
© 2010 Digi International, Inc. 1

90000788_B
3/18/2010

NET+OS Kernel Guide

© 2010 Digi International, Inc. 2

© 2010 Digi International, Inc.
Printed in the United States of America.

Digi, Digi International, the Digi logo, the Making Device Networking Easy logo, NetSilicon, a Digi
International Company, NET+, NET+OS and NET+Works are trademarks or registered trademarks of Digi
International, Inc. in the United States and other countries worldwide. All other trademarks are the
property of their respective owners.

Information is this document is subject to change without notice and does not represent a commitment
on the part of Digi International.

Digi provides this document “as is,” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of fitness or merchantability for a particular
purpose. Digi may make improvements and/or changes in this manual or in the product(s) and/or the
program(s) described in this manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are made periodically
to the information herein; these changes may be incorporated in new editions of the publication.

Contents

 © 2010 Digi Internaitonal, Inc. 3

Introduction to the NET+OS Kernel Guide 9

NET+OS kernel unique features 10

The picokernel architecture 10

ANSI C source code 10

Embedded applications 10

Real-time Software 10

Multitasking 11

Tasks vs. threads 11

NET+OS kernel benefits 11

Improved responsiveness 11

Software maintenance 12

Increased throughput 12

Processor isolation 12

Dividing the application 12

Ease of use 13

Improving time-to-market 13

Protecting the software investment 13

Functional Components of the NET+OS Kernel 14

Execution overview 15

Initialization 15

Thread execution 15

Interrupt service routines (ISR) 16

Application timers 16

Memory usage 16

Static memory usage 16

Dynamic memory usage 17

Initialization 18

System reset 18

Development tool initialization 18

The main function 18

The tx_kernel_enter function 18

Application definition function 19

Interrupts 20

Thread execution 21

Thread execution states 21

Thread priorities 23

Thread scheduling 23

Round-robin scheduling 23

Time-slicing 23

Preemption 24

Preemption-threshold 24

Priority inheritance 24

Thread creation 24

Thread control block 24

tx_run_count 25

tx_state 25

Currently executing thread 25

Thread stack area 26

Location of a thread stack 26

Size of a thread stack 26

Memory pitfalls 27

Reentrancy 27

Thread priority pitfalls 28

Priority overhead 28

Debugging pitfalls 29

Message queues 29

Creating message queues 30

Message size 30

Message queue capacity 30

Queue memory area 30

Thread suspension 30

Queue control block 31

Message destination pitfall 31

Counting semaphores 31

Mutual exclusion 31

Event notification 32

Creating counting semaphores 32

Thread suspension 33

Semaphore control block 33

Deadly embrace 33

Priority inversion 34

Mutexes 34

Mutex mutual exclusion 35

Creating mutexes 35

Thread suspension 35

Mutex control block 35

Deadly embrace 36

Priority inversion 36

Event flags 36

Creating event flag groups 37

Thread suspension 37

Event flag group control block 37

Memory block pools 37

Creating memory block pools 38

Memory block size 38

Pool capacity 38

Pool’s memory area 38

Thread suspension 38

Contents

 © 2010 Digi Internaitonal, Inc. 4

Memory block pool control block 39

Overwriting memory blocks 39

Memory byte pools 39

Creating memory byte pools 39

Pool capacity 39

Pool’s memory area 40

Thread suspension 40

Memory byte pool control block 40

Un-deterministic behavior 40

Overwriting memory blocks 41

Application timers 41

Timer intervals 41

Timer accuracy 42

Timer execution 42

Creating application timers 42

Application timer control block 42

Excessive timers 42

Relative time 43

Interrupts 43

Interrupt control 43

NET+OS kernel managed interrupts 43

ISR template 44

High-frequency interrupts 45

Interrupt latency 45

NET+OS Kernel Services 46

Summary of NET+OS kernel API functions 47

Memory block pool services 47

Memory byte pool services 47

Event flag services 47

Interrupt control 47

Message queue services 47

Semaphore services 48

Mutex services 48

Thread control services 48

Time services 48

Timer services 49

Return values and disabled error checking 49

NET+OS kernel API functions 49

tx_block_allocate 50

tx_block_pool_create 51

tx_block_pool_delete 53

tx_block_pool_info_get 54

tx_block_pool_prioritize 55

tx_block_release 56

tx_byte_allocate 57

tx_byte_pool_create 59

tx_byte_pool_delete 60

tx_byte_pool_info_get 61

tx_byte_pool_prioritize 63

tx_byte_release 64

tx_event_flags_create 65

tx_event_flags_delete 66

tx_event_flags_get 67

tx_event_flags_info_get 70

tx_event_flags_set 71

tx_mutex_create 73

tx_mutex_delete 74

tx_mutex_get 76

tx_mutex_info_get 78

tx_mutex_prioritize 79

tx_mutex_put 80

tx_queue_create 81

tx_queue_delete 83

tx_queue_flush 84

tx_queue_front_send 85

tx_queue_info_get 87

tx_queue_prioritize 88

tx_queue_receive 89

tx_queue_send 91

tx_semaphore_create 93

tx_semaphore_delete 94

tx_semaphore_get 95

tx_semaphore_info_get 97

tx_semaphore_prioritize 98

tx_semaphore_put 99

tx_thread_create 100

tx_thread_delete 103

tx_thread_identify 104

tx_thread_info_get 105

tx_thread_preemption_change 107

tx_thread_priority_change 109

tx_thread_relinquish 110

tx_thread_resume 111

tx_thread_sleep 112

tx_thread_suspend 113

tx_thread_terminate 115

tx_thread_time_slice_change 116

tx_thread_wait_abort 117

Contents

 © 2010 Digi Internaitonal, Inc. 5

tx_time_get 119

tx_time_set 119

tx_timer_activate 121

tx_timer_change 122

tx_timer_create 123

tx_timer_deactivate 125

tx_timer_delete 125

tx_timer_info_get 126

NET+OS Kernel Design Goals 129

Principal design goals 130

Simplicity 130

Scalability 130

High performance 130

NET+OS kernel ANSI C library 130

Include files 131

tx_api.h file 131

tx_port.h file 131

Programming Reference Information 132

NET+OS kernel constants 133

Listed alphabetically 133

Listed by value 135

NET+OS kernel data types 136

TX_INTERNAL_TIMER_STRUCT 136

TX_TIMER_STRUCT 137

TX_QUEUE_STRUCT 138

TX_THREAD_STRUCT 138

TX_SEMAPHORE_STRUCT 139

TX_EVENT_FLAGS_GROUP_STRUCT 139

TX_BLOCK_POOL_STRUCT 140

TX_BYTE_POOL_STRUCT 140

TX_MUTEX_STRUCT 141

© 2010 Digi International, Inc. 6

• •

Using This Guide

Review this section for basic information about this guide, as well as for general support
contact information.

About this guide

This guide provides comprehensive information about NET+OS kernel based on ThreadX from
Express Logic, Inc. NET+OS, a network software suite optimized for the NET+ARM chip, is part
of the NET+Works integrated product family.

Who should read this guide

This guide is intended for software developers of embedded real-time applications. You should be
familiar with standard real-time operating system functions and the C programming language.

To complete the tasks described in this guide you must have:

 Familiarity with API programming concepts and techniques, especially for network
applications and systems

 Sufficient system (user) privileges to perform the tasks described

 Access to a computer system that meets NET_OS hardware and software
requirements

© 2010 Digi International, Inc. 7

U s i n g T h i s G u i d e

What’s in this guide

This table describes the typographic conventions used in this guide:

Conventions used in this guide

This table describes the typographic conventions used in this guide:

Related documentation

 NET+OS Getting Started Guide explains how to install NET+OS with Green Hills or
with GNU tools, and how to build your first application.

 NET+OS User’s Guidedescribes how to use NET+OS to develop programs for your
application and hardware.

 NET+OS BSP Porting Guide describes how to port the board support package (BSP)
to a new hardware application, with either Green Hills software or GNU tools.

 NET+OS Application Software Reference Guide describes the NET+OS software
application programming interfaces (APIs).

 NET+OS BSP Software Reference Guide describes the board support package APIs.

 Review the documentation CD-ROM that came with your development kit for
information on third-party products and other components.

To read about the See

NET+OS kernel and its relationship
to real-time embedded development Chapter 1, "Introduction to the NET+OS Kernel"

Functional components and operation of
the NET+OS kernel

Chapter 2, "Functional Components of the
NET+OS Kernel"

API functions of the NET+OS kernel Chapter 3, "NET+OS Kernel Services"

Design goals of the NET+OS kernel Chapter 4, "NET+OS Kernel Design Goals"

NET+OS kernel constants and their
values, and definitions of data types Chapter 5, "Programming Reference Information"

This convention Is used for

italic type Emphasis, new terms, variables, and document titles.
In command and code examples, italics indicate a
placeholder (such as filename) where you would
specify some value of your own.

monospaced type File names, pathnames, commands, and code
examples.

© 2010 Digi International, Inc. 8

U s i n g T h i s G u i d e

 Refer to the NET+Works hardware documentation for information appropriate to
the chip you are using.

Digi Information

For more information about your Digi products, or for customer service and technical support,
contact Digi International.

To contact Digi International by Use

Mail

Digi International, Inc.
11001 Bren Road East
Minnetonka, MN 55343
U.S.A

World Wide Web www.digiembedded.com

Eservice Support www.digi.com/support/eservice/login.jsp

Telephone (U.S.) (952) 912-3444 or (877) 912-3444

Telephone (other locations) +1 (952) 912-3444 or +1 (877) 912-3444

© 2010 Digi International, Inc. 9

Introduction to the
NET+OS Kernel Guide
C H A P T E R 1

This chapter provides an overview of the NET+OS kernel and its relationship to
real-time embedded development.

I n t r o d u c t i o n t o t h e N E T + O S K e r n e l G u i d e

© 2010 Digi International, Inc. 10

NET+OS kernel unique features

The NET+OS kernel is a high-performance real-time kernel designed specifically for embedded
applications. Unlike other real-time kernels, the NET+OS kernel is designed to be versatile - easily
scaling among small micro-controller-based applications through those that use powerful RISC
and DSP processors.

What makes the NET+OS kernel so scalable? The reason is based on its underlying architecture.
Because NET+OS kernel services are implemented as a C library, only those services actually used
by the application are brought into the run-time image. Hence, the actual size of the NET+OS
kernel is completely determined by the application. For most applications, the instruction image of
the NET+OS kernel is between 2 Kbytes and 15 Kbytes.

The picokernel architecture

What about performance? Instead of layering kernel functions on top of each other like traditional
microkernel architectures, NET+OS kernel services plug directly into its core. This results in the
fastest possible context switching and service call performance. We call this non-layering design a
picokernel architecture.

ANSI C source code

The NET+OS kernel is primarily written in ANSI C. A small amount of assembly language is
needed to tailor the kernel to the underlying target processor. This design makes it possible to port
the NET+OS kernel to a new processor family in a very short time - usually within weeks.

Embedded applications

Embedded applications execute on microprocessors that are inside products such as cellular
phones, communication equipment, automobile engines, laser printers, medical devices, and so on.
Another distinction of embedded applications is that their software and hardware have a dedicated
purpose.

Real-time Software

When time constraints are imposed on the application software, it is given the realtime
label. Basically, software that must perform its processing within an exact period of time is called
real-time software. Embedded applications are almost always real-time because of their inherent
interaction with the external world.

I n t r o d u c t i o n t o t h e N E T + O S K e r n e l G u i d e

© 2010 Digi International, Inc. 11

Multitasking

As mentioned above, embedded applications have a dedicated purpose. To fulfill this purpose, the
software must perform a variety of duties or tasks. A task is a semi-independent portion of the
application that carries out a specific duty. It is also the case that some tasks or duties are more
important than others. One of the major difficulties in an embedded application is the allocation of
the processor between the various application tasks. This allocation of processing between
competing tasks is the primary purpose of the NET+OS kernel.

Tasks vs. threads

Another distinction about tasks must be made. The term task is used in a variety of ways. It
sometimes means a separately loadable program. In other instances, it might refer to an internal
program segment.

In contemporary operating system discussion, there are two terms that more or less replace the use
of task, namely process and thread. A process is a completely independent program that has its
own address space, while a thread is a semiindependent program segment that executes within a
process. Threads share the same process address space. The overhead associated with thread
management is minimal.

Most embedded applications cannot afford the overhead (both memory and performance)
associated with a full-blown process-oriented operating system. In addition, smaller
microprocessors don.t have the hardware architecture to support a true process-oriented operating
system. For these reasons, the NET+OS kernel implements a thread model, which is both
extremely efficient and practical for most real-time embedded applications. To avoid confusion,
this guide does not use the term task. Instead, the more descriptive and contemporary name thread
is used.

NET+OS kernel benefits

The NET+OS kernel provides many benefits to embedded applications, depending on how
embedded application threads are allocated processing time.

Improved responsiveness

Prior to real-time kernels like the NET+OS kernel, most embedded applications allocated
processing time with a simple control loop, usually from within the C main function. This approach
is still used in very small or simple applications. However, in large or complex applications it is not
practical because the response time to any event is a function of the worst-case processing time of
one pass through the control loop.

I n t r o d u c t i o n t o t h e N E T + O S K e r n e l G u i d e

© 2010 Digi International, Inc. 12

Making matters worse, the timing characteristics of the application change whenever
modifications are made to the control loop. This makes the application inherently unstable and
very difficult to maintain and improve on.

The NET+OS kernel provides fast and deterministic response times to important external events.
The NET+OS kernel accomplishes this through its preemptive, priority-based scheduling
algorithm, which allows a higher-priority thread to preempt an executing lower-priority thread. As
a result, the worst-case response time approaches the time required to perform a context switch.
This is not only deterministic, but it is also extremely fast.

Software maintenance

The NET+OS kernel enables application developers to concentrate on specific requirements of
their application threads without having to worry about changing the timing of other areas of the
application. This feature also makes it much easier to repair or enhance an application that utilizes
the NET+OS kernel.

Increased throughput

A possible work-around to the control loop response time problem is to add more polling. This
improves the responsiveness, but still doesn.t guarantee a constant worst-case response time and
does nothing to enhance future modification of the application. Also, the processor is now
performing even more unnecessary processing because of the extra polling. All of this unnecessary
processing reduces the overall throughput of the system.

An interesting point regarding overhead is that many developers assume that multi-threaded
environments like the NET+OS kernel increase overhead and have a negative impact on total
system throughput. But in some cases, multi-threading actually reduces overhead by eliminating
all of the redundant polling that occurs in control loop environments. The overhead associated with
multi-threaded kernels is typically a function of the time required for context switching. If the
context switch time is less than the polling process, the NET+OS kernel provides a solution with
the potential of less overhead and more throughput. This makes the NET+OS kernel an easy
choice for applications that have any degree of complexity or size.

Processor isolation

The NET+OS kernel provides a robust processor-independent interface between the application
and the underlying processor. This interface allows developers to concentrate on the application
rather than spending a significant amount of time learning hardware details.

Dividing the application

In control loop-based applications, each developer must have an intimate knowledge of the entire
application.s run-time behavior and requirements. This is because the processor allocation logic is

I n t r o d u c t i o n t o t h e N E T + O S K e r n e l G u i d e

© 2010 Digi International, Inc. 13

dispersed throughout the entire application. As an application increases in size or complexity, it
becomes impossible for all developers to remember the precise processing requirements of the
entire application.

Using the NET+OS kernel frees each developer from the worries associated with processor
allocation and allows them to concentrate on their specific piece of the embedded application. In
addition, the NET+OS kernel forces the application to be divided into clearly defined threads. By
itself, this division of the application into threads makes development much simpler.

Ease of use

The NET+OS kernel is designed with the application developer in mind. The NET+OS kernel
architecture and service call interface are designed to be easily understood. As a result, NET+OS
kernel developers can quickly use its advanced features.

Improving time-to-market

All of the benefits of the NET+OS kernel accelerate the software development process. The
NET+OS kernel takes care of most processor issues, thereby removing this effort from the
development schedule. All of this results in a faster time to market.

Protecting the software investment

Because of its architecture, the NET+OS kernel is easily ported to new processor environments.
This coupled with the fact the NET+OS kernel insulates applications from details of the underlying
processors, makes NET+OS kernel applications highly portable. As a result, the application.s
migration path is guaranteed and the original development investment is protected.

© 2010 Digi International, Inc. 14

Functional Components of
the NET+OS Kernel
C H A P T E R 2

This chapter describes the function of the NET+OS kernel.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 15

Execution overview

There are four types of program execution within a NET+OS kernel application:

 Initialization

 Thread execution

 Interrupt service routines (ISRs)

 Application timers

The following figure shows each different type of program execution. More detailed information
about each of these types is found in subsequent sections of this chapter.

Initialization

Initialization is the first type of program execution in a NET+OS kernel application. Initialization
includes all program execution between processor reset and the entry point of the thread
scheduling loop.

Thread execution

After initialization is complete, the NET+OS kernel enters its thread scheduling loop. The
scheduling loop looks for an application thread ready for execution. When a ready thread is found,
the NET+OS kernel transfers control to it. Once the thread is finished (or another higher-priority
thread becomes ready), execution transfers back to the thread scheduling loop in order to find the
next highest priority ready thread.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 16

This process of continually executing and scheduling threads is the most common type of program
execution in NET+OS kernel applications.

Interrupt service routines (ISR)

Interrupts are the cornerstone of real-time systems. Without interrupts it would be extremely
difficult to respond to changes in the external world in a timely manner.

Upon detection of an interrupt, the processor saves key information about the current program
execution (usually on the stack), then transfers control to a predefined program area. This
predefined program area is commonly called an interrupt service routine (ISR).

In most cases, interrupts occur during thread execution (or in the thread scheduling loop).
However, interrupts may also occur inside of an executing ISR or an application timer.

Application timers

Application timers are very similar to ISRs, except the actual hardware implementation (usually a
single periodic hardware interrupt is used) is hidden from the application. Such timers are used by
applications to perform time-outs, periodics, or watchdog services. Just like ISRs, application
timers most often interrupt thread execution. Unlike ISRs, however, application timers cannot
interrupt each other.

Memory usage

The NET+OS kernel resides along with the application program. As a result, the static memory (or
fixed memory) usage of the NET+OS kernel is determined by the development tool - for example,
the compiler, linker, and locator. Dynamic memory (or run-time memory) usage is under direct
control of the application.

Static memory usage

Most of the development tools divide the application program image into five basic areas:

 Instruction

 Constant

 Initialized data

 Uninitialized data

 System stack

The following figure shows an example of these memory areas.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 17

It is important to realize that the static memory layout in Figure 2 is only an example. The actual
static memory layout is specific to the processor, development tools, and the underlying hardware.

The instruction area contains all of the program.s processor instructions. This area is typically the
largest and is often located in ROM.

The constant area contains various compiled constants, including strings defined or referenced
within the program. In addition, this area contains the .initial copy. of the initialized data area.
During the compiler.s initialization process, this portion of the constant area is used to set up the
initialized data area in RAM. The constant area usually follows the instruction area and is often
located in ROM.

The initialized data and uninitialized data areas contain all of the global and static variables. These
areas are always located in RAM.

The system stack is generally set up immediately following the initialized and uninitialized data
areas. The system stack is used by the compiler during initialization and then by the NET+OS
kernel during initialization and subsequently in ISR processing.

Dynamic memory usage

As mentioned before, dynamic memory usage is under direct control of the application. Control
blocks and memory areas associated with stacks, queues, and memory pools can be placed
anywhere in the target.s memory space. This is an important feature because it facilitates easy
utilization of different types of physical memory.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 18

For example, suppose a target hardware environment has both fast memory and slow memory. If
the application needs extra performance for a high-priority thread, its control block (TX_THREAD)
and stack can be placed in the fast memory area, which might greatly enhance its performance.

