXE. Everything is done within a few seconds. No additional input is needed. Now reboot your PC.

5.2. Installation with already installed version 5.x/6.x of Kithara

If you have already installed an older WinNT support (Kithara Version 5.x or 6.x), you have to de-install it 1st as described in chapter 5.4.

After rebooting your PC you can install the Kithara 6.x as described above.

5.3. Installation with already installed version 4.x of Kithara

Important!! If you have already installed an older WinNT support, you have to deinstall it completely!!!

- Start kcenter
- Select Register "Einstellungen" (=Settings) and deactivate "VDD benutzen" and "speziellen seriellen Treiber benutzen".
- Stop Kernel

- exit the kcenter program
- Now you can deinstall the Kithara Package with: Settings - Control Panel.
 All unused parts must be removed.
- Reboot your PC
- Now you can install the Kithara 6.x as described above.

5.4. De-Installation version 5.x/6.x:

For deinstallation of the runtime version of the "Kithara DOS-Enabler Version 5.x/6.x":

- use: Settings Control-Panel Add/Remove Programs and remove the "FS FORTH-SYSTEME WinNT Support" and/or "WinNT Support for JTAG-Booster and FLASH166"
- Reboot your PC