Initialization

Understanding the initialization process is very important. The initial hardware environment is set
up here. In addition, this is where the application is given its initial personality.

Note: The NET+OS kernel attempts to use (whenever possible) the complete
development tool’s initialization process. This makes it easier to
upgrade to new versions of the development tools in the future.

System reset

All microprocessors have reset logic. When a reset occurs (either hardware or software), the
address of the application.s entry point is retrieved from a specific memory location. After the
entry point is retrieved, the processor transfers control to that location.

The application entry point is quite often written in the native assembly language and is usually
supplied by the development tools (at least in template form). In some cases, a special version of
the entry program is supplied with the NET+OS kernel.

Development tool initialization

After the low-level initialization is complete, control transfers to the development tool’s high-level
initialization. This is usually the place where initialized global and static C variables are set up.
Remember that their initial values are retrieved from the constant area. Exact initialization
processing is development tool specific.

The main function

When the development tool initialization is complete, control transfers to the user-supplied main
function. At this point, the application controls what happens next. For most applications, the main
function simply calls tx_kernel_enter, which is the entry into the NET+OS kernel. However,
applications can perform preliminary processing (usually for hardware initialization) prior to
entering the NET+OS kernel.

The call to tx_kernel_enter does not return, so do not place any processing after it.

The tx_kernel_enter function

The entry function coordinates initialization of various internal NET+OS kernel data structures
and then calls the application.s definition function, tx_application_define.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 19

When tx_application_define returns, control is transferred to the thread scheduling loop. This
marks the end of initialization!

Application definition function

The tx_application_define function defines all of the initial application threads, queues,
semaphores, mutexes, event flags, memory pools, and timers. It is also possible to
create and delete system resources from threads during the normal operation of the
application. However, all initial application resources are defined here.

The tx_application_define function has a single input parameter and it is certainly worth
mentioning. The first-available RAM address is the sole input parameter to this
function. It is typically used as a starting point for initial runtime memory allocations
of thread stacks, queues, and memory pools.

Note: After initialization is complete, only an executing thread can create and
delete system resources - including other threads. Therefore, at least
one thread must be created during initialization.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 20

Interrupts

Interrupts are left disabled during the entire initialization process. If the application somehow
enables interrupts, unpredictable behavior may occur.

The following figure shows the entire initialization process, from system reset through application-
specific initialization.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 21

Thread execution

Scheduling and executing application threads is the most important activity of the NET+OS
kernel. A thread is typically defined as semi-independent program segment with a dedicated
purpose. The combined processing of all threads makes an application.

Threads are created dynamically by tx_thread_create calls during initialization or during thread
execution. Threads are created in either a ready or suspended state.

Thread execution states

Understanding the different processing states of threads is a key ingredient to understanding the
entire multi-threaded environment. In the NET+OS kernel there are five distinct thread states:

 Ready

 Suspended

 Executing

 Terminated

 Completed

The following figure shows the thread state transition diagram for the NET+OS kernel.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 22

A thread is in a ready state when it is ready for execution. A ready thread is not executed until it is
the highest priority thread ready. When this happens, the NET+OS kernel executes the thread,
which changes its state to executing.

If a higher-priority thread becomes ready, the executing thread reverts back to a ready state. The
newly ready high-priority thread is then executed, which changes its logical state to executing.
This transition between ready and executing states occurs every time thread preemption occurs.

It is important to point out that at any given moment only one thread is in an executing state. This
is because a thread in the executing state actually has control of the underlying processor.

Threads that are in a suspended state are not eligible for execution. Reasons for being in a
suspended state include suspension for time, queue messages, semaphores, mutexes, event flags,
memory, and basic thread suspension. Once the cause for suspension is removed, the thread is
placed back in a ready state.

A thread in a completed state indicates the thread completed its processing and returned from its
entry function. Remember that the entry function is specified during thread creation. A thread in a
completed state cannot execute again.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 23

A thread is in a terminated state because another thread or itself called the
tx_thread_terminate service. A thread in a terminated state cannot execute again.

Note: If re-starting a completed or terminated thread is desired, the application
must first delete the thread. It can then be re-created and re-started.

Thread priorities

As mentioned before, a thread is defined as a semi-independent program segment with a dedicated
purpose. However, all threads are not created equal. The dedicated purpose of some threads is
much more important than others. This heterogeneous type of thread importance is a hallmark of
embedded real-time applications.

How does the NET+OS kernel determine a thread.s importance? When a thread is created, it is
assigned a numerical value representing its importance or priority. Valid numerical priorities range
between 0 and 31, where a value of 0 indicates the highest thread priority and a value of 31
represents the lowest thread priority. Threads can have the same priority as others in the
application. In addition, thread priorities can be changed during run-time.

Thread scheduling

The NET+OS kernel schedules threads based upon their priority. The ready thread with the highest
priority is executed first. If multiple threads of the same priority are ready, they are executed in a
first-in-first-out (FIFO) manner.

Round-robin scheduling

Round-robin scheduling of multiple threads having the same priority is supported by the NET+OS
kernel. This is accomplished through cooperative calls to tx_thread_relinquish. Calling this service
gives all other ready threads at the same priority a chance to execute before the tx_thread_relinquish
caller executes again.

Time-slicing

Time-slicing provides another form of round-robin scheduling. In the NET+OS kernel, time-slicing
is available on a per-thread basis. The thread’s time-slice is assigned during creation and can be
modified during run-time.

A time-slice specifies the maximum number of timer ticks (timer interrupts) that a thread can
execute without giving up the processor. When a time-slice expires, all other threads of the same or
higher priority levels are given a chance to execute before the time-sliced thread executes again.

A fresh thread time-slice is given to a thread after it suspends, relinquishes, makes a NET+OS
kernel service call that causes preemption, or is itself time-sliced.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 24

Preemption

Preemption is the process of temporarily interrupting an executing thread in favor of a higher-
priority thread. This process is invisible to the executing thread. When the higher-priority thread is
finished, control is transferred back to the exact place where the preemption took place.

This is a very important feature in real-time systems because it facilitates fast response to
important application events. Although a very important feature, preemption can also be a source
of a variety of problems, including starvation, excessive overhead, and priority inversion.

Preemption-threshold

In order to ease some of the inherent problems of preemption, the NET+OS kernel provides a
unique and advanced feature called preemption-threshold. which allows a thread to specify a
priority ceiling for disabling preemption. Threads that have higher priorities than the ceiling are
still allowed to preempt; those with priorities less than the ceiling are not allowed to preempt.

For example, suppose a thread of priority 20 only interacts with a group of threads that have
priorities between 15 and 20. During its critical sections, the thread of priority 20 can set its
preemption-threshold to 15, thereby preventing preemption from all of the threads that it interacts
with. This still permits really important threads (priorities between 0 and 14) to preempt this thread
during its critical section processing, which results in much more responsive processing.

Of course, it is still possible for a thread to disable all preemption by setting its preemption-
threshold to 0. In addition, preemption-thresholds can be changed during run-time.

Priority inheritance

The NET+OS kernel also supports optional priority inheritance within its mutex services described
later in this chapter. Priority inheritance allows a lower priority thread to temporarily assume the
priority of a high priority thread that is waiting for a mutex owned by the lower priority thread.
This capability helps the application to avoid un-deterministic priority inversion by eliminating
preemption of intermediate thread priorities. Of course, preemption-threshold may be used to
achieve a similar result.

Thread creation

Application threads are created during initialization or during the execution of other application
threads. There are no limits on the number of threads that can be created by an application.

Thread control block

The characteristics of each thread are contained in its control block. This structure is defined in the
tx_api.h file.

A thread’s control block can be located anywhere in memory, but it is most common to make the

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 25

control block a global structure by defining it outside the scope of any function.

Locating the control block in other areas requires a bit more care, just like all dynamically
allocated memory. If a control block is allocated within a C function, the memory associated with
it is part of the calling thread.s stack. In general, using local storage for control blocks should be
avoided because once the function returns all of its local variable stack space is released -
regardless if another thread is using it for a control block.

In most cases, the application is oblivious to the contents of the thread.s control block. However,
there are some situations, especially in debug, where looking at certain members is quite useful.
The following are a few of the more useful control block members.

tx_run_count

This member contains a counter of how many times the thread has been scheduled. An increasing
counter indicates the thread is being scheduled and executed.

tx_state

This member contains the state of the associated thread. The following list represents the possible
thread states:

TX_READY (0x00)
TX_COMPLETED (0x01)
TX_TERMINATED (0x02)
TX_SUSPENDED (0x03)
TX_SLEEP (0x04)
TX_QUEUE_SUSP (0x05)
TX_SEMAPHORE_SUSP (0x06)
TX_EVENT_FLAG (0x07)
TX_BLOCK_MEMORY (0x08)
TX_BYTE_MEMORY (0x09)
TX_MUTEX_SUSP (0x0D)
TX_IO_DRIVER (0x0A)

Note: There is no equate for the .executing. state mentioned earlier in this
section. It is not necessary since there is only one executing thread at a
given time. The state of an executing thread is also TX_READY.

Currently executing thread

As mentioned before, there is only one thread executing at any given time. There are several ways
to identify the executing thread, depending on who is making the request.

A program segment can get the control block address of the executing thread by calling
tx_thread_identify. This is useful in shared portions of application code that are executed from
multiple threads.

In debug sessions, users can examine the internal NET+OS kernel pointer _tx_thread_current_ptr. It

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 26

contains the control block address of the currently executing thread. If this pointer is NULL, no
application thread is executing - that is, the NET+OS kernel is waiting in its scheduling loop for a
thread to become ready.

Thread stack area

Each thread must have its own stack for saving the context of its last execution and compiler use.
Most C compilers use the stack for making function calls and for temporarily allocating local
variables. The following figure shows a typical thread’s stack.

Location of a thread stack

The location of a thread stack located is up to the application. The stack area is specified during
thread creation and can be located anywhere in the target’s address space. This is a very important
feature because it allows applications to improve performance of important threads by placing
their stack in highspeed RAM.

Size of a thread stack

A thread’s stack area must be large enough to accommodate worst-case function call nesting, local
variable allocation, and saving its last execution context.

The minimum stack size, TX_MINIMUM_STACK, is defined by the NET+OS kernel.
A stack of this size supports saving a thread’s context and minimum amount of function calls and
local variable allocation.

For most threads, the minimum stack size is simply too small. The user must come up with the
worst-case size requirement by examining function-call nesting and local variable allocation. Of
course, it is always better to error towards a larger stack area.

After the application is debugged, it is possible to go back and tune the thread stacks sizes if

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 27

memory is scarce. A favorite trick is to preset all stack areas with an easily identifiable data pattern
like (0xEFEF) prior to creating the threads. After the application has been thoroughly put through
its paces, the stack areas can be examined to see how much was actually used by finding the area
of the stack where the preset pattern is still intact. The following figure shows a stack preset to
0xEFEF after thorough thread execution.

Memory pitfalls

The stack requirements for threads can be quite large. Therefore, it is important to design the
application to have a reasonable number of threads. Furthermore, some care must be taken to avoid
excessive stack usage within threads. Recursive algorithms and large local data structures should
generally be avoided.

What happens when a stack area is too small? In most cases, the run-time environment simply
assumes there is enough stack space. This causes thread execution to corrupt memory adjacent
(usually before) its stack area. The results are very unpredictable, but most often result in an un-
natural change in the program counter. This is often called .jumping into the weeds.. Of course, the
only way to prevent this is to ensure that all thread stacks are large enough.

Reentrancy

One of the advantages of multi-threading is that the same C function can be called from multiple
threads. This provides great power and also helps reduce code space. However, it does require that
C functions called from multiple threads are reentrant.

A reentrant function stores the caller’s return address on the current stack and does not rely on
global or static C variables that it previously set up. Most compilers place the return address on the
stack. Hence, application developers must only worry about the use of globals and statics.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 28

An example of a non-reentrant function is the string token function “strtok.” found in the standard
C library. This function remembers the previous string pointer on subsequent calls. It does this
with a static string pointer. If this function is called from multiple threads, it would most likely
return an invalid pointer.

Thread priority pitfalls

Selecting thread priorities is one of the most important aspects of multi-threading. It is sometimes
very tempting to assign priorities based on a perceived notion of thread importance rather than
determining what is exactly required during runtime. Misuse of thread priorities can starve other
threads, create priority inversion, reduce processing bandwidth, and make the application’s run-
time behavior difficult to understand.

As mentioned before, the NET+OS kernel provides a priority-based, preemptive scheduling
algorithm. Lower priority threads do not execute until there are no higher-priority threads ready for
execution. If a higher-priority thread is always ready, the lower-priority threads never execute. This
condition is called thread starvation.

Most starvation problems are detected early in debug and can be solved by ensuring that higher
priority threads don’t execute continuously. Alternatively, logic can be added to the application
that gradually raises the priority of starved threads until they get a chance to execute.

Another unpleasant pitfall associated with thread priorities is priority inversion. Priority inversion
takes place when a higher-priority thread is suspended because a lower-priority thread has a
needed resource. Of course, in some instances it is necessary for two threads of different priority to
share a common resource. If these threads are the only ones active, the priority inversion time is
bounded by the time the lower-priority thread holds the resource. This condition is both
deterministic and quite normal. However, if threads of intermediate priority become active during
this priority inversion condition, the priority inversion time is no longer deterministic and could
cause an application failure.

There are principally three distinct methods of preventing un-deterministic priority inversion in the
NET+OS kernel. First, the application priority selections and run-time behavior can be designed in
a manner that prevents the priority inversion problem. Second, lower-priority threads can utilize
preemption-threshold to block preemption from intermediate threads while they share resources
with higher-priority threads. Finally, threads using NET+OS kernel mutex objects to protect
system resources may utilize the optional mutex priority inheritance to eliminate un-deterministic
priority inversion.

Priority overhead

One of the most overlooked ways to reduce overhead in multi-threading is to reduce the number of
context switches. As previously mentioned, a context switch occurs when execution of a higher-
priority thread is favored over that of the executing thread. It is worthwhile to mention that higher-
priority threads can become ready as a result of both external events (like interrupts) and from
service calls made by the executing thread.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 29

To illustrate the effects thread priorities have on context switch overhead, assume a three thread
environment with threads named thread_1, thread_2, and thread_3. Assume further that all of the
threads are in a state of suspension waiting for a message. When thread_1 receives a message, it
immediately forwards it to thread_2. Thread_2 then forwards the message to thread_3. Thread_3
just discards the message. After each thread processes its message, they go back and wait for
another.

The processing required to execute these three threads varies greatly depending on their priorities.
If all of the threads have the same priority, a single context switch occurs between their execution.
The context switch occurs when each thread suspends on an empty message queue.

However, if thread_2 is higher-priority than thread_1 and thread_3 is higher priority than thread_2,
the number of context switches doubles. This is because another context switch occurs inside of
the tx_queue_send service when it detects that a higher-priority thread is now ready.

The NET+OS kernel preemption-threshold mechanism can avoid these extra context switches and
still allow the previously mentioned priority selections. This is a really important feature because it
allows several thread priorities during scheduling, while at the same time eliminating some of the
unwanted context switching between them during thread execution.

Debugging pitfalls

Debugging multi-threaded applications is a little more difficult because the same program code can
be executed from multiple threads. In such cases, a break-point alone may not be enough. The
debugger must also view the current thread pointer _tx_thread_current_ptr to see if the calling thread
is the one to debug.

Much of this is being handled in multi-threading support packages offered through various
development tool vendors. Because of its simple design, integrating the NET+OS kernel with
different development tools is relatively easy.

Stack size is always an important debug topic in multi-threading. Whenever totally strange
behavior is seen, it is usually a good first guess to increase stack sizes for all threads - especially
the stack size of the last executing thread.

Message queues

Message queues are the primary means of inter-thread communication in the NET+OS kernel. One
or more messages can reside in a message queue. A message queue that holds a single message is
commonly called a mailbox.

Messages are copied to a queue by tx_queue_send and are copied from a queue by tx_queue_receive.
The only exception to this is when a thread is suspended while waiting for a message on an empty
queue. In this case, the next message sent to the queue is placed directly into the thread’s
destination area.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 30

Each message queue is a public resource. The NET+OS kernel places no constraints on how
message queues are used.

Creating message queues

Message queues are created either during initialization or during run-time by application threads.
There are no limits on the number of message queues in an application.

Message size

Each message queue supports a number of fixed-sized messages. The available message sizes are
1, 2, 4, 8, and 16 32-bit words. The message size is specified when the queue is created.

Application messages greater than 16 words must be passed by pointer. This is accomplished by
creating a queue with a message size of 1 word (enough to hold a pointer) and then sending and
receiving message pointers instead of the entire message.

Message queue capacity

The number of messages a queue can hold is a function of its message size and the size of the
memory area supplied during creation. The total message capacity of the queue is calculated by
dividing the number of bytes in each message into the total number of bytes in the supplied
memory area.

For example, if a message queue that supports a message size of 1 32-bit word (4 bytes) is created
with a 100-byte memory area, its capacity is 25 messages.

Queue memory area

As mentioned before, the memory area for buffering messages is specified during queue creation.
Like other memory areas in the NET+OS kernel, it can be located anywhere in the target’s address
space.

This is an important feature because it gives the application considerable flexibility. For example,
an application might locate the memory area of a very important queue in high-speed RAM in
order to improve performance.

Thread suspension

Application threads can suspend while attempting to send or receive a message from a queue.
Typically, thread suspension involves waiting for a message from an empty queue. However, it is
also possible for a thread to suspend trying to send a message to a full queue.

After the condition for suspension is resolved, the service requested is completed and the waiting
thread is resumed. If multiple threads are suspended on the same queue, they are resumed in the
order they were suspended (FIFO).

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 31

However, priority resumption is also possible if the application calls tx_queue_prioritize prior to the
queue service that lifts thread suspension. The queue prioritize service places the highest priority
thread at the front of the suspension list, while leaving all other suspended threads in the same
FIFO order.

Time-outs are also available for all queue suspensions. Basically, a time-out specifies the
maximum number of timer ticks the thread will stay suspended. If a time-out occurs, the thread is
resumed and the service returns with the appropriate error code.

Queue control block

The characteristics of each message queue are found in its control block. It contains interesting
information such as the number of messages in the queue. This structure is defined in the tx_api.h
file.

Message queue control blocks can also be located anywhere in memory, but it is most common to
make the control block a global structure by defining it outside the scope of any function.

Message destination pitfall

As mentioned previously, messages are copied between the queue area and application data areas.
It is very important to insure that the destination for a received message is large enough to hold the
entire message. If not, the memory following the message destination will likely be corrupted.

Note: This is especially lethal when a too-small message destination is on the
stack.

Counting semaphores

The NET+OS kernel provides 32-bit counting semaphores that range in value between 0 and
4,294,967,295. There are two operations on counting semaphores:

tx_semaphore_get and tx_semaphore_put.
The get operation decreases the semaphore by one. If the semaphore is 0, the get operation is not
successful. The inverse of the get operation is the put operation. It increases the semaphore by one.

Each counting semaphore is a public resource. The NET+OS kernel places no constraints on how
counting semaphores are used.

Counting semaphores are typically used for mutual exclusion. However, counting semaphores can
also be used as a method for event notification.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 32

Mutual exclusion

Mutual exclusion pertains to controlling the access of threads to certain application areas (also
called critical sections or application resources). When used for mutual exclusion, the “current
count” of a semaphore represents the total number of threads that are allowed access. In most
cases, counting semaphores used for mutual exclusion will have an initial value of 1, meaning that
only one thread can access the associated resource at a time. Counting semaphores that only have
values of 0 or 1 are commonly called binary semaphores.

Note: If a binary semaphore is being used, the user must prevent the same thread
from performing a get operation on a semaphore it already owns. A
second get would be unsuccessful and could cause indefinite
suspension of the calling thread and permanent un-availability of the
resource.

Event notification

It is also possible to use counting semaphores as event notification, in a producer consumer
fashion. The consumer attempts to get the counting semaphore while the producer increases the
semaphore whenever something is available. Such semaphores usually have an initial value of 0
and won.t increase until the producer has something ready for the consumer.

Creating counting semaphores

Counting semaphores are created either during initialization or during runtime by application
threads. The initial count of the semaphore is specified during creation. There are no limits on the
number of counting semaphores in an application.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 33

Thread suspension

Application threads can suspend while attempting to perform a get operation on a semaphore with
a current count of 0.

Once a put operation is performed, the suspended thread.s get operation is performed and the
thread is resumed. If multiple threads are suspended on the same counting semaphore, they are
resumed in the same order they were suspended (FIFO).

However, priority resumption is also possible if the application calls tx_semaphore_prioritize prior to
the semaphore put call that lifts thread suspension. The semaphore prioritize service places the
highest priority thread at the front of the suspension list, while leaving all other suspended threads
in the same FIFO order.

Semaphore control block

The characteristics of each counting semaphore are found in its control block. It contains
interesting information such as the current semaphore count. This structure is defined in the
tx_api.h file.

Semaphore control blocks can be located anywhere in memory, but it is most common to make the
control block a global structure by defining it outside the scope of any function.

Deadly embrace

One of the most interesting and dangerous pitfalls associated with semaphores used for mutual
exclusion is the deadly embrace. A deadly embrace, or deadlock, is a condition where two or more
threads are suspended indefinitely while attempting to get semaphores already owned by other
threads.

This condition is best illustrated by a two thread, two semaphore example. Suppose the first thread
owns the first semaphore and the second thread owns the second semaphore. If the first thread
attempts to get the second semaphore and at the same time the second thread attempts to get the
first semaphore, both threads enter a deadlock condition. In addition, if these threads stay
suspended forever, their associated resources are locked-out forever as well. The following figure
illustrates this example.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 34

How are deadly embraces avoided? Prevention in the application is the best method for real-time
systems. This amounts to placing certain restrictions on how threads obtain semaphores. Deadly
embraces are avoided if threads can only have one semaphore at a time. Alternatively, threads can
own multiple semaphores if they all gather them in the same order. In the previous example, if the
first and second thread obtain the first and second semaphore in order, the deadly embrace is
prevented.

Note: It is also possible to use the suspension time-out associated with the get
operation to recover from a deadly embrace.

Priority inversion

Another pitfall associated with mutual exclusion semaphores is priority inversion. This topic is
discussed more fully in the section on .Thread priority pitfalls.

The basic problem results from a situation where a lower-priority thread has a semaphore that a
higher-priority thread needs. This in itself is normal. However, threads with priorities in between
them may cause the priority inversion to last a non-deterministic amount of time. This can be
handled through careful selection of thread priorities, using preemption- thresholds, and
temporarily raising the priority of the thread that owns the resource to that of the high-priority
thread.

Mutexes

In addition to semaphores, the NET+OS kernel also provides a mutex object. A mutex is basically
a binary semaphore, which means that only one thread can own a mutex at a time. In addition, the

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 35

same thread may perform a successful mutex get operation on an owned mutex multiple times,
4,294,967,295 to be exact. There are two operations on the mutex object, namely tx_mutex_get and
tx_mutex_put. The get operation obtains a mutex not owned by another thread, while the put
operation releases a previously obtained mutex. In order for a thread to release a mutex, the
number of put operations must equal the number of prior get operations.

Each mutex is a public resource. The NET+OS kernel places no constraints on how mutexes are
used.

NET+OS kernel mutexes are used exclusively for mutual exclusion. Unlike counting semaphores,
mutexes have no use as a method for event notification.

Mutex mutual exclusion

Similar to the discussion in the counting semaphore section, mutual exclusion pertains to
controlling the access of threads to certain application areas (also called critical sections or
application resources). When available, a NET+OS kernel mutex will have an ownership count of
0. Once the mutex is obtained by a thread, the ownership count is incremented once for every get
operation performed on the mutex and decremented for every put operation.

Creating mutexes

NET+OS kernel mutexes are created either during initialization or during runtime by application
threads. The initial condition of a mutex is always .available. Mutex creation is also where the
determination is made as to whether or not the mutex implements priority inheritance.

Thread suspension

Application threads can suspend while attempting to perform a get operation on a mutex already
owned by another thread.

Once the same number of put operations are performed by the owning thread, the suspended
thread.s get operation is performed, giving it ownership of the mutex, and the thread is resumed. If
multiple threads are suspended on the same mutex, they are resumed in the same order they were
suspended (FIFO).

However, priority resumption is done automatically if the mutex priority inheritance was selected
during creation. In addition, priority resumption is also possible if the application calls
tx_mutex_prioritize prior to the mutex put call that lifts thread suspension. The mutex prioritize
service places the highest priority thread at the front of the suspension list, while leaving all other
suspended threads in the same FIFO order.

Mutex control block

The characteristics of each mutex are found in its control block. It contains interesting information
such as the current mutex ownership count along with the pointer of the thread that owns the
mutex. This structure is defined in the tx_api.h file.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 36

Mutex control blocks can be located anywhere in memory, but it is most common to make the
control block a global structure by defining it outside the scope of any function.

Deadly embrace

One of the most interesting and dangerous pitfalls associated with mutex ownership is the deadly
embrace. A deadly embrace, or deadlock, is a condition where two or more threads are suspended
indefinitely while attempting to get a mutex already owned by the other threads. The discussion of
deadly embrace and its remedies found in the previous semaphore discussion is completely valid
for the mutex object as well.

Priority inversion

As mentioned previously, a major pitfall associated with mutual exclusion is priority inversion.
This topic is discussed more fully in the section on thread priority pitfalls.

The basic problem results from a situation where a lower-priority thread has a semaphore that a
higher-priority thread needs. This in itself is normal. However, threads with priorities in between
them may cause the priority inversion to last a non-deterministic amount of time. Unlike
semaphores discussed previously, the NET+OS kernel mutex object has optional priority
inheritance.

The basic idea behind priority inheritance is that a lower priority thread has its priority raised
temporarily to the priority of a high priority thread that wants the same mutex owned by the lower
priority thread. When the lower priority thread releases the mutex, its original priority is then
restored and the higher priority thread is given ownership of the mutex. This feature eliminates un-
deterministic priority inversion by bounding the amount of inversion to the time the lower priority
thread holds the mutex. Of course, the techniques discussed earlier in this chapter to handle un-
deterministic priority inversion are also valid with mutexes as well.

Event flags

Event flags provide a powerful tool for thread synchronization. Each event flag is represented by a
single bit. Event flags are arranged in groups of 32. Threads can operate on all 32 event flags in a
group at the same time. Events are set by tx_event_flags_set and are retrieved by tx_event_flags_get.

Setting event flags is done with a logical AND/OR operation between the current event flags and
the new event flags. The type of logical operation (either an AND or OR) is specified in the
tx_event_flags_set call.

There are similar logical options for retrieval of event flags. A get request can specify that all
specified event flags are required (a logical AND). Alternatively, a get request can specify that any
of the specified event flags will satisfy the request (a logical OR). The type of logical operation
associated with event flag retrieval is specified in the tx_event_flags_get call.

Note: Event flags that satisfy a get request are consumed, i.e. set to zero, if
TX_OR_CLEAR or TX_AND_CLEAR are specified by the request.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 37

Each event flag group is a public resource. The NET+OS kernel places no constraints on how
event flag groups are used.

Creating event flag groups

Event flag groups are created either during initialization or during run-time by application threads.
At time of their creation, all event flags in the group are set to zero. There are no limits on the
number of event flag groups in an application.

Thread suspension

Application threads can suspend while attempting to get any logical combination of event flags
from a group. Once an event flag is set, the get requests of all suspended threads are reviewed. All
the threads that now have the required event flags are resumed.

It is important to emphasize that all suspended threads on an event flag group are reviewed when
its event flags are set. This, of course, introduces additional overhead. Therefore, it is generally
good practice to limit the number of threads using the same event flag group to a reasonable
number.

Event flag group control block

The characteristics of each event flag group are found in its control block. The control block
contains interesting information such as the current event flag settings and the number of threads
suspended for events. This structure is defined in the tx_api.h file.

Event group control blocks can be located anywhere in memory, but it is most common to make
the control block a global structure by defining it outside the scope of any function.

Memory block pools

Allocating memory in a fast and deterministic manner is always a challenge in real-time
applications. With this in mind, the NET+OS kernel provides the ability to create and manage
multiple pools of fixed-size memory blocks.

Since memory block pools consist of fixed-size blocks, there are never any fragmentation
problems. Of course, fragmentation causes behavior that is inherently un-deterministic. In
addition, the time required to allocate and free a fixed-size memory block amounts to simple
linked-list manipulation. Furthermore, memory block allocation and de-allocation is done at the
head of the available list. This provides the fastest possible linked list processing and might help
keep the actual memory block in cache.

Lack of flexibility is the main drawback of fixed-size memory pools. The block size of a pool must
be large enough to handle the worst case memory requirements of its users. Of course, memory

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 38

may be wasted if many different size memory requests are made to the same pool. A possible
solution is to make several different memory block pools that contain different sized memory
blocks.

Each memory block pool is a public resource. The NET+OS kernel places no constraints on how
pools are used.

Creating memory block pools

Memory block pools are created either during initialization or during run-time by application
threads. There are no limits on the number of memory block pools in an application.

Memory block size

As mentioned earlier, memory block pools contain a number of fixed-size blocks. The block size,
in bytes, is specified during creation of the pool.

The NET+OS kernel adds a small amount of overhead - the size of a C pointer - to each memory
block in the pool. In addition, the NET+OS kernel might have to pad the block size in order to keep
the beginning of each memory block on proper alignment.

Pool capacity

The number of memory blocks in a pool is a function of the block size and the total number of
bytes in the memory area supplied during creation. The capacity of a pool is calculated by dividing
the block size (including padding and the pointer overhead bytes) into the total number of bytes in
the supplied memory area.

Pool’s memory area

As mentioned before, the memory area for the block pool is specified during creation. Like other
memory areas in the NET+OS kernel, it can be located anywhere in the target.s address space.

This is an important feature because of the considerable flexibility it gives the application. For
example, suppose that a communication product has a high-speed memory area for I/O. This
memory area is easily managed by making it into a NET+OS kernel memory block pool.

Thread suspension

Application threads can suspend while waiting for a memory block from an empty pool. When a
block is returned to the pool, the suspended thread is given this block and resumed.

If multiple threads are suspended on the same memory block pool, they are resumed in the order
they were suspended (FIFO).

However, priority resumption is also possible if the application calls tx_block_pool_prioritize prior
to the block release call that lifts thread suspension. The block pool prioritize service places the

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 39

highest priority thread at the front of the suspension list, while leaving all other suspended threads
in the same FIFO order.

Memory block pool control block

The characteristics of each memory block pool are found in its control block. It contains useful
information such as the number of memory blocks left and their size. This structure is defined in
the tx_api.h file.

Pool control blocks can also be located anywhere in memory, but it is most common to make the
control block a global structure by defining it outside the scope of any function.

Overwriting memory blocks

It is very important to ensure that the user of an allocated memory block does not write outside its
boundaries. If this happens, corruption occurs in an adjacent (usually subsequent) memory area.
The results are unpredictable and quite often fatal.

Memory byte pools

NET+OS kernel memory byte pools are similar to a standard C heap. Unlike the standard C heap,
it is possible to have multiple memory byte pools. In addition, threads can suspend on a pool until
the requested memory is available.

Allocations from memory byte pools are similar to traditional malloc calls, which include the
amount of memory desired (in bytes). Memory is allocated from the pool in a first-fit manner - that
is, the first free memory block that satisfies the request is used. Excess memory from this block is
converted into a new block and placed back in the free memory list. This process is called
fragmentation.

Adjacent free memory blocks are merged during a subsequent allocation search for a large enough
free memory block. This process is called de-fragmentation.

Each memory byte pool is a public resource. The NET+OS kernel places no constraints on how
pools are used, except that memory byte services cannot be called from ISRs.

Creating memory byte pools

Memory byte pools are created either during initialization or during run-time by application
threads.There are no limits on the number of memory byte pools in an application.

Pool capacity

The number of allocatable bytes in a memory byte pool is slightly less than what was specified
during creation. This is because management of the free memory area introduces some overhead.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 40

Each free memory block in the pool requires the equivalent of two C pointers of overhead. In
addition, the pool is created with two blocks, a large free block and a small permanently allocated
block at the end of the memory area. This allocated block is used to improve performance of the
allocation algorithm. It eliminates the need to continuously check for the end of the pool area
during merging.

During run-time, the amount of overhead in the pool typically increases. Allocations of an odd
number of bytes are padded to insure proper alignment of the next memory block. In addition,
overhead increases as the pool becomes more fragmented.

Pool’s memory area

The memory area for a memory byte pool is specified during creation. Like other memory areas in
the NET+OS kernel, it can be located anywhere in the target’s address space.

This is an important feature because of the considerable flexibility it gives the application. For
example, if the target hardware has a high-speed memory area and a low-speed memory area, the
user can manage memory allocation for both areas by creating a pool in each of them.

Thread suspension

Application threads can suspend while waiting for memory bytes from a pool. When sufficient
contiguous memory becomes available, the suspended threads are given their requested memory
and resumed.

If multiple threads are suspended on the same memory byte pool, they are given memory
(resumed) in the order they were suspended (FIFO).

However, priority resumption is also possible if the application calls tx_byte_pool_prioritize prior to
the byte release call that lifts thread suspension. The byte pool prioritize service places the highest
priority thread at the front of the suspension list, while leaving all other suspended threads in the
same FIFO order.

Memory byte pool control block

The characteristics of each memory byte pool are found in its control block. It contains useful
information such as the number of available bytes in the pool. This structure is defined in the
tx_api.h file.

Pool control blocks can also be located anywhere in memory, but it is most common to make the
control block a global structure by defining it outside the scope of any function.

Un-deterministic behavior

Although memory byte pools provide the most flexible memory allocation, they also suffer from
somewhat un-deterministic behavior. For example, a memory byte pool may have 2,000 bytes of
memory available but may not be able to satisfy an allocation request of 1,000 bytes. This is

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 41

because there are no guarantees on how many of the free bytes are contiguous. Even if a 1,000 byte
free block exits, there are no guarantees on how long it might take to find the block. It is
completely possible that the entire memory pool would need to be searched in order to find the
1,000 byte block.

Because of this, it is generally good practice to avoid using memory byte services in areas where
deterministic, real-time behavior is required. Many applications pre-allocate their required
memory during initialization or run-time configuration.

Overwriting memory blocks

It is very important to insure that the user of allocated memory does not write outside its
boundaries. If this happens, corruption occurs in an adjacent (usually subsequent) memory area.
The results are unpredictable and quite often fatal.

Application timers

Fast response to asynchronous external events is the most important function of real-time,
embedded applications. However, many of these applications must also perform certain activities
at pre-determined intervals of time.

NET+OS application timers provide applications with the ability to execute application C
functions at specific intervals of time. It is also possible for an application timer to expire only
once. This type of timer is called a one-shot timer, while repeating interval timers are called
periodic timers.

Each application timer is a public resource. The NET+OS kernel places no constraints on how
application timers are used.

Timer intervals

In the NET+OS kernel, time intervals are measured by periodic timer interrupts. Each timer
interrupt is called a timer tick. The actual time between timer ticks is specified by the application,
but 10ms is the norm for most implementations. The periodic timer setup is typically found in the
tx_ill assembly file.

It is worth mentioning that the underlying hardware must have the ability to generate periodic
interrupts in order for application timers to function. In some cases, the processor has a built-in
periodic interrupt capability. If the processor doesn.t have this ability, the user.s board must have a
peripheral device that can generate periodic interrupts.

Note: The NET+OS kernel can still function even without a periodic interrupt
source. However, all timer-related processing is then disabled. This
includes time-slicing, suspension time-outs, and timer services.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 42

Timer accuracy

Timer expirations are specified in terms of ticks. The specified expiration value is decreased by
one on each timer tick. Since an application timer could be enabled just prior to a timer interrupt
(or timer tick), the actual expiration time could be up to one tick early.

If the timer tick rate is 10 ms, application timers may expire up to 10 ms early. This is more
significant for 10 ms timers than 1 second timers. Of course, increasing the timer interrupt
frequency decreases this margin of error.

Timer execution

Application timers execute in the order they become active. For example, if three timers are
created with the same expiration value and activated, their corresponding expiration functions are
guaranteed to execute in order they were activated.

Creating application timers

Application timers are created either during initialization or during run-time by application
threads. There are no limits on the number of application timers in an application.

Application timer control block

The characteristics of each application timer are found in its control block. It contains useful
information such as the 32-bit expiration identification value. This structure is defined in the
tx_api.h file.

Application timer control blocks can be located anywhere in memory, but it is most common to
make the control block a global structure by defining it outside the scope of any function.

Excessive timers

By default, application timers execute from within a hidden system thread that runs at priority
zero, which is higher than any application thread. Because of this, processing inside of application
timers should be kept to a minimum.

It is also important to avoid, whenever possible, timers that expire every timer tick. Such a
situation might induce excessive overhead in the application.

Note: As mentioned previously, application timers are executed from a hidden
system thread. It is, therefore, very important to not select suspension
on any NET+OS kernel service calls made from within the application
timer’s expiration function.

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 43

Relative time

In addition to the application timers mentioned previously, the NET+OS kernel provides a single
continuously incrementing 32-bit tick counter. The tick counter or time is increased by one on each
timer interrupt.

The application can read or set this 32-bit counter through calls to tx_time_get and tx_time_set,
respectively. The use of this tick counter is determined completely by the application. It is not
used internally by the NET+OS kernel.

Interrupts

Fast response to asynchronous events is the principal function of real-time, embedded applications.
How does the application know such an event is present? Typically, this is accomplished through
hardware interrupts.

An interrupt is an asynchronous change in processor execution. Typically, when an interrupt
occurs, the processor saves a small portion of the current execution on the stack and transfers
control to the appropriate interrupt vector. The interrupt vector is basically just the address of the
routine responsible for handling the specific type interrupt. The exact interrupt handling procedure
is processor specific.

Interrupt control

The tx_interrupt_control service allows applications to enable and disable interrupts. The
previous interrupt enable/disable posture is returned by this service. It is important to
mention that interrupt control only affects the currently executing program segment.
For example, if a thread disables interrupts, they only remain disabled during
execution of that thread.

NET+OS kernel managed interrupts

The NET+OS kernel provides applications with complete interrupt management. This
management includes saving and restoring the context of the interrupted execution. In addition, the
NET+OS kernel allows certain services to be called from within interrupt service routines (ISRs).
The following is the list of NET+OS kernel services allowed from application ISRs:
tx_block_allocate
tx_block_pool_info_get
tx_block_pool_prioritize
tx_block_release
tx_byte_pool_info_get
tx_byte_pool_prioritize
tx_event_flags_info_get
tx_event_flags_get

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 44

tx_event_flags_set
tx_interrupt_control
tx_queue_front_send
tx_queue_info_get
tx_queue_prioritize
tx_queue_receive
tx_queue_send
tx_semaphore_get
tx_semaphore_info_get
tx_semaphore_prioritize
tx_semaphore_put
tx_thread_identify
tx_thread_info_get
tx_thread_resume
tx_thread_wait_abort
tx_time_get
tx_time_set
tx_timer_activate
tx_timer_change
tx_timer_deactivate
tx_timer_info_get

Note: Suspension is not allowed from ISRs. Therefore, special care must be made
to not specify suspension in service calls made from ISRs.

ISR template

To manage application interrupts, several NET+OS kernel utilities must be called in the beginning
and end of application ISRs. The exact format for interrupt handling varies between ports. Review
the readme.txt file on the distribution disk for specific instructions on managing ISRs.

The following small code segment is typical of most NET+OS kernel-managed ISRs. In most
cases, this processing is in assembly language.

_application_ISR_entry:
; Save context and prepare for
; NET+OS kernel use by calling the ISR
; entry function.

CALL __tx_thread_context_save

; The ISR can now call NET+OS kernel
; services and its own C functions

; When the ISR is finished, context
; is restored (or thread preemption)
; by calling the context restore
; function. Control does not return!

F u n c t i o n a l C o m p o n e n t s o f t h e N E T + O S K e r n e l

© 2010 Digi International, Inc. 45

JUMP __tx_thread_context_restore

High-frequency interrupts

Some interrupts occur at such a high frequency that saving and restoring full context upon each
interrupt would consume excessive processing bandwidth. In such cases, it is common for the
application to have a small assembly language ISR that does a limited amount of processing for a
majority of these high frequency interrupts.

After a certain point in time, the small ISR may need to interact with the NET+OS kernel. This is
accomplished by simply calling the entry and exit functions described in the above template.

Interrupt latency

The NET+OS kernel locks out interrupts over brief periods of time. The maximum amount of time
interrupts are disabled is on the order of the time required to save or restore a thread’s context.

© 2010 Digi International, Inc. 46

NET+OS Kernel Services
C H A P T E R 3

This chapter lists the API functions of the NET+OS kernel.

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 47

Summary of NET+OS kernel API functions

The following sections list the NET+OS kernel API functions according to the types of service
they provide.

Memory block pool services

– TX_BLOCK_ALLOCATE

– TX_BLOCK_POOL_CREATE

– TX_BLOCK_POOL_DELETE

– TX_BLOCK_POOL_INFO_GET

– TX_BLOCK_POOL_PRIORITIZE

– TX_BLOCK_RELEASE

Memory byte pool services

– TX_BYTE_ALLOCATE

– TX_BYTE_POOL_CREATE

– TX_BYTE_POOL_DELETE

– TX_BYTE_POOL_INFO_GET

– TX_BYTE_POOL_PRIORITIZE

– TX_BYTE_RELEASE

Event flag services

– TX_EVENT_FLAGS_CREATE

– TX_EVENT_FLAGS_DELETE

– TX_EVENT_FLAGS_GET

– TX_EVENT_FLAGS_INFO_GET

Interrupt control

– TX_INTERRUPT_CONTROL

Message queue services

– TX_QUEUE_CREATE

– TX_QUEUE_DELETE

– TX_QUEUE_FLUSH

– TX_QUEUE_FRONT_SEND

– TX_QUEUE_INFO_GET

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 48

– TX_QUEUE_PRIORITIZE

– TX_QUEUE_RECEIVE

– TX_QUEUE_SEND

Semaphore services

– TX_SEMAPHORE_CREATE

– TX_SEMAPHORE_DELETE

– TX_SEMAPHORE_GET

– TX_SEMAPHORE_INFO_GET

– TX_SEMAPHORE_PRIORITIES

– TX_SEMAPHORE_PUT

Mutex services

– TX_MUTEX_CREATE

– TX_MUTEX_DELETE

– TX_MUTEX_GET

– TX_MUTEX_INFO_GET

– TX_MUTEX_PRIORITIZE

– TX_MUTEX_PUT

Thread control services

– TX_THREAD_CREATE

– TX_THREAD_DELETE

– TX_THREAD_IDENTIFY

– TX_THREAD_INFO_GET

– TX_THREAD_PREEMPTION_CHANGE

– TX_THREAD_PRIORITY_CHANGE

– TX_THREAD_RELINQUISH

– TX_THREAD_RESUME

– TX_THREAD_SLEEP

– TX_THREAD_SUSPEND

– TX_THREAD_TERMINATE

– TX_THREAD_TIME_SLICE_CHANGE

– TX_THREAD_WAIT_ABORT

Time services

– TX_TIME_GET

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 49

– TX_TIME_SET

Timer services

– TX_TIMER_ACTIVATE

– TX_TIMER_CHANGE

– TX_TIMER_CREATE

– TX_TIMER_DEACTIVATE

– TX_TIMER_DELETE

– TX_TIMER_INFO_GET

Return values and disabled error checking

The following return values are not affected by TX_DISABLE_ERROR_CHECKING, which is
used to disable API error checking; other values can be completely disabled.

– TX_ACTIVATE_ERROR

– TX_DELETED

– TX_DELETE_ERROR

– TX_NO_EVENTS

– TX_NO_INSTANCE

– TX_NO_MEMORY

– TX_NOT_OWNED

– TX_QUEUE_EMPTY

– TX_QUEUE_FULL

– TX_RESUME_ERROR

– TX_SUCCESS

– TX_SUSPEND_ERROR

– TX_SUSPEND_LIFTED

– TX_WAIT_ABORTED

– TX_WAIT_ABORT_ERROR

NET+OS kernel API functions

The following pages describe the NET+OS kernel API functions. They are listed in
alphabetic order with similar services grouped together. For example, all memory block services
are at the beginning of this chapter.

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 50

tx_block_allocate

Allocates a fixed-size memory block from the specified memory pool. The actual size of the
memory block is determined during memory pool creation.

Format

UINT tx_block_allocate(TX_BLOCK_POOL *pool_ptr,

VOID **block_ptr, ULONG wait_option)

Arguments

Arguments Description

pool_ptr Pointer to a memory block pool

block_ptr Pointer to a destination block pointer. On successful
allocation, the address of the allocated memory block is
placed where this argument points to.

wait_option Defines how the service behaves if there are no memory
blocks available. The options are as follows:

 TX_NO_WAIT (0x00000000)
Results in an immediate return from this service
regardless of whether or not it was successful. This is the
only valid option if the service is called from a nonthread
(initialization, timer, or ISR).

 TX_WAIT_FOREVER (0xFFFFFFFF)
Causes the calling thread to suspend indefinitely until a
memory block is available.

 timeout_value (0x00000001-0xFFFFFFFE)
Specifies the maximum number of timer-ticks to stay
suspended while waiting for a memory block.

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 51

Return values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

Yes

Example
TX_BLOCK_POOL my_pool;
unsigned char *memory_ptr;
UINT status;
/* Allocate a memory block from my_pool. Assume that the pool has already been created
 with a call to tx_block_pool_create. */

status = tx_block_allocate(&my_pool, (VOID *) &memory_ptr, TX_NO_WAIT);

/* If status equals TX_SUCCESS, memory_ptr contains the address of the allocated block of
 memory. */

See also
tx_block_pool_create, tx_block_pool_delete,

tx_block_pool_info_get, tx_block_pool_prioritize, tx_block_release

tx_block_pool_create

Creates a pool of fixed-size memory blocks.

The memory area specified is divided into as many fixed-size memory blocks as
possible using the formula:

total_blocks = (total_bytes) / (block_size + sizeof(void *))

Each memory block contains one pointer of overhead that is invisible to the user
and is represented by the sizeof(void *) in the formula.

Return Value Description

TX_SUCCESS
(0x00) Success

TX_DELETED
(0x01) Memory block pool was deleted while thread was suspended

TX_NO_MEMORY
(0x10) Unable to allocate a block of memory

TX_WAIT_ABORTED
(0x1A) Suspension was aborted by another thread, timer, or ISR

TX_POOL_ERROR
(0x02) Invalid memory block pool pointer

TX_PTR_ERROR
(0x03) Invalid pointer to destination pointer

TX_WAIT_ERROR
(0x04)

A wait option other than TX_NO_WAIT was specified on a
call from a non-thread

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 52

Format

UINT tx_block_pool_create(TX_BLOCK_POOL *pool_ptr,

CHAR *name_ptr, ULONG block_size,

VOID *pool_start, ULONG pool_size)

Arguments

Return Values

Allowed from

Initialization and threads

Preemption possible

No

Example
TX_BLOCK_POOL my_pool;
UINT status;
/* Create a memory pool whose total size is 1000 bytes starting at address 0x100000. Each block in
this pool is defined to be 50 bytes long. */

status = tx_block_pool_create(&my_pool, "my_pool_name",

50, (VOID *) 0x100000, 1000);

/* If status equals TX_SUCCESS, my_pool contains 18 memory blocks of 50 bytes each. The reason
there are not 20 blocks in the pool is because of the one overhead pointer associated with each
block.*/

Arguments Description

pool_ptr Pointer to the memory block pool

name_ptr Pointer to the memory block pool

block_size Number of bytes in each memory block pool

pool_start Pointer to the starting address of the memory block pool

pool_size Total number of bytes available for the memory block pool

Return Value Description

TX_SUCCESS
(0x00) Success

TX_POOL_ERROR
(0x02) Invalid memory pool pointer

TX_PTR_ERROR
(0x03) Invalid starting address of the pool

TX_SIZE_ERROR
(0x04) Size of the pool is invalid

TX_CALLER_ERROR
(0x13) Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 53

See also
tx_block_allocate, tx_block_pool_delete, tx_block_pool_info_get,

tx_block_pool_prioritize, tx_block_release

tx_block_pool_delete

Deletes the specified block-memory pool. All threads suspended waiting for a
memory block from this pool are resumed and given a TX_DELETED return status.
It is the application.s responsibility to manage the memory area associated with
the pool, which is available after this service completes. In addition, the
application must prevent use of a deleted pool or its former memory blocks.

Format

UINT tx_block_pool_delete(TX_BLOCK_POOL *pool_ptr)

Arguments

Return Values

Allowed from

Threads

Preemption possible

Yes

Example
TX_BLOCK_POOL my_pool;
UINT status;
/* Delete entire memory block pool. Assume that the pool has already been created with a call to
tx_block_pool_create. */

status = tx_block_pool_delete(&my_pool);

/* If status is TX_SUCCESS, the memory block pool is deleted. */

Arguments Description

pool_ptr Pointer to the memory block pool

Return Value Description

TX_SUCCESS
(0x00) Success

TX_POOL_ERROR
(0x02) Invalid memory pool pointer

TX_CALLER_ERROR
(0x13) Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 54

See also
tx_block_allocate, tx_block_pool_create, tx_block_pool_info_get,

tx_block_pool_prioritize, tx_block_release

tx_block_pool_info_get

Retrieves information about the specified block memory pool.

Format

UINT tx_block_pool_info_get(TX_BLOCK_POOL *pool_ptr,

CHAR **name, ULONG *available,

ULONG *total_blocks, TX_THREAD **first_suspended,

ULONG *suspended_count, TX_BLOCK_POOL **next_pool)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Arguments Description

pool_ptr Pointer to the memory block pool

name Pointer to destination for the pointer to the block pool name

available Pointer to destination for the number of available blocks in
the block pool

total-blocks Pointer to destination for the total number of blocks in the
block pool

first_suspended Pointer to destination for the pointer to the thread that is
first on the suspension list of this block pool

suspended_count Pointer to destination for the number of threads currently
suspended on this block pool

next_pool Pointer to destination for the pointer of the next created
block pool

Return Value Description

TX_SUCCESS
(0x00) Success

TX_POOL_ERROR
(0x02) Invalid memory pool pointer

TX_PTR_ERROR
(0x03) Invalid pointer (NULL) for any destination pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 55

Example
TX_BLOCK_POOL my_pool;
CHAR *name;
ULONG available;
ULONG total_blocks;
TX_THREAD *first_suspended;
ULONG suspended_count;
TX_BLOCK_POOL *next_pool;
UINT status;

/* Retrieve information about a the previously created block pool .my_pool.. */

status = tx_block_pool_info_get(&my_pool, &name,

&available,&total_packets,

&first_suspended, &suspended_count,

&next_pool);

/* If status is TX_SUCCESS, the information requested is valid. */

See also
tx_block_pool_allocate, tx_block_pool_create,

tx_block_pool_delete, tx_block_pool_prioritize, tx_block_release

tx_block_pool_prioritize

Places the highest priority thread suspended for a block of memory on this pool at
the front of the suspension list. All other threads remain in the same FIFO order
they were suspended in.

Format

UINT tx_block_pool_prioritize(TX_BLOCK_POOL *pool_ptr)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Arguments Description

pool_ptr Pointer to the memory block pool

Return Value Description

TX_SUCCESS
(0x00) Success

TX_POOL_ERROR
(0x02) Invalid memory pool pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 56

Preemption possible

No

Example
TX_BLOCK_POOL my_pool;
UINT status;

/* Ensure that the highest priority thread will receive the next free block in this pool. */

status = tx_block_pool_prioritize(&my_pool);

/* If status equals TX_SUCCESS, the highest priority suspended thread is at the front of the list. The

next tx_block_release call will wake up this thread. */

See also
tx_block_allocate, tx_block_pool_create, tx_block_pool_delete,

tx_block_pool_info_get, tx_block_release

tx_block_release

Releases a previously allocated block back to its associated memory pool. If there are one or more
threads suspended waiting for memory block from this pool, the first thread suspended is given this
memory block and resumed.

The application must prevent using a memory block area after it is released back to the pool.

Format

UINT tx_block_release(VOID *blovk_ptr)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Arguments Description

block_ptr Pointer to the memory block

Return Value Description

TX_SUCCESS
(0x00) Success

TX_PTR_ERROR
(0x02) Invalid pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 57

Preemption possible

Yes

Example
TX_BLOCK_POOL my_pool;
unsigned char *memory_ptr;
UINT status;

/* Release a memory block back to my_pool. Assume that the pool has been created and the memory

block has been allocated.*/

status = tx_block_release((VOID *) memory_ptr);

/* If status equals TX_SUCCESS, the block of memory pointed to by memory_ptr has been returned to

the pool. */

See also
tx_block_allocate, tx_block_pool_create, tx_block_pool_delete,

tx_block_pool_info_get, tx_block_pool_prioritize

tx_byte_allocate

Allocates the specified number of bytes from the specified byte-memory pool. The performance of
this service depends on block size and the amount of fragmentation in the pool. Therefore, do not
use this service during time-critical threads of execution.

Format

UINT tx_byte_allocate(TX_BYTE_POOL *pool_ptr,

VOID **memory_ptr, ULONG memory_size,

ULONG wait_option)

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 58

Arguments

Return values

Allowed from

Initialization and threads

Preemption possible

Yes

Arguments Description

pool_ptr Pointer to a memory block pool

memory_ptr Pointer to a destination memory pointer. On successful
allocation, the address of the allocated memory area is
placed where this argument points to.

memory_size Number of bytes requested

wait_option Defines how the service behaves if there are no memory
blocks available. The options are as follows:

 TX_NO_WAIT (0x00000000)
Results in an immediate return from this service
regardless of whether or not it was successful. This is the
only valid option if the service is called from a nonthread
(initialization, timer, or ISR).

 TX_WAIT_FOREVER (0xFFFFFFFF)
Causes the calling thread to suspend indefinitely until a
memory block is available.

 timeout_value (0x00000001-0xFFFFFFFE)
Specifies the maximum number of timer-ticks to stay
suspended while waiting for a memory block.

Return Value Description

TX_SUCCESS
(0x00) Success

TX_DELETED
(0x01) Memory block pool was deleted while thread was suspended

TX_NO_MEMORY
(0x10) Unable to allocate a block of memory

TX_WAIT_ABORTED
(0x1A) Suspension was aborted by another thread, timer, or ISR

TX_POOL_ERROR
(0x02) Invalid memory block pool pointer

TX_PTR_ERROR
(0x03) Invalid pointer (NULL) for any destination pointer

TX_CALLER_ERROR
(0x13) Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 59

Example
TX_BYTE_POOL my_pool;
unsigned char *memory_ptr;
UINT status;

/* Allocate a 112 byte memory area from my_pool. Assume the pool has already been created with a
call to tx_byte_pool_create.*/

status = tx_byte_allocate(&my_pool, (VOID *) &memory_ptr,

112, TX_NO_WAIT);

/* If status equals TX_SUCCESS, memory_ptr contains the address of the allocated memory area. */

See also
tx_byte_pool_create, tx_byte_pool_delete, tx_byte_pool_info_get,

tx_byte_pool_prioritize, tx_byte_release

tx_byte_pool_create

Creates a memory pool in the area specified. Initially the pool consists of basically one very large
free block. However, the pool is broken into smaller blocks as allocations are made.

Format

UINT tx_byte_pool_create(TX_BYTE_POOL *pool_ptr,

 CHAR *name_ptr, VOID *pool_start, ULONG pool_size)

Arguments

Arguments Description

pool_ptr Pointer to a memory pool

name_ptr Pointer to the memory pool name

pool_start Pointer to the starting address of the memory pool

pool_size Total number of bytes available for the memory pool

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 60

Return values

Allowed from

Initialization and threads

Preemption possible

No

Example
TX_BYTE_POOL my_pool;
UINT status;

/* Create a memory pool whose total size is 2000 bytes starting at address 0x500000. */

status = tx_byte_pool_create(&my_pool, .my_pool_name.,

(VOID *) 0x500000, 2000);

/* If status is TX_SUCCESS, my_pool is available for allocating memory */

See also
tx_byte_allocate, tx_byte_pool_delete, tx_byte_pool_info_get,

tx_byte_pool_prioritize, tx_byte_release

tx_byte_pool_delete

Deletes the specified memory pool. All threads suspended waiting for memory from this pool are
resumed and given a TX_DELETED return status.

It is the application.s responsibility to manage the memory area associated with the pool, which is
available after this service completes. In addition, the application must prevent use of a deleted
pool or memory previously allocated from it.

Format

UINT tx_byte_pool_delete(TX_BYTE_POOL *pool_ptr)

Return Value Description

TX_SUCCESS
(0x00) Success

TX_POOL_ERROR
(0x02) Invalid memory block pool pointer

TX_PTR_ERROR
(0x03) Invalid pointer (NULL) for any destination pointer

TX_CALLER_ERROR
(0x13) Invalid caller of this service

TX_SIZE_ERROR
(0x05) Size of pool is invalid

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 61

Arguments

Return Values

Allowed from

Threads

Preemption possible

Yes

Example
TX_BYTE_POOL my_pool;
UINT status;

/* Delete entire memory pool. Assume that the pool has already been created with a call to
tx_byte_pool_create. */

status = tx_byte_pool_delete(&my_pool);

/* If status equals TX_SUCCESS, memory pool is deleted. */

See also
tx_byte_allocate, tx_byte_pool_create, tx_byte_pool_info_get,

tx_byte_pool_prioritize, tx_byte_release

tx_byte_pool_info_get

Retrieves information about the specified memory byte pool.

Format

UINT tx_byte_pool_info_get(TX_BYTE_POOL *pool_ptr,

CHAR **name, ULONG *available, ULONG *fragments,

TX_THREAD **first_suspended, ULONG *suspended_count,

TX_BYTE_POOL **next_pool)

Arguments Description

pool_ptr Pointer to the memory block pool

Return Value Description

TX_SUCCESS
(0x00) Success

TX_POOL_ERROR
(0x02) Invalid memory pool pointer

TX_CALLER_ERROR
(0x13) Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 62

Arguments

Return values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Example
TX_BYTE_POOL my_pool;
CHAR *name;
ULONG available;
ULONG fragments;
TX_THREAD *first_suspended;
ULONG suspended_count;
TX_BYTE_POOL *next_pool;
UINT status;

/* Retrieve information about the block pool */

status = tx_byte_pool_info_get(&my_pool, &name,

&available, &fragments,

&first_suspended, &suspended_count,

&next_pool);

Arguments Description

pool_ptr Pointer to a byte pool

name Pointer to destination for the pointer to the byte pool name

available Pointer to destination for the number of available bytes in
the pool

fragments Pointer to destination for the total number of memory
fragments in the byte pool

first_suspended Pointer to the destination for the pointer to the thread that
is first on the suspension list of this byte pool

suspended_count Pointer to destination for the pointer to the thread that is
first on the suspension list of this byte pool

next_pool Pointer to destination for the pointer of the next created
byte pool

Return Value Description

TX_SUCCESS
(0x00) Success

TX_POOL_ERROR
(0x02) Invalid memory pool pointer

TX_PTR_ERROR
(0x03) Invalid pointer (NULL) for any destination pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 63

/* If status is TX_SUCCESS, information requested is valid */

See also
tx_byte_allocate, tx_byte_pool_create, tx_byte_pool_delete,

tx_byte_pool_prioritize, tx_byte_release

tx_byte_pool_prioritize

Places the highest priority thread suspended for memory on this pool at the front of the suspension
list. All other threads remain in the same FIFO order they were suspended in.

Format

UINT tx_byte_pool_prioritize(TX_BYTE_POOL *pool_ptr)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Example
TX_BYTE_POOL my_pool;
UINT status;

/* Ensure that the highest priority thread will receive the next free memory from this pool. */

status = tx_byte_pool_prioritize(&my_pool);

/* If status equals TX_SUCCESS, the highest priority suspended thread is at the front of the list. The
next tx_byte_release call will wake up this thread, if there is enough memory to satisfy its request. */

See also
tx_byte_allocate, tx_byte_pool_create, tx_byte_pool_delete,

tx_byte_pool_info_get, tx_byte_release

Arguments Description

pool_ptr Pointer to a memory pool

Return Value Description

TX_SUCCESS
(0x00) Success

TX_POOL_ERROR
(0x02) Invalid memory pool pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 64

tx_byte_release

Releases a previously allocated memory area back to its associated pool.

If there are one or more threads suspended waiting for memory from this pool, each suspended
thread is given memory and resumed until the memory runs out or until there are no more
suspended threads. This process of allocating memory to suspended threads always begins with the
first thread suspended.

The application must prevent using memory area after it is released.

Format

UINT tx_byte_release(VOID *memory_ptr)

Arguments

Return Values

Allowed from

Initialization and threads

Preemption possible

Yes

Example
unsigned char *memory_ptr;
UINT status;

/* Release a memory back to my_pool. Assume that the memory area was previously allocated from
my_pool. */

status = tx_byte_release((VOID *) memory_ptr);

/* If status equals TX_SUCCESS, the memory pointed to by memory_ptr has been returned to the
pool. */

Arguments Description

memory_ptr Pointer to a destination memory pointer. On successful
allocation, the address of the allocated memory area is
placed where this argument points to.

Return Value Description

TX_SUCCESS
(0x00) Success

TX_POOL_ERROR
(0x02) Invalid memory pool pointer

TX_CALLER_ERROR
(0x13) Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 65

See also
tx_byte_allocate, tx_byte_pool_create, tx_byte_pool_delete,

tx_byte_pool_info_get, tx_byte_pool_prioritize

tx_event_flags_create

Creates a group of 32 event flags. All 32 event flags in the group are initialized to zero.

Format

UINT tx_event_flags_create(TX_EVENT_FLAGS_GROUP *group_ptr,

CHAR *name_ptr)

Arguments

Return Values

Allowed from

Initialization and threads

Preemption possible

No

Example
TX_EVENT_FLAGS_GROUP my_event_group;
UINT status;

/* Create an event flag group. */

status = tx_event_flags_create(&my_event_group,

"my_event_group_name");

/* If status equals TX_SUCCESS, my_event_flag_group is ready for get and set services. */

Arguments Description

group_ptr Pointer to an event flags group.

name_ptr Pointer to the name of the event flags group.

Return Values Description

TX_SUCCESS
(0x00) Success

TX_GROUP_ERROR
(0x06)

Invalid event group pointer - either the pointer is NULL or
the event group already exists

TX_CALLER_ERROR
(0x03) Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 66

See also
tx_event_flags_delete, tx_event_flags_get,

tx_event_flags_info_get, tx_event_flags_set

tx_event_flags_delete

Deletes the specified event flag group. All threads suspended waiting for events from this group
are resumed and given a TX_DELETED return status.

The application must prevent use of a deleted event flag group.

Format

UINT tx_event_flags_delete(TX_EVENT_FLAGS_GROUP *group_ptr,

Arguments

Return Values

Allowed from

Threads

Preemption possible

Yes

Example
TX_EVENT_FLAGS_GROUP my_event_flag_group;
UINT status;

/* Delete event flag group. Assume that the group has already been created with a call to
tx_event_flags_create. */

status = tx_event_flags_delete(&my_event_flags_group);

/* If status is TX_SUCCESS, the event flags group is deleted. */

Arguments Description

group_ptr Pointer to an event flags group

Return Values Description

TX_SUCCESS
(0x00) Success

TX_GROUP_ERROR
(0x06) Invalid event group pointer

TX_CALLER_ERROR
(0x03) Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 67

See also
tx_event_flags_create, tx_event_flags_get,

tx_event_flags_info_get, tx_event_flags_set

tx_event_flags_get

Retrieves event flags from the specified event flag group. Each event flag group contains 32 event
flags. Each flag is represented by a single bit.

Format

UINT tx_event_flags_get(TX_EVENT_FLAGS_GROUP *group_ptr,

ULONG requested_flags, UINT get_option,

ULONG *actual_flags_ptr, ULONG wait_option)

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 68

Arguments

Arguments Description

group_ptr Pointer to the event flags group

requested_flags 32-bit unsigned variable that represents the requested
event flags.

get_option Number of bytes requested

wait_option Specifies whether any or all of the requested event flags are
required. The following are valid selections:

 TX_AND (0x02)

 TX_AND_CLEAR (0x03)

 TX_OR (0x00)

 TX_OR_CLEAR (0x01)

Selecting TX_AND or TX_AND_CLEAR specifies that all
event flags must be present in the group.

Selecting TX_OR or TX_OR_CLEAR specifies that any
event flag is satisfactory. Event flags that satisfy the request
are cleared (set to zero) if TX_AND_CLEAR or
TX_OR_CLEAR are specified.

actual_flags_ptr Pointer to destination of where the retrieved event flags are
placed. Note that the actual flags obtained may contain
flags that were not requested.

wait_option Defines how the service behaves if the selected event flags
are not set. The options are as follows:

 TX_NO_WAIT (0x00000000)
Results in an immediate return from this service regardless
of whether or not it was successful. This is the only valid
option if the service is called from a nonthread
(initialization, timer, or ISR).

 TX_WAIT_FOREVER (0xFFFFFFFF)
Causes the calling thread to suspend indefinitely until
the event flags are available.

 timeout_value (0x00000001-0xFFFFFFFE)
Specifies the maximum number of timer-ticks to stay
suspended while waiting for the event flags.

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 69

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

Yes

Example
TX_EVENT_FLAGS_GROUP my_event_flags_group;
ULONG actual_events;
UINT status;

/* Request that event flags 0, 4, and 8 are all set. Also, if they are set they should be cleared. If the
event flags are not set, this service suspends for a maximum of 20 timer-ticks. */

status = tx_event_flags_get(&my_event_flags_group, 0x111,
TX_AND_CLEAR, &actual_events, 20);

See also
tx_event_flags_create, tx_event_flags_delete,

tx_event_flags_info_get, tx_event_flags_set

Return Values Description

TX_SUCCESS
(0x00) Success

TX_DELETED
(0x01) Event flag group was deleted while thread was suspended

TX_NOEVENTS
(0x07) Unable to get the specified events

TX_WAIT_ABORTED
(0x1A) Suspension was aborted by another thread, timer, or ISR

TX_GROUP_ERROR
(0x06)

Invalid event group pointer - either the pointer is NULL or
the event group already exists

TX_PTR_ERROR
(0x03) Invalid pointer for actual event flags

TX_WAIT_ERROR
(0x04)

A wait option other than TX_NO_WAIT was specified on a
call from a non-thread

TX_OPTION_ERROR
(0x08) Invalid get option specified

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 70

tx_event_flags_info_get

Retrieves information about the specified event flags group.

Format

UINT tx_event_flags_info_get (TX_EVENT_FLAGS_GROUP
*group_ptr, CHAR **name, ULONG *current_flags,

TX_THREAD **first_suspended,

ULONG *suspended_count,

TX_EVENT_FLAGS_GROUP **next_group)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Arguments Description

group_ptr Pointer to a an event flags group

name Pointer to destination for the pointer to the event flag
group.s name

current_flags Pointer to destination for the current set flags in the event
flag group

first_suspended Pointer to the destination for the pointer to the thread that
is first on the suspension list of this event flag group

suspended_count Pointer to destination for the pointer to the thread that is
first on the suspension list of this event flag group

next_group Pointer to destination for the pointer of the next created
event flag group

Return Values Description

TX_SUCCESS
(0x00) Success

TX_GROUP_ERROR
(0x06) Invalid event group pointer

TX_PTR_ERROR
(0x03) Invalid pointer (NULL) for any destination pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 71

Example
TX_EVENT_FLAGS_GROUP my_event_group;

CHAR *name;
ULONG current_flags;
TX_THREAD *first_suspended;
ULONG suspended_count;
TX_EVENT_FLAGS_GROUP *next_group;
UINT status;

/* Retrieve information about a the previously created event flag group .my_event_group.. */

status = tx_event_flags_info_get(&my_event_group, &name,

¤t_flags,
&first_suspended, &suspended_count,
&next_group);

/* If status is TX_SUCCESS, information requested is valid. */

See also
tx_event_flags_create, tx_event_flags_delete, tx_event_flags_get,

tx_event_flags_set

tx_event_flags_set

Sets or clears event flags in an event flag group, depending upon the specified set option. All
suspended threads whose event flag request is now satisfied are resumed.

Format

UINT tx_event_flags_set TX_EVENT_FLAGS_GROUP*group_ptr,

ULONGflags_to_set,UNIT set_option)

Arguments

Arguments Description

group_ptr Pointer to a an event flags group

flat_to_set Event flags to set or clear, based on the set option selected

set_option Specifies whether the event flags specified are ANDed or
ORed into the current event flags of the group:

 TX_AND (0x02)
The event flags are ANDed into the current event flags
in the group. This option is typically used to clear event
flags in a group.

 TX_OR (0x00)
The event flags are ORed with the current event in
the group.

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 72

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

Yes

Example
TX_EVENT_FLAGS_GROUP my_event_flags_group; UINT status;

/* Set event flags 0, 4, and 8. */

status = tx_event_flags_set(&my_event_flags_group,
0x111, TX_OR);

/* If status equals TX_SUCCESS, the event flags have been set and any suspended thread whose

request was satisfied has been resumed. */

See also
tx_event_flags_create, tx_event_flags_delete, tx_event_flags_get,

tx_event_flags_info_get

tx_interrupt_control

Enables or disables specified interrupts.

If this service is called from an application thread, the interrupt posture remains part of that
thread’s context. For example, if the thread calls this routine to disable interrupts and then
suspends, when it is resumed, interrupts are disabled again.

This service should not be used to enable interrupts during initialization, because doing so could
cause unpredictable results.

Format

UINT tx_interrupt_control (UINT new_posture)

Return Values Description

TX_SUCCESS
(0x00) Success

TX_GROUP_ERROR
(0x06) Invalid event group pointer

TX_OPTION_ERROR
(0x03) Invalid get option specified

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 73

Arguments

Return Values

Allowed from

Threads, timers, and ISRs

Preemption possible

No

Example
UINT my_old_posture;

/* Lockout interrupts */

my_old_posture = tx_interrupt_control(TX_INT_DISABLE);

/* Perform critical operations that need interrupts locked-out */

/* Restore previous interrupt lockout posture. */

tx_interrupt_control(my_old_posture);

tx_mutex_create

Creates a mutex for inter-thread mutual exclusion for resource protection.

Format

UINT tx_mutex_create (TX_MUTEX *mutex_ptr,

CHAR *name_ptr, UINT priority_inherit)

Arguments Description

new_posture Specifies whether interrupts are disabled or enabled.
Valid values include TX_INT_DISABLE and
TX_INT_ENABLE.

The actual values for these parameters are port specific.

In addition, some system may support addition interrupt
disable postures.

Return Values Description

previous_posture The previous interrupt posture to the caller. This allows for
restoring the previous posture after interrupts are disabled.

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 74

Arguments

Return Values

Allowed from

Threads, and ISRs

Preemption possible

No

Example
TX_MUTEX my_mutex;
UINT status;

/* Create a mutex to provide protection over a common resource. */

status = tx_mutex_create(&my_mutex,.my_mutex_name., TX_NO_INHERIT);

/* If status equals TX_SUCCESS, my_mutex is ready for use. */

See also
tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,

tx_mutex_prioritize, tx_mutex_put

tx_mutex_delete

Deletes the specified mutex. All threads suspended waiting for the mutex are resumed and given a
TX_DELETED return status.

It is the application.s responsibility to prevent use of a deleted mutex.

Arguments Description

mutex_ptr Pointer to the mutex control block

name_ptr Pointer to the mutex name

priority_inherit Specifies whether or not this mutex supports priority
inheritance. One of the following:
 TX_INHERIT - priority inheritance is supported

 TX_NO_INHERIT - priority inheritance is not
supported by this mutex

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_MUTEX_ERROR
(0x1C)

Invalid mutex pointer - either the pointer is NULL or the
mutex already exists

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

TX_INHERIT_ERROR
(0x1F)

Invalid priority inherit parameter

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 75

Format

UINT tx_mutex_delete(TX_MUTEX *mutex_ptr)

Arguments

Return Values

Allowed from

Threads

Preemption possible

Yes

Example
TX_MUTEX my_mutex;

UINT status;

/* Delete a mutex. Assume that the mutex has already been created. */
status = tx_mutex_delete(&my_mutex);

/* If status equals TX_SUCCESS, the mutex is deleted. */

See also
tx_mutex_create, tx_mutex_get, tx_mutex_info_get,

tx_mutex_prioritize, tx_mutex_put

Arguments Description

mutex_ptr Pointer to the mutex

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_MUTEX_ERROR
(0x1C)

Invalid mutex pointer - either the pointer is NULL or the
mutex already exists

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 76

tx_mutex_get

Tries to obtain exclusive ownership of the specified mutex. If the calling thread already owns the
mutex, an internal counter is incremented and a successful status is returned.

Format

UINT tx_mutex_get(TX_MUTEX *mutex_ptr, ULONG wait_option)

Arguments

Usage notes

If the mutex is owned by another thread having higher priority, and if priority inheritance was
specified at mutex create, the lower priority thread.s priority will be temporarily raised to that of
the calling thread.

The priority of the lower-priority thread owning a mutex with priority-inheritance should never be
modified by an external thread during mutex ownership.

Arguments Description

mutex_ptr Pointer to the mutex

wait_option Defines how the service behaves if the mutex is already
owned by another thread. The options are as follows:

 TX_NO_WAIT (0x00000000)
Results in an immediate return from this service
regardless of whether it was successful or not. This is the
only valid option if the service is called from initialization.

 TX_WAIT_FOREVER (0xFFFFFFFF)
Causes the calling thread to suspend indefinitely until
the mutex is available

 timeout_value (0x00000001-0xFFFFFFFE)
Specifies the maximum number of timer-ticks to stay
suspended while waiting for the mutex.

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 77

Return Values

Allowed from

Initialization and threads

Preemption possible

Yes

Example
TX_MUTEX my_mutex;
UINT status;

/* Obtain exclusive ownership of the mutex "my_mutex..
If the .my_mutex. is not available, suspend until it becomes available. */

status = tx_mutex_get(&my_mutex, TX_WAIT_FOREVER);

See also
tx_mutex_create, tx_mutex_delete, tx_mutex_info_get,

tx_mutex_prioritize, tx_mutex_put

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_DELETED
(0x01)

Mutex was deleted while thread was suspended

TX_WAIT_ABORTED
(0x1A)

Suspension was aborted by another thread, timer, or ISR

TX_NOT_AVAILABLE
(0x1D)

Unable to get ownership of the mutex

TX_MUTEX_ERROR
(0x1C)

Invalid mutex pointer - either the pointer is NULL or the
mutex already exists

TX_WAIT_ERROR
(0x04)

A wait option other than TX_NO_WAIT was specified on a
call from a non-thread

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 78

tx_mutex_info_get

Retrieves information from the specified mutex.

Format

UINT tx_mutex_info_get(TX_MUTEX *mutex_ptr, CHAR **name,

ULONG *count, TX_THREAD **owner,

TX_THREAD **first_suspended,

ULONG *suspended_count, TX_MUTEX **next_mutex)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Example
TX_MUTEX my_mutex;
CHAR *name;
ULONG count;
TX_THREAD *owner;
TX_THREAD *first_suspended;

Arguments Description

mutex_ptr Pointer to the mutex

name Pointer to destination for the pointer to the mutex name

count Pointer to destination for the ownership count of the mutex

owner Pointer to the destination for the owning thread.s pointer

first_suspended Pointer to destination for the pointer to the thread that is
first on the suspension list of this mutex

suspended_count Pointer to destination for the number of threads currently
suspended on this mutex

next_mutex Pointer to destination for the pointer of the next
created mutex

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_MUTEX_ERROR
(0x1C)

Invalid mutex pointer - either the pointer is NULL or the
mutex already exists

TX_PTR_ERROR
(0x13)

Invalid pointer (NULL) for any destination pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 79

ULONG suspended_count;
TX_MUTEX *next_mutex;
UINT status;

/* Retrieve information about a the previously created mutex "my_mutex." */
status = tx_mutex_info_get(&my_mutex, &name, &count, &owner, &first_suspended,

&suspended_count, &next_mutex);

/* If status is TX_SUCCESS, the information requested is valid. */

See also
tx_mutex_create, tx_mutex_delete, tx_mutex_get,

tx_mutex_prioritize, tx_mutex_put

tx_mutex_prioritize

Places the highest priority thread suspended for ownership of the mutex at the front of the
suspension list. All other threads remain in the same FIFO order they were suspended in.

Format

UINT tx_mutex_prioritize(TX_MUTEX *mutex_ptr)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Arguments Description

mutex_ptr Pointer to the mutex

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_MUTEX_ERROR
(0x1C)

Invalid mutex pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 80

Example
TX_MUTEX my_mutex;

UINT status;

/* Ensure that the highest priority thread will receive ownership of the mutex when it becomes avail-
able. */

status = tx_mutex_prioritize(&my_mutex);

/* If status equals TX_SUCCESS, the highest priority suspended thread is at the front of the list. The
next tx_mutex_put call that releases ownership of the mutex will give ownership to this thread and
wake it up. */

See also

tx_mutex_create, tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,

tx_mutex_put

tx_mutex_put

Decrements the ownership count of the specified mutex. If the ownership count is zero, the mutex
is made available.

If priority inheritance was selected during mutex creation, the priority of the releasing thread will
be restored to the priority it had when it originally obtained ownership of the mutex. Any other
priority changes made to the releasing thread during ownership of the mutex may be undone.

Format

UINT tx_mutex_put(TX_MUTEX mutex_ptr)

Arguments

Return Values

Arguments Description

mutex_ptr Pointer to the mutex

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_MUTEX_ERROR
(0x1C)

Invalid mutex pointer

TX_NOT_OWNED

(0x1E)
Mutex is not allowed by the caller

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 81

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Example

TX_MUTEX my_mutex;
UINT status;

/* Release ownership of .my_mutex.. */

status = tx_mutex_put(&my_mutex);

/* If status equals TX_SUCCESS, the mutex ownership count has been decremented and if zero,
released. */

See also

tx_mutex_create, tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,

tx_mutex_prioritize

tx_queue_create

Creates a message queue that is typically used for inter-thread communication.

The total number of messages is calculated from the specified message size and the total number of
bytes in the queue.

If the total number of bytes specified in the queue.s memory area is not evenly divisible by the
specified message size, the remaining bytes in the memory area are not used.

Format

UINT tx_queue_create(TX_QUEUE *queue_ptr, CHAR *name_ptr,

UINT message_size,

VOID *queue_start, ULONG queue_size)

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 82

Arguments

Return Values

Allowed from

Initialization and threads

Preemption possible

No

Arguments Description

queue_ptr Pointer to the message queue

name_ptr Pointer to the message queue name

message_size Size of the messages in the queue. Sizes range from 1 to 16
words (where a word is 32 bits). Message size options are:

 TX_1_ULONG (0x01)

 TX_2_ULONG (0x02)

 TX_4_ULONG (0x04)

 TX_8_ULONG (0x08)

 TX_16_ULONG (0x10)

queue_start Pointer to the starting address of the message queue

queue_size Total number of bytes available for the message queue

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_QUEUE_ERROR
(0x01)

Invalid message queue pointer

TX_PTR_ERROR
(0x03)

Invalid pointer

TX_CALLER_ERROR

(0x13)
Invalid caller of this service

TX_SIZE_ERROR

(0x05)
Size of pool is invalid

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 83

Example
TX_QUEUE my_queue;

UINT status;

/* Create a message queue whose total size is 2000 bytes starting at address 0x300000. Each mes-
sage in this queue is defined to be 4 32-bit words long. */

status = tx_queue_create(&my_queue, .my_queue_name.,
TX_4_ULONG, (VOID *) 0x300000, 2000);

/* If status equals TX_SUCCESS, my_queue contains room for storing 125 messages (2000 bytes/ 16
bytes per message). */

See also
tx_queue_delete, tx_queue_flush, tx_queue_front_send,

tx_queue_info_get, tx_queue_prioritize, tx_queue_receive,

tx_queue_send

tx_queue_delete

Deletes the specified message queue. All threads suspended waiting for a message from this queue
are resumed and given a TX_DELETED return status.

It is the application.s responsibility to manage the memory area associated with the queue, which is
available after this service completes. In addition, the application must prevent use of a deleted
queue.

Format

UINT tx_queue_delete(TX_QUEUE *queue_ptr)

Arguments

Return Values

Allowed from

Threads

Arguments Description

queue_ptr Pointer to the message queue

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_QUEUE_ERROR
(0x01)

Invalid message queue pointer

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 84

Preemption possible

Yes

Example
TX_QUEUE my_queue;

UINT status;

/* Delete entire message queue. Assume that the queue has already been created with a call to
tx_queue_create. */

status = tx_queue_delete(&my_queue);

/* If status equals TX_SUCCESS, message queue is deleted. */

See also
tx_queue_create, tx_queue_flush, tx_queue_front_send,

tx_queue_info_get, tx_queue_prioritize, tx_queue_receive,

tx_queue_send

tx_queue_flush

Deletes all messages stored in the specified message queue. If the queue is full, messages of all
suspended threads are discarded. Each suspended thread is then resumed with a return status that
indicates the message send was successful. If the queue is empty, this service does nothing.

Format

UINT tx_queue_flush(TX_QUEUE *queue_ptr)

Arguments

Return Values

Allowed from

Initialization and threads

Arguments Description

queue_ptr Pointer to the message queue

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_QUEUE_ERROR
(0x01)

Invalid message queue pointer

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 85

Preemption possible

Yes

Example
TX_QUEUE my_queue;

UINT status;

/* Flush out all pending messages in the specified message queue. Assume that the
queue has already been created with a call to tx_queue_create. */
status = tx_queue_flush(&my_queue);

/* If status equals TX_SUCCESS, the message queue is empty. */

See also
tx_queue_create, tx_queue_delete, tx_queue_front_send,

tx_queue_info_get, tx_queue_prioritize, tx_queue_receive,

tx_queue_send

tx_queue_front_send

Sends a message to the front location of the specified message queue. The message sent is copied
to the front of the queue from the memory area specified by the source pointer.

Format

UINT tx_queue_front_send(TX_QUEUE *queue_ptr,

VOID *source_ptr, ULONG wait_option)

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 86

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

Yes

Example
TX_QUEUE my_queue;

UINT status;

ULONG my_message[4];

Arguments Description

queue_ptr Pointer to the message queue

source_ptr Pointer to the message

wait_option Defines how the service behaves if the message queue is
full. The options are as follows:

 TX_NO_WAIT (0x00000000)

Results in an immediate return from this service regardless of
whether it was successful or not. This is the only valid option
if the service is called from a nonthread (initialization, timer,
or ISR).

 TX_WAIT_FOREVER (0xFFFFFFFF)

Causes the calling thread to suspend indefinitely until
there is room in the queue

 timeout_value (0x00000001-0xFFFFFFFE)

Specifies the maximum number of timer-ticks to stay
suspended while waiting for room in the queue

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_QUEUE_ERROR
(0x01)

Invalid message queue pointer

TX_DELETED
(0X01)

Invalid caller of this service

TX_QUEUE_FULL(0x0B) Unable to send message because the queue was full
TX_WAIT_ABORTED
(0x1A)

Suspension was aborted by another thread, timer, or ISR

TX_QUEUE_ERROR
(0x09)

Invalid message queue pointer

TX_PTR_ERROR
(0x03)

Invalid source pointer for message

TX_WAIT_ERROR(0x04) A wait option other than TX_NO_WAIT was specified on a
call from a non-thread

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 87

/* Send a message to the front of .my_queue.. Return immediately, regardless of success. This wait
option is used for calls from initialization, timers, and ISRs. */

status = tx_queue_front_send(&my_queue, my_message,
TX_NO_WAIT);

/* If status equals TX_SUCCESS, the message is at the front of the specified queue. */

See also
tx_queue_create, tx_queue_delete, tx_queue_flush,

tx_queue_info_get, tx_queue_prioritize, tx_queue_receive,

tx_queue_send

tx_queue_info_get

Retrieves information about the specified message queue.

Format

UINT tx_queue_info_get(TX_QUEUE *queue_ptr, CHAR **name,

ULONG *enqueued, TX_THREAD **first_suspended,

ULONG *suspended_count, TX_QUEUE **next_queue)

Arguments

Return Values

Arguments Description

queue_ptr Pointer to the message queue

name Pointer to destination for the pointer to the queue name

enqueued Pointer to destination for the number of messages currently
in the queue

first_suspended Pointer to destination for the pointer to the thread that is
first on the suspension list of this queue

suspended_count Pointer to destination for the number of threads currently
suspended on this queue

next_queue Pointer to destination for the pointer of the next
created queue

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_QUEUE_ERROR
(0x01)

Invalid message queue pointer

TX_PTR_ERROR
(0x03)

Invalid pointer (NULL) for any destination pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 88

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Example
TX_QUEUE my_queue;

CHAR *name;

ULONG enqueued;

TX_THREAD *first_suspended;

ULONG suspended_count;

TX_QUEUE *next_queue;

UINT status;

/* Retrieve information about a the previously created message queue "my_queue." */

status = tx_queue_info_get(&my_queue, &name,

&enqueued,

&first_suspended, &suspended_count,

&next_queue);

/* If status equals TX_SUCCESS, information requested is valid. */

See also
tx_queue_create, tx_queue_delete, tx_queue_flush,

tx_queue_front_send, tx_queue_prioritize, tx_queue_receive,

tx_queue_send

tx_queue_prioritize

Places the highest priority thread suspended for a message (or to place a message) on this queue at
the front of the suspension list. All other threads remain in the same FIFO order they were
suspended in.

Format

UINT tx_queue_prioritize(TX_QUEUE *queue_ptr)

UINT tx_queue_flush(TX_QUEUE *queue_ptr)

Arguments

Arguments Description

queue_ptr Pointer to the message queue

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 89

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Example
TX_QUEUE my_queue;

UINT status;

/* Ensure that the highest priority thread will receive the next message placed on this queue. */

status = tx_queue_prioritize(&my_queue);

/* If status equals TX_SUCCESS, the highest priority suspended thread is at the front of the
list. The next tx_queue_send or tx_queue_front_send call made to this queue will
wake up this thread. */

See also
tx_queue_create, tx_queue_delete, tx_queue_flush,

tx_queue_front_send, tx_queue_info_get, tx_queue_receive,

tx_queue_send

tx_queue_receive

Retrieves a message from the specified message queue. The message retrieved is copied from the
queue into the memory area specified by the destination pointer.

The specified destination memory area must be large enough to hold the message.

Otherwise, if the destination is not large enough, memory corruption occurs in the following
memory area.

Format

UINT tx_queue_receive(TX_QUEUE *queue_ptr,

VOID *destination_ptr, ULONG wait_option)

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_QUEUE_ERROR
(0x01)

Invalid message queue pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 90

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

Yes

Arguments Description

queue_ptr Pointer to the message queue

destination_ptr Pointer to the location of where to copy the message

wait_option Defines how the service behaves if the queue is empty. The
options are as follows:

 TX_NO_WAIT (0x00000000)

Results in an immediate return from this service regardless of
whether it was successful or not. This is the only valid option
if the service is called from a nonthread (initialization, timer,
or ISR).

 TX_WAIT_FOREVER (0xFFFFFFFF)

Causes the calling thread to suspend indefinitely until a
message is available

 timeout_value (0x00000001-0xFFFFFFFE)

Specifies the maximum number of timer-ticks to stay
suspended while waiting for a message

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_QUEUE_ERROR
(0x01)

Invalid message queue pointer

TX_DELETED
(0X01)

Message queue was deleted while thread was suspended

TX_QUEUE_EMPTY
(0x0A)

Unable to retrieve a message because the queue was empty

TX_WAIT_ABORTED
(0x1A)

Suspension was aborted by another thread, timer, or ISR

TX_QUEUE_ERROR
(0x09)

Invalid message queue pointer

TX_PTR_ERROR
(0x03)

Invalid source pointer for message

TX_WAIT_ERROR(0x04) A wait option other than TX_NO_WAIT was specified on a
call from a non-thread

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 91

Example
TX_QUEUE my_queue;

UINT status;

ULONG my_message[4];

/* Retrieve a message from .my_queue.. If the queue is empty, suspend until a message is present.
Note that this suspension is only possible from application threads. */

status = tx_queue_receive(&my_queue, my_message,
TX_WAIT_FOREVER);

/* If status equals TX_SUCCESS, the message is in "my_message." */

See also
tx_queue_create, tx_queue_delete, tx_queue_flush,

tx_queue_front_send, tx_queue_info_get, tx_queue_prioritize,

tx_queue_send

tx_queue_send

Sends a message to the specified message queue. The message sent is copied to the queue from the
memory area specified by the source pointer.

Format

UINT tx_queue_send(TX_QUEUE *queue_ptr,

VOID *source_ptr, ULONG wait_option)

Arguments

Arguments Description

queue_ptr Pointer to the message queue

source_ptr Pointer to the message

wait_option Defines how the service behaves if the queue is full. The
options are as follows:

 TX_NO_WAIT (0x00000000)

Results in an immediate return from this service regardless of
whether it was successful or not. This is the only valid option
if the service is called from a nonthread (initialization, timer,
or ISR).

 TX_WAIT_FOREVER (0xFFFFFFFF)

Causes the calling thread to suspend indefinitely until there is
room in the queue

 timeout_value (0x00000001-0xFFFFFFFE)

Specifies the maximum number of timer-ticks to stay
suspended while waiting for room in the queue

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 92

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

Yes

Example
TX_QUEUE my_queue;

UINT status;

ULONG my_message[4];

/* Send a message to .my_queue.. Return immediately, regardless of success. This
wait option is used for calls from initialization, timers, and ISRs. */

status = tx_queue_send(&my_queue, my_message, TX_NO_WAIT);

/* If status equals TX_SUCCESS, the message is in the queue. */

See also
tx_queue_create, tx_queue_delete, tx_queue_flush,

tx_queue_front_send, tx_queue_info_get, tx_queue_prioritize,

tx_queue_receive

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_QUEUE_ERROR
(0x01)

Invalid message queue pointer

TX_DELETED
(0X01)

Message queue was deleted while thread was suspended

TX_QUEUE_FULL
(0x0B)

Unable to send a message because the queue was full

TX_WAIT_ABORTED
(0x1A)

Suspension was aborted by another thread, timer, or ISR

TX_QUEUE_ERROR
(0x09)

Invalid message queue pointer

TX_PTR_ERROR
(0x103)

Invalid source pointer for message

TX_WAIT_ERROR
(0x04)

A wait option other than TX_NO_WAIT was specified on a
call from a non-thread

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 93

tx_semaphore_create

Creates a counting semaphore for inter-thread synchronization. The initial semaphore count is
specified as an input parameter.

Format

UINT tx_semaphore_create(TX_SEMAPHORE *semaphore_ptr,

CHAR *name_ptr, ULONG initial_count)

Arguments

Return Values

Allowed from

Initialization and threads

Preemption possible

No

Example
TX_SEMAPHORE my_semaphore;

UINT status;

/* Create a counting semaphore whose initial value is 1. This is typically the technique used to make a
binary semaphore. Binary semaphores are used to provide protection over a common resource. */

status = tx_semaphore_create(&my_semaphore,

"my_semaphore_name", 1);

/* If status equals TX_SUCCESS, my_semaphore is ready for use. */

Arguments Description

semaphore_ptr Pointer to the semaphore

name_ptr Pointer to the semaphore name

initial_count The initial count for this semaphore. Values range from
0x00000000 through 0xFFFFFFFF.

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_SEMAPHORE_ERROR
(0x0C)

Invalid semaphore pointer - either the pointer is NULL
or the semaphore already exists

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 94

See also
tx_semaphore_delete, tx_semaphore_get, tx_semaphore_info_get,

tx_semaphore_prioritize, tx_semaphore_put

tx_semaphore_delete

Deletes the specified counting semaphore. All threads suspended waiting for a semaphore instance
are resumed and given a TX_DELETED return status.

It is the application.s responsibility to prevent use of a deleted semaphore.

Format

UINT tx_semaphore_delete(TX_SEMAPHORE *semaphore_ptr)

UINT tx_queue_flush(TX_QUEUE *queue_ptr)

Arguments

Return Values

Allowed from

Threads

Preemption possible

Yes

Example
TX_SEMAPHORE my_semaphore;

UINT status;

/* Delete counting semaphore. Assume that the counting semaphore has already been created. */

status = tx_semaphore_delete(&my_semaphore);

/* If status is TX_SUCCESS, the counting semaphore is deleted */

Arguments Description

semaphore_ptr Pointer to the semaphore

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_SEMAPHORE_ERROR
(0x0C)

Invalid semaphore counting pointer

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 95

See also
tx_semaphore_create, tx_semaphore_get, tx_semaphore_info_get,

tx_semaphore_prioritize, tx_semaphore_put

tx_semaphore_get

Retrieves an instance (a single count) from the specified counting semaphore. As a result, the
specified semaphore.s count is decreased by one.

Format

UINT tx_semaphore_get(TX_SEMAPHORE *semaphore_ptr,

ULONG wait_option)

Arguments

Arguments Description

semaphore_ptr Pointer to the semaphore

wait_option Defines how the service behaves if there are no instances
of the semaphore available (that is, the semaphore count
is zero). The options are as follows:

 TX_NO_WAIT (0x00000000)

Results in an immediate return from this service regardless of
whether it was successful or not. This is the only valid option
if the service is called from a nonthread (initialization, timer,
or ISR).

 TX_WAIT_FOREVER (0xFFFFFFFF)

Causes the calling thread to suspend indefinitely until a
semaphore instance is available

 timeout_value (0x00000001-0xFFFFFFFE)

Specifies the maximum number of timer-ticks to stay
suspended while waiting for a sermaphore instance

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 96

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

Yes

Example
TX_SEMAPHORE my_semaphore;

UINT status;

/* Get a semaphore instance from the semaphore "my_semaphore." If the sema
phore count is zero, suspend until an instance becomes available.

Note that this suspension is only possible from application threads. */

status = tx_semaphore_get(&my_semaphore, TX_WAIT_FOREVER);

/* If status equals TX_SUCCESS, the thread has obtained an instance of the sema
phore. */

See also
tx_semaphore_create, tx_semaphore_delete, tx_semaphore_info_get,

tx_semaphore_prioritize, tx_semaphore_put

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_SEMAPHORE_ERROR
(0x0C)

Invalid semaphore pointer - either the pointer is NULL or
the semaphore already exists

TX_WAIT_ERROR
(0x04))

A wait option other than TX_NO_WAIT was specified on a
call from a non-thread

TX_DELETED
(0x01)

Counting semaphore was deleted while thread
was suspended

TX_WAIT_ABORTED
(0x1A)

Suspension was aborted by another thread, timer, or ISR

TX_NO_INSTANCE
(0xOD)

Unable to retrieve an instance of the counting semaphore
(count is zero)

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 97

tx_semaphore_info_get

Retrieves information about the specified semaphore.

Format

UINT tx_semaphore_info_get(TX_SEMAPHORE *semaphore_ptr,

CHAR **name, ULONG *current_value,

TX_THREAD **first_suspended,

ULONG *suspended_count,

TX_SEMAPHORE **next_semaphore)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Example

TX_SEMAPHORE my_semaphore;

CHAR *name;

ULONG current_value;

Arguments Description

semaphore_ptr Pointer to the semaphore

name Pointer to destination for the semaphore.s name

name Pointer to destination for the current semaphore’s count

first_suspended Pointer to destination for the pointer to the thread that is
first on the suspension list of this semaphore

suspended_count Pointer to destination for the number of threads currently
suspended on this semaphore

next_semaphore Pointer to destination for the pointer of the next
created semaphore

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_SEMAPHORE_ERROR
(0x0C)

Invalid semaphore counting pointer

TX_PTR_ERROR
(0x03)

Invalid pointer (NULL) for any destination pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 98

TX_THREAD *first_suspended;

ULONG suspended_count;

TX_SEMAPHORE *next_semaphore;

UINT status;

/* Retrieve information about a the previously created semaphore .my_semaphore.. */

status = tx_semaphore_info_get(&my_semaphore, &name,

¤t_value,

&first_suspended, &suspended_count,

&next_semaphore);

/* If status is TX_SUCCESS, information requested is valid. */

See also
tx_semaphore_create, tx_semaphore_delete, tx_semaphore_get,

tx_semaphore_prioritize, tx_semaphore_put

tx_semaphore_prioritize

Service places the highest priority thread suspended for an instance of the semaphore at the front of
the suspension list. All other threads remain in the same FIFO order they were suspended in.

Format

UINT tx_semaphore_prioritize(TX_SEMAPHORE *semaphore_ptr)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Arguments Description

semaphore_ptr Pointer to the semaphore

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_SEMAPHORE_ERROR
(0x0C)

Invalid semaphore counting pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 99

Example
TX_SEMAPHORE my_semaphore;

UINT status;

/* Ensure that the highest priority thread will receive the next instance of this sema
phore. */

status = tx_semaphore_prioritize(&my_semaphore);

/* If status equals TX_SUCCESS, the highest priority suspended thread is at the
front of the list. The next tx_semaphore_put call made to this queue will
wake up this thread. */

See also
tx_semaphore_create, tx_semaphore_delete, tx_semaphore_get,

tx_semaphore_info_get, tx_semaphore_put

tx_semaphore_put

Puts an instance into the specified counting semaphore, which increments the counting semaphore
by one.

If this service is called when the semaphore is all ones (OxFFFFFFFF), the new put operation
causes the semaphore to be reset to zero.

Format

UINT tx_semaphore_put(TX_SEMAPHORE *semaphore_ptr)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

Yes

Arguments Description

semaphore_ptr Pointer to the counting semaphore

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_SEMAPHORE_ERROR
(0x0C)

Invalid semaphore counting pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 100

Example
TX_SEMAPHORE my_semaphore;

UINT status;

/* Increment the counting semaphore .my_semaphore.. */

status = tx_semaphore_put(&my_semaphore);

/* If status equals TX_SUCCESS, the semaphore count has been incremented. Of course, if a thread
was waiting, it was given the semaphore instance and resumed. */

See also
tx_semaphore_create, tx_semaphore_delete, tx_semaphore_info_get,

tx_semaphore_prioritize, tx_semaphore_get

tx_thread_create

Creates an application thread that starts execution at the specified task entry function. The stack,
priority, preemption, and time-slice are among the attributes specified.

In addition, the initial execution state of the thread is also specified.

Format

UINT tx_thread_create(TX_THREAD *thread_ptr,

CHAR *name_ptr, VOID (*entry_function)(ULONG),

ULONG entry_input, VOID *stack_start,

ULONG stack_size, UINT priority,

UINT preempt_threshold, ULONG time_slice,

UINT auto_start)

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 101

Arguments

Return Values

Arguments Description

thread_ptr Pointer to the application thread control

name_ptr Pointer to the name of the thread

entry_function The initial C function for thread execution. When a thread
returns from this entry function, it is placed in a completed
state and suspended indefinitely.

entry_input A 32-bit value that is passed to the thread.s entry function
when it first executes. The use for this input is determined
exclusively by the application.

stack_start Pointer to the starting address of the stack.s memory area

stack_size Number bytes in the stack memory area. The thread.s stack
area must be large enough to handle its worst-case function
call nesting and local variable usage. Threads must have at
least TX_MINIMUM_STACK bytes to execute.

priority Numerical priority of thread. Values range from 0 through
31, where a value of 0 represents the highest priority.

 preempt_ threshold Highest priority level (0-31) of disabled preemption. Only
priorities higher than this level are allowed to preempt this
thread. This value must be less than or equal to the
specified priority. Typically, it is the same as the priority.

time_slice Number of timer-ticks this thread is allowed to execute
without checking to see if there are any other threads of the
same priority ready to execute. Ready threads with priorities
equal to or less than the preemption threshold are also given
a chance to execute when a time-slice occurs. Legal
timeslices selections range from 1 through 0xFFFFFFFF. A
value of TX_NO_TIME_SLICE (a value of 0) disables time-
slicing of this thread.

auto_start Specifies whether the thread starts immediately or stays in
a pure suspended state:

 TX_AUTO_START (0x01)

 TX_DONT_START (0x00)

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_THREAD_ERROR
(0xOE)

Invalid thread control pointer - either the pointer is NULL
or the thread already exists

TX_THREAD_ERROR
(0xOE)

Invalid threat priority

TX_THREAD_ERROR
(0xOE)

Invalid starting address of the entry point, or the stack area
is invalid (typically, NULL)

TX_THREAD_ERROR
(0xOE)

Invalid preemption threshold specified

TX_THREAD_ERROR
(0xOE)

Invalid auto-start selection

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 102

Allowed from

Initialization and threads

Preemption possible

Yes

Example
TX_THREAD my_thread;

UINT status;

/* Create a thread of priority 15 whose entry point is "my_thread_entry". This
thread’s stack area is 1000 bytes in size, starting at address 0x400000. The preemp
tion threshold is set up to allow preemption at priorities above 15. Time-slicing is
disabled. This thread is automatically put into a ready condition. */

status = tx_thread_create(&my_thread, "my_thread_name",

my_thread_entry, 0x1234,

(VOID *) 0x400000, 1000,

15, 15, TX_NO_TIME_SLICE,

TX_AUTO_START);

/* If status equals TX_SUCCESS, my_thread is ready for execution! */

...

/* Thread.s entry function. When .my_thread. actually begins execution, control is transferred to this
function. */

VOID my_thread_entry (ULONG initial_input)

{

/* When we get here, the value of initial_input is 0x1234. See how this was specified during
creation. */

/* The real work of the thread, including calls to other function should be called from
here! */

/* When the this function returns, the corresponding thread is placed into a .com
pleted. state and suspended. */

}

TX_SIZE_ERROR
(0x05)

Size of stack area is invalid

Return Values Description

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 103

See also
tx_thread_delete, tx_thread_identify, tx_thread_info_get,

tx_thread_preemption_change, tx_thread_priority_change,

tx_thread_relinquish, tx_thread_resume, tx_thread_sleep,

tx_thread_suspend, tx_thread_terminate,

tx_thread_time_slice_change, tx_thread_wait_abort

tx_thread_delete

Deletes the specified application thread. Since the specified thread must be in a terminated or
completed state, this service cannot be called from a thread attempting to delete itself.

It is the application.s responsibility to manage the memory area associated with the thread’s stack,
which is available after this service completes. In addition, the application must prevent use of a
deleted thread.

Format

UINT tx_thread_delete(TX_THREAD *thread_ptr)

Arguments

Return Values

Allowed from

Threads and timers

Preemption possible

No

Arguments Description

thread_ptr Pointer to the application thread

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_THREAD_ERROR
(0xOE)

Invalid application thread pointer

TX_DELETE_ERROR
(0x0F)

Specified thread is not in a terminated or completed state

TX_PTR_ERROR
(0x03)

Invalid starting address of the entry point, or the stack area
is invalid (typically, NULL)

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 104

Example
TX_THREAD my_thread;

UINT status;

/* Delete an application thread whose control block is "my_thread". Assume that the
thread has already been created with a call to tx_thread_create. */

status = tx_thread_delete(&my_thread);

/* If status equals TX_SUCCESS, the application thread is deleted. */

See also
tx_thread_create, tx_thread_identify, tx_thread_info_get,

tx_thread_preemption_change, tx_thread_priority_change,

tx_thread_relinquish, tx_thread_resume, tx_thread_sleep,

tx_thread_suspend, tx_thread_terminate,

tx_thread_time_slice_change, tx_thread_wait_abort

tx_thread_identify

Returns a pointer to the currently executing thread. If no thread is executing, this service returns a
null pointer.

If this service is called from an ISR, the return value represents the thread running prior to the
executing interrupt handler.

Format

TX_THREAD* tx_thread_identify(VOID)

Arguments

None

Return Values

Allowed from

Threads and ISRs

Preemption possible

No

Return Values Description

thread_pointer Pointer to the currently executing thread. If no thread is
executing, the return value is TX_NULL.

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 105

Example
TX_THREAD *my_thread_ptr;

/* Find out who we are! */

my_thread_ptr = tx_thread_identify();

/* If my_thread_ptr is non-null, we are currently executing from that thread or an ISR that interrupted
that thread. Otherwise, this service was called from an ISR when no thread was running when the
interrupt occurred. */

See also

tx_thread_create, tx_thread_delete, tx_thread_info_get,

tx_thread_preemption_change, tx_thread_priority_change,

tx_thread_relinquish, tx_thread_resume, tx_thread_sleep,

tx_thread_suspend, tx_thread_terminate,

tx_thread_time_slice_change, tx_thread_wait_abort

tx_thread_info_get

Retrieves information about the specified thread.

Format

UINT tx_thread_create(TX_THREAD *thread_ptr, CHAR **name,

UINT *state, UINT *priority,

UINT *preemption_threshold,

ULONG *time_slice,

TX_THREAD **next_thread,

TX_THREAD **suspended_thread)

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 106

Arguments

Return values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Arguments Description

thread_ptr Pointer to the thread control block

name Pointer to destination for the pointer to the thread name
 state Pointer to destination for the thread.s current execution state:

 TX_READY (0x00)

 TX_COMPLETED (0x01)

 TX_TERMINATED (0x02)

 TX_SUSPENDED (0x03)

 TX_SLEEP (0x04)

 TX_QUEUE_SUSP (0x05)

 TX_SEMAPHORE_SUSP (0x06)

 TX_EVENT_FLAG (0x07)

 TX_BLOCK_MEMORY (0x08)

 TX_BYTE_MEMORY (0x09)

 TX_MUTEX_SUSP (0x0D)

 TX_IO_DRIVER (0x0A)
 priority Pointer to destination for the thread’s priority
 preemption_ threshold Pointer to destination for the thread’s preemption-threshold
 time_slice Pointer to destination for the thread’s time-slice
 next_thread Pointer to destination for the next created thread pointer
 suspended_thread Pointer to destination for pointer to the next thread in the

suspension list

Return values Description

TX_SUCCESS
(0x00)

Success

TX_THREAD_ERROR
(0xOE)

Invalid thread control pointer

TX_PTR_ERROR
(0x03)

Invalid pointer (NULL) for any destination pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 107

Example
TX_THREAD my_thread;

CHAR *name;

UINT state;

UINT priority;

UINT preemption_threshold;

UINT time_slice;

TX_THREAD *next_thread;

TX_THREAD *suspended_thread;

UINT status;

/* Retrieve information about a the previously created thread "my_thread." */

status = tx_thread_info_get(&my_thread, &name,

&state, &priority, &preemption_threshold,

&time_slice, &next_thread,&suspended_thread);

/* If status is TX_SUCCESS, information requested is valid */

See also
tx_thread_create, tx_thread_delete, tx_thread_identify,

tx_thread_preemption_change, tx_thread_priority_change,

tx_thread_relinquish, tx_thread_resume, tx_thread_sleep,

tx_thread_suspend, tx_thread_terminate,

tx_thread_time_slice_change, tx_thread_wait_abort

tx_thread_preemption_change

Changes the preemption threshold of the specified thread. The preemption threshold prevents
preemption of the specified thread by threads equal to or less than the preemption threshold value.

Format

UINT tx_thread_preemption_change (TX_THREAD *thread_ptr,

UINT new_threshold, UINT *old_threshold)

Arguments

Arguments Description

thread_ptr Pointer to the application thread

new_threshold New preemption threshold priority level (0-31)

old_threshold Pointer to a location to return the previous preemption
threshold priority

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 108

Return Values

Allowed from

Threads and timers

Preemption possible

Yes

Example
TX_THREAD my_thread;

UINT my_old_threshold;

UINT status;

/* Disable all preemption of the specified thread. The current preemption threshold
is returned in "my_old_threshold". Assume that "my_thread" has already been cre
ated. */

status = tx_thread_preemption_change(&my_thread,
0, &my_old_threshold);

/* If status equals TX_SUCCESS, the application thread is non-preemptable by
another thread. Note that ISRs are not prevented by preemption disabling. */

See also
tx_thread_create, tx_thread_delete, tx_thread_identify,

tx_thread_info_get, tx_thread_priority_change,

tx_thread_relinquish, tx_thread_resume, tx_thread_sleep,

tx_thread_suspend, tx_thread_terminate,

tx_thread_time_slice_change, tx_thread_wait_abort

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_THREAD_ERROR
(0xOE)

Invalid application thread pointer

TX_PTR_ERROR
(0x03)

Invalid pointer to previous preemption threshold
storage location

TX_THRESH_ERROR
(0x18)

Invalid preemption threshold specified

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 109

tx_thread_priority_change

Changes the priority of the specified thread. Valid priorities range from 0 through 31, where 0
represents the highest priority level.

The preemption threshold of the specified thread is automatically set to the new priority. If a new
threshold is desired, you must use tx_thread_preemption_change after this call.

Format

UINT tx_thread_priority_change (TX_THREAD *thread_ptr,

UINT new_priority, UINT *old_priority)

Arguments

Return Values

Allowed from

Threads and timers

Preemption possible

Yes

Example
TX_THREAD my_thread;

UINT my_old_priority;

UINT status;

/* Change the thread represented by "my_thread" to priority 0. */

Arguments Description

thread_ptr Pointer to the application thread

new_priority New thread priority level (0-31)

old_priority Pointer to a location to return the previous thread priority

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_THREAD_ERROR
(0xOE)

Invalid application thread pointer

TX_PTR_ERROR
(0x03)

Invalid pointer to previous preemption threshold
storage location

TX_THRESH_ERROR
(0x18)

Invalid preemption threshold specified

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 110

status = tx_thread_priority_change(&my_thread,
0, &my_old_priority);

/* If status equals TX_SUCCESS, the application thread is now at the highest priority
level in the system. */

See also
tx_thread_create, tx_thread_delete, tx_thread_identify,

tx_thread_info_get, tx_thread_preemption_change,

tx_thread_relinquish, tx_thread_resume, tx_thread_sleep,

tx_thread_suspend, tx_thread_terminate,

tx_thread_time_slice_change, tx_thread_wait_abort

tx_thread_relinquish

Relinquishes processor control to other ready-to-run threads at the same or higher priority.

Format

VOID tx_thread_relinquish(VOID)

Arguments

VOID

Return values

VOID

Allowed from

Only the executing thread

Preemption possible

Yes

Example
ULONG run_counter_1 = 0;

ULONG run_counter_2 = 0;

/* Example of two threads relinquishing control to each other in an infinite loop.
Assume that both of these threads are ready and have the same priority. The run
counters will always stay within one of each other. */

VOID my_first_thread(ULONG thread_input)

{

/* Endless loop of relinquish. */

while(1)

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 111

{

/* Increment the run counter. */

run_counter_1++;

/* Relinquish control to other thread. */

tx_thread_relinquish();

}

}

VOID my_second_thread(ULONG thread_input)

{

/* Endless loop of relinquish. */

while(1)

{

/* Increment the run counter. */

run_counter_2++;

/* Relinquish control to other thread. */

tx_thread_relinquish();

}

}

See also
tx_thread_create, tx_thread_delete, tx_thread_identify,

tx_thread_info_get, tx_thread_preemption_change,

tx_thread_priority_change, tx_thread_resume, tx_thread_sleep,

tx_thread_suspend, tx_thread_terminate,

tx_thread_time_slice_change, tx_thread_wait_abort

tx_thread_resume

Resumes or prepares for execution a thread that was previously suspended by a
tx_thread_suspend call. In addition, this service resumes threads that were created without an
automatic start.

Format

UINT tx_thread_resume(TX_THREAD *thread_ptr)

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 112

Arguments

Return value

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

Yes

Example
TX_THREAD my_thread;

UINT status;

/* Resume the thread represented by .my_thread.. */

status = x_thread_resume(&my_thread);

/* If status equals TX_SUCCESS, the application thread is now ready to execute. */

See also
tx_thread_create, tx_thread_delete, tx_thread_identify,

tx_thread_info_get, tx_thread_preemption_change,

tx_thread_priority_change, tx_thread_relinquish, tx_thread_sleep,

tx_thread_suspend, tx_thread_terminate,

tx_thread_time_slice_change, tx_thread_wait_abort

tx_thread_sleep

Causes the calling thread to suspend for the specified number of timer ticks. The physical amount
of time associated with a timer tick is application specific. This service can be called only from an
application thread.

Format

UINT tx_thread_sleep(ULONG timer_ticks)

Argument Description

thread_ptr Pointer to a suspended application thread

Return value Description

TX_SUCCESS
(0x00)

Success

TX_THREAD_ERROR
(0xOE)

Invalid application thread pointer

TX_SUSPEND_LIFTED
(0x19)

Previously set delayed suspension was lifted

TX_RESUME_ERROR
(0x12)

Specified thread is not suspended or was previously
suspended by a service other than TX_THREAD_SUSPEND

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 113

Arguments

Return Values

Allowed from

Currently executing thread

Preemption possible

Yes

Example
UINT status;

/* Make the calling thread sleep for 100 timer-ticks. */

status = tx_thread_sleep(100);

/* If status equals TX_SUCCESS, the currently running application thread slept for
the specified number of timer-ticks. */

See also
tx_thread_create, tx_thread_delete, tx_thread_identify,

tx_thread_info_get, tx_thread_preemption_change,

tx_thread_priority_change, tx_thread_relinquish, tx_thread_resume,

tx_thread_suspend, tx_thread_terminate,

tx_thread_time_slice_change, tx_thread_wait_abort

tx_thread_suspend

Suspends the specified application thread. A thread can suspend itself by calling this service.

If the specified thread is already suspended for another reason, this suspension is held internally
until the prior suspension is lifted. When that happens, this unconditional suspension of the
specified thread is performed. Further unconditional suspension requests have no effect.

Arguments Description

timer_ticks The number of ticks to suspend the calling application
thread. Values range from 1 through 0xFFFFFFFF. If you
specify 0 (zero), the service returns immediately.

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_WAIT_ABORTED
(0x1A)

Suspension was aborted by another thread, timer, or ISR

TX_CALLER_ERROR
(0x13)

Invalid caller of this service (called from a non-thread)

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 114

Once suspended, the thread must be resumed by tx_thread_resume for the thread to execute
again.

Format

UINT tx_thread_suspend(TX_THREAD *thread_ptr)

Arguments

Return Values

Allowed from

Threads and timers

Preemption possible

Yes

Example
TX_THREAD my_thread;

UINT status;

/* Suspend the thread represented by .my_thread.. */

status = tx_thread_suspend(&my_thread);

/* If status equals TX_SUCCESS, the application thread is unconditionally sus
pended. */

See also
tx_thread_create, tx_thread_delete, tx_thread_identify,

tx_thread_info_get, tx_thread_preemption_change,

tx_thread_priority_change, tx_thread_relinquish, tx_thread_resume,

tx_thread_sleep, tx_thread_terminate, tx_thread_time_slice_change,

tx_thread_wait_abort

Arguments Description

thread_ptr Pointer to the application thread

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_SUSPEND_ERROR
(0x00)

Specified thread is in a terminated or completed state

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 115

tx_thread_terminate

Terminates the specified application thread regardless if the thread is suspended or not. A thread
may call this service to terminate itself.

Once terminated, the thread must be deleted and re-created in order for it to execute again.

Format

UINT tx_thread_terminate(TX_THREAD *thread_ptr)

Arguments

Return Values

Allowed from

Threads and timers

Preemption possible

Yes

Example
TX_THREAD my_thread;

UINT status;

/* Terminate the thread represented by .my_thread.. */

status = tx_thread_terminate(&my_thread);

/* If status equals TX_SUCCESS, the thread is terminated and cannot execute again
until it is deleted and re-created. */

Arguments Description

thread_ptr Pointer to the application thread

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_THREAD_ERROR
(0x0E)

Invalid application thread pointer

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 116

See also
tx_thread_create, tx_thread_delete, tx_thread_identify,

tx_thread_info_get, tx_thread_preemption_change,

tx_thread_priority_change, tx_thread_relinquish, tx_thread_resume,

tx_thread_sleep, tx_thread_suspend, tx_thread_time_slice_change,

tx_thread_wait_abort

tx_thread_time_slice_change

Changes the time-slice of the specified application thread. Selecting a time-slice for a thread
insures that it won.t execute more than the specified number of timer ticks before the other threads
of the same or higher priorities have a chance to execute.

Format

UINT tx_thread_time_slice_change(TX_THREAD *thread_ptr,

ULONG new_time_slice, ULONG *old_time_slice)

Arguments

Return Values

Allowed from

Threads and timers

Preemption possible

No

Arguments Description

thread_ptr Pointer to the application thread

new_time_slice New time-slice value. Values include TX_NO_TIME_SLICE
and numeric values from 1 through 0xFFFFFFFF.

old_time_slice Pointer to location for storing the previous time-slice value
of the specified thread.

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_THREAD_ERROR
(0x0E)

Invalid application thread pointer

TX_PTR_ERROR
(0x03)

Invalid pointer to previous time-slice storage location

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 117

Example
TX_THREAD my_thread;

ULONG my_old_time_slice;

UINT status;

/* Change the time-slice of the thread associated with "my_thread" to 20. This will
mean that "my_thread" can only run for 20 timer-ticks consecutively before other
threads of equal or higher priority get a chance to run. */

status = tx_thread_time_slice_change(&my_thread, 20, &my_old_time_slice);

/* If status equals TX_SUCCESS, the thread.s time-slice has been changed to 20 and
the previous time-slice is in .my_old_time_slice.. */

See also
tx_thread_create, tx_thread_delete, tx_thread_identify,

tx_thread_info_get, tx_thread_preemption_change,

tx_thread_priority_change, tx_thread_relinquish, tx_thread_resume,

tx_thread_sleep, tx_thread_suspend, tx_thread_terminate,

tx_thread_wait_abort

tx_thread_wait_abort

Aborts sleep or any other object suspension of the specified thread. If the wait is aborted, a
TX_WAIT_ABORTED value is returned from the service that the thread was waiting on.

Note that this service does not release pure suspension that is made by the
tx_thread_suspend service.

Format

UIN tx_thread_wait_abort(TX_THREAD *thread_ptr)

Arguments

Arguments Description

thread_ptr Pointer to the application thread

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 118

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

Yes

Example
TX_THREAD my_thread;

UINT status;

/* Abort the suspension condition of .my_thread.. */

status = tx_thread_wait_abort(&my_thread);

/* If status equals TX_SUCCESS, the thread is now ready again, with a return value
showing its suspension was aborted (TX_WAIT_ABORTED). */

See also
tx_thread_create, tx_thread_delete, tx_thread_identify,

tx_thread_info_get, tx_thread_preemption_change,

tx_thread_priority_change, tx_thread_relinquish, tx_thread_resume,

tx_thread_sleep, tx_thread_suspend, tx_thread_terminate,

tx_thread_time_slice_change

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_THREAD_ERROR
(0x0E)

Invalid application thread pointer

TX_WAIT_ABORT_ERROR
(0x0E)

Specified thread is not in a waiting state

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 119

tx_time_get

Returns the contents of the internal system clock. Each timer-tick increases the internal system
clock by one. The system clock is set to zero during initialization and can be changed to a specific
value by tx_time_set.

The actual time each timer-tick represents is application specific.

Format

ULONG tx_time_get(VOID)

Arguments

None

Return Values

Allowed from

Threads, timers, and ISRs

Preemption possible

No

Example
ULONG current_time;

/* Pickup the current system time, in timer-ticks */

current_time = tx_time_get();

/* Current time now has copy of the internal system clock */

See also
tx_time_set

tx_time_set

Sets the internal system clock to the specified value. Each timer-tick increases the internal system
clock by one.

The actual time each timer-tick represents is application specific.

Return Values Description

system clock ticks Value of the internal, free-running system clock

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 120

Format

VOID tx_time_set(ULONG new_time)

Arguments

Return Values

None

Allowed from

Threads, timers, and ISRs

Preemption possible

No

Example
/* Set the internal system time to 0x1234 */

tx_time_set(0x1234);

/* Current time now 0x1234 until the next timer interrupt */

See also
tx_time_get

Arguments Description

new_time New time to put in the system clock. Values range from 0
through 0xFFFFFFFF.

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 121

tx_timer_activate

Activates the specified application timer. The expiration routines of timers that expire at the same
time are executed in the order they were activated. If the timer is already activated, this service has
no effect.

Format

UINT tx_timer_activate(TX_TIMER *timer_ptr)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Example
TX_TIMER my_timer;

UINT status;

/* Activate an application timer. Assume that the application timer has already been
created. */

status = tx_timer_activate(&my_timer);

/* If status equals TX_SUCCESS, the application timer is now active. */

See also
tx_timer_change, tx_timer_create, tx_timer_deactivate,

tx_timer_delete, tx_timer_info_get

Arguments Description

timer_ptr Pointer to the application timer

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_TIMER_ERROR
(0x15)

Invalid application timer pointer

TX_ACTIVATE_ERROR
(0x17)

Timer was already active

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 122

tx_timer_change

Changes the expiration characteristics of the specified application timer. The timer must be
deactivated prior to calling this service.

After calling this server, you must call tx_timer_activate to start the timer again.

Format

UINT tx_timer_change(TX_TIMER *timer_ptr,

ULONG initial_ticks, ULONG reschedule_ticks)

Arguments

Return Values

Allowed from

Threads, timers, and ISRs

Preemption possible

No

Example
TX_TIMER my_timer;

UINT status;

* Change a now deactivated timer to expire every 50 timer ticks, including the initial
expiration. */

Arguments Description

timer_ptr Pointer to a timer control block

initial_ticks The initial number of ticks for timer expiration. Values range
from 1 through 0xFFFFFFFF.

reschedule_ticks Specifies the number of ticks for all timer expirations after
the first.
Specifying 0 (zero) makes the timer a one-shot timer.
Otherwise, for periodic timers, values range from 1 through
0xFFFFFFFF.

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_TIMER_ERROR
(0x15)

Invalid application timer pointer

TX_TICK_ERROR
(0x16)

Invalid value (such as zero) specified for initial ticks

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 123

status = tx_timer_change(&my_timer,50, 50);

/* If status equals TX_SUCCESS, the specified timer is changed to expire every 50 ticks. */

/* Activate the specified timer to get it started again. */

status = tx_timer_activate(&my_timer);

See also
tx_timer_activate, tx_timer_create, tx_timer_deactivate,

tx_timer_delete, tx_timer_info_get

tx_timer_create

Creates an application timer with the specified expiration function and period.

Format

UINT tx_timer_create(TX_TIMER *timer_ptr, CHAR *name_ptr,

VOID (*expiration_function)(ULONG),

ULONG expiration_input, ULONG initial_ticks,

ULONG reschedule_ticks, UINT auto_activate)

Arguments

Arguments Description

timer_ptr Pointer to a timer control block

name_ptr Pointer to the name of the timer

expiration_function Pointer to the application function to call when the timer
expires

expiration_input Input to pass to expiration function when timer expires

initial_ticks The initial number of ticks for timer expiration. Values range
from 1 through 0xFFFFFFFF.

reschedule_ticks Specifies the number of ticks for all timer expirations after
the first.
Specifying 0 (zero) makes the timer a one-shot timer.
Otherwise, for periodic timers, values range from 1 through
0xFFFFFFFF.

auto_activate Determines if the timer is automatically activated during
creation.

 TX_AUTO_ACTIVATE (0x01)
The timer is made active.

 TX_NO_ACTIVATE (0x00)
The timer is created in a non-active state. In this case, a
subsequent tx_timer_activate call is necessary to get the timer
actually started.

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 124

Return Values

Allowed from

Initialization and threads

Preemption possible

No

Example
TX_TIMER my_timer;

UINT status;

/* Create an application timer that executes "my_timer_function" after 100 ticks ini
tially and then after every 25 ticks. This timer is specified to start immediately! */

status = tx_timer_create(&my_timer,"my_timer_name",

my_timer_function, 0x1234, 100, 25,

TX_AUTO_ACTIVATE);

/* If status equals TX_SUCCESS, my_timer_function will be called 100 timer ticks later and then called
every 25 timer ticks. Note that the value 0x1234 is passed to my_timer_function every time it is
called. */

See also
tx_timer_activate, tx_timer_change, tx_timer_deactivate,

tx_timer_delete, tx_timer_info_get

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_TIMER_ERROR
(0x15)

Invalid application timer pointer

TX_TICK_ERROR
(0x16)

Invalid value (such as zero) specified for initial ticks

TX_ACTIVATE_ERROR
(0x17)

Invalid activation selected

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 125

tx_timer_deactivate

Deactivates the specified application timer. If the timer is already deactivated, this service has no
effect.

Format

UINT tx_timer_deactivate(TX_TIMER *timer_ptr)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Example
TX_TIMER my_timer;

UINT status;

/* Deactivate an application timer. Assume that the application timer has already been created. */

status = tx_timer_deactivate(&my_timer);

/* If status equals TX_SUCCESS, the application timer is now deactivated. */

See also
tx_timer_activate, tx_timer_change, tx_timer_create,

tx_timer_delete, tx_timer_info_get

tx_timer_delete

Deletes the specified application timer.

It is the application.s responsibility to prevent use of a deleted timer.

Arguments Description

timer_ptr Pointer to the application timer

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_TIMER_ERROR
(0x15)

Invalid application timer pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 126

Format

UINT tx_timer_delete(TX_TIMER *timer_ptr)

UINT tx_timer_deactivate(TX_TIMER *timer_ptr)

Arguments

Return Values

Allowed from

Threads

Preemption possible

No

Example
TX_TIMER my_timer;

UINT status;

/* Delete application timer. Assume that the application timer has already been created. */

status = tx_timer_delete(&my_timer);

/* If status equals TX_SUCCESS, the application timer is deleted. */

See also
tx_timer_activate, tx_timer_change, tx_timer_create,

tx_timer_deactivate, tx_timer_info_get

tx_timer_info_get

Retrieves information about the specified application timer.

Format

UINT tx_timer_info_get(TX_TIMER *timer_ptr, CHAR **name,

UINT *active, ULONG *remaining_ticks,

Arguments Description

timer_ptr Pointer to the application timer

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_TIMER_ERROR
(0x15)

Invalid application timer pointer

TX_CALLER_ERROR
(0x13)

Invalid caller of this service

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 127

ULONG *reschedule_ticks, TX_TIMER **next_timer)

Arguments

Return Values

Allowed from

Initialization, threads, timers, and ISRs

Preemption possible

No

Example
TX_TIMER my_timer;

CHAR *name;

UINT active;

ULONG remaining_ticks;

ULONG reschedule_ticks;

TX_TIMER *next_timer;

UINT status;

/* Retrieve information about a the previously created application timer .my_timer..
*/

status = tx_timer_info_get(&my_timer, &name,

&active,&remaining_ticks,

Arguments Description

timer_ptr Pointer to the application timer

name Pointer to destination for the pointer to the timer.s name.

active Pointer to destination for the timer active indication. If
this value is TX_TRUE, the timer is active.

remaining_ticks Pointer to destination for the number of timer ticks left
before the timer expires

reschedule_ticks Pointer to destination for the number of timer ticks that
will be used to automatically reschedule this timer. If the
value is zero, then the timer is a one-shot and won’t
be rescheduled.

next_timer Destination for the pointer of the next created
application timer

Return Values Description

TX_SUCCESS
(0x00)

Success

TX_TIMER_ERROR
(0x15)

Invalid application timer pointer

TX_PTR_ERROR
(0x03)

Invalid pointer (NULL) for any destination pointer

N E T + O S K e r n e l S e r v i c e s

© 2010 Digi International, Inc. 128

&reschedule_ticks,

&next_timer);

/* If status equals TX_SUCCESS, the information requested is valid. */

See also
tx_timer_activate, tx_timer_change, tx_timer_create,

tx_timer_deactivate, tx_timer_delete, tx_timer_info_get

© 2010 Digi International, Inc. 129

NET+OS Kernel Design
Goals
C H A P T E R 4

This chapter describes how the design of the NET+OS kernel contributes to

its performance.

N E T + O S K e r n e l D e s i g n G o a l s

© 2010 Digi International, Inc. 130

Principal design goals

The NET+OS kernel has three principal design goals: simplicity, scalability, and high
performance. In many situations these goals are complementary - that is, simpler, smaller software
usually gives better performance.

Simplicity

Simplicity is the most important design goal of the NET+OS kernel. Simplicity makes the
NET+OS kernel very easy to use, test, and verify. In addition, it makes it easy for developers to
understand exactly what is happening inside.

Scalability

The NET+OS kernel is also designed to be very scalable. Its instruction area size ranges from 2Kb
to 15Kb, depending on the services actually used by the application. This enables the NET+OS
kernel to support a wide range of microprocessor architectures, ranging from small micro-
controllers through high performance RISC and DSP processors.

How is the NET+OS kernel so scalable? First, the NET+OS kernel is designed with a software
component methodology, which allows automatic removal of whole components that are not used.
Second, it places each function in a separate file to minimize each function.s interaction with the
rest of the system. Because the NET+OS kernel is implemented as a C library, only the functions
that are used become part of the final embedded image.

High performance

The NET+OS kernel is designed for high performance. This is achieved in a variety of ways,
including algorithm optimizations, register variables, in-line assembly language, low-overhead
timer interrupt handling, and optimized context switching. In addition, applications have the ability
(with the conditional compilation flag TX_DISABLE_ERROR_CHECKING) to disable the basic
error checking facilities of the NET+OS kernel API. This feature is very useful in the tuning phase
of application development. By disabling basic error checking, a 30 percent performance boost can
be achieved on most NET+OS kernel implementations. And, of course, the resulting code image is
also smaller!

NET+OS kernel ANSI C library

As mentioned before, the NET+OS kernel is implemented as a C library, which must be linked
with the application software. The NET+OS kernel library consists of several object files that are
derived from various C source files and processor specific
assembly language files. There are also several C include files used in the C file compilation
process. All of the C source and include files conform completely to the ANSI standard.

N E T + O S K e r n e l D e s i g n G o a l s

© 2010 Digi International, Inc. 131

Include files

NET+OS kernel applications need access to two include files: tx_api.h and tx_port.h.

The NET+OS kernel source package also contains system include files which represent the
internal component specification files.

tx_api.h file

The tx_api.h file contains all the constants, function prototypes, and object data structures. This
file is the same for all processor support packages.

The mapping of the NET+OS kernel API services to the underlying error checking or core
processing functions is done in tx_api.h.

tx_port.h file

The tx_port.h file, which is included by tx_api.h, contains processor- and development tool-
specific information, including data type assignments and interrupt management
macros used throughout the NET+OS kernel source code.
The tx_port.h file also contains the NET+OS kernel port-specific ASCII version
string, _tx_version_id.

© 2010 Digi International, Inc. 132

Programming Reference
Information
C H A P T E R 5

This chapter describes how the design of the NET+OS kernel contributes to

its performance.

P r o g r a m m i n g R e f e r e n c e I n f o r m a t i o n

© 2010 Digi International, Inc. 133

NET+OS kernel constants

Listed alphabetically

TX_1_ULONG 1
TX_2_ULONG 2
TX_4_ULONG 4
TX_8_ULONG 8
TX_16_ULONG 16

TX_ACTIVATE_ERROR 0x0017
TX_AND 2
TX_AUTO_ACTIVATE 1
TX_AND_CLEAR 3
TX_AUTO_START 1

TX_BLOCK_MEMORY 8
TX_BYTE_MEMORY 9

TX_CALLER_ERROR 0x0013
TX_COMPLETED 1

TX_DELETE_ERROR 0x0011
TX_DELETED 0x0001
TX_DONT_START 0

TX_EVENT_FLAG 7

TX_FALSE 0
TX_FILE 11

TX_FOREVER 1

TX_GROUP_ERROR 0x0006

TX_INHERIT 1
TX_INHERIT_ERROR 0x001F
TX_IO_DRIVER 10

P r o g r a m m i n g R e f e r e n c e I n f o r m a t i o n

© 2010 Digi International, Inc. 134

TX_MAX_PRIORITIES 32
TX_MUTEX_ERROR 0x001F
TX_MUTEX_SUSP 13

TX_NO_ACTIVATE 0
TX_NO_EVENTS 0x0007
TX_NO_INHERIT 0
TX_NO_INSTANCE 0x000D
TX_NO_MEMORY 0x0010
TX_NO_TIME_SLICE 0
TX_NO_WAIT 0
TX_NOT_AVAILABLE 0x001D
TX_NOT_OWNED 0x001E
TX_NULL 0

TX_OPTION_ERROR 0x0008
TX_OR 0
TX_OR_CLEAR 1

TX_POOL_ERROR 0x0002
TX_PRIORITY_ERROR 0x000F
TX_PTR_ERROR 0x0003

TX_QUEUE_EMPTY 0x000A
TX_QUEUE_ERROR 0x0009
TX_QUEUE_FULL 0x000B
TX_QUEUE_SUSP 5
TX_READY 0
TX_RESUME_ERROR 0x0012

TX_SEMAPHORE_ERROR 0x000C
TX_SEMAPHORE_SUSP 6
TX_SIZE_ERROR 0x0005
TX_SLEEP 4
TX_START_ERROR 0x0010
TX_SUCCESS 0x0000
TX_SUSPEND_ERROR 0x0014
TX_SUSPEND_LIFTED 0x0019
TX_SUSPENDED 3

P r o g r a m m i n g R e f e r e n c e I n f o r m a t i o n

© 2010 Digi International, Inc. 135

TX_TCP_IP 12
TX_TERMINATED 2
TX_THREAD_ERROR 0x000E
TX_THRESH_ERROR 0x0018
TX_TICK_ERROR 0x0016
TX_TIMER_ERROR 0x0015
TX_TRUE 1

TX_WAIT_ABORT_ERROR 0x001B
TX_WAIT_ABORTED 0x001A
TX_WAIT_ERROR 0x0004
TX_WAIT_FOREVER FFFFFF

Listed by value

TX_DONT_START 0
TX_FALSE 0
TX_NO_ACTIVATE 0
TX_NO_INHERIT 0
TX_NO_TIME_SLICE 0
TX_NO_WAIT 0
TX_NULL 0
TX_OR 0
TX_READY 0
TX_SUCCESS 0x0000
TX_1_ULONG 1
TX_AUTO_ACTIVATE 1
TX_AUTO_START 1
TX_COMPLETED 1
TX_FOREVER 1
TX_DELETED 0x0001
TX_INHERIT 1
TX_OR_CLEAR 1
TX_TRUE 1
TX_2_ULONG 2
TX_AND 2
TX_POOL_ERROR 0x0002
TX_TERMINATED 2
TX_AND_CLEAR 3
TX_PTR_ERROR 0x0003
TX_SUSPENDED 3
TX_4_ULONG 4
TX_SLEEP 4
TX_WAIT_ERROR 0x0004
TX_QUEUE_SUSP 5
TX_SIZE_ERROR 0x0005
TX_GROUP_ERROR 0x0006
TX_SEMAPHORE_SUSP 6
TX_EVENT_FLAG 7

P r o g r a m m i n g R e f e r e n c e I n f o r m a t i o n

© 2010 Digi International, Inc. 136

TX_NO_EVENTS 0x0007
TX_8_ULONG 8
TX_BLOCK_MEMORY 8
TX_OPTION_ERROR 0x0008
TX_BYTE_MEMORY 9
TX_QUEUE_ERROR 0x0009
TX_IO_DRIVER 10
TX_QUEUE_EMPTY 0x000A
TX_FILE 11
TX_QUEUE_FULL 0x000B
TX_SEMAPHORE_ERROR 0x000C
TX_TCP_IP 12
TX_MUTEX_SUSP 13
TX_NO_INSTANCE 0x000D
TX_THREAD_ERROR 0x000E
TX_PRIORITY_ERROR 0x000F
TX_16_ULONG 6
TX_START_ERROR 0x0010
TX_NO_MEMORY 0x0010
TX_DELETE_ERROR 0x0011
TX_RESUME_ERROR 0x0012
TX_CALLER_ERROR 0x0013
TX_SUSPEND_ERROR 0x0014
TX_TIMER_ERROR 0x0015
TX_TICK_ERROR 0x0016
TX_ACTIVATE_ERROR 0x0017
TX_THRESH_ERROR 0x0018
TX_SUSPEND_LIFTED 0X0019
TX_WAIT_ABORTED 0x001A
TX_WAIT_ABORT_ERROR 0x001B
TX_MUTEX_ERROR 0x001C
TX_NOT_AVAILABLE 0x001D
TX_NOT_OWNED 0x001E
TX_INHERIT_ERROR 0x001F
TX_MAX_PRIORITIES 32
TX_WAIT_FOREVER FFFFFFFF

NET+OS kernel data types

TX_INTERNAL_TIMER_STRUCT

typedef struct TX_INTERNAL_TIMER_STRUCT

{

ULONG tx_remaining_ticks;

ULONG tx_re_initialize_ticks;

VOID (*tx_timeout_function)(ULONG);

P r o g r a m m i n g R e f e r e n c e I n f o r m a t i o n

© 2010 Digi International, Inc. 137

ULONG tx_timeout_param;

struct TX_INTERNAL_TIMER_STRUCT

*tx_active_next,

*tx_active_previous;

struct TX_INTERNAL_TIMER_STRUCT **tx_list_head;

} TX_INTERNAL_TIMER;

TX_TIMER_STRUCT

typedef struct TX_TIMER_STRUCT

{

ULONG tx_timer_id;

CHAR_PTR tx_timer_name;

TX_INTERNAL_TIMER tx_timer_internal;

struct TX_TIMER_STRUCT *tx_timer_created_next,

*tx_timer_created_previous;

} TX_TIMER;

P r o g r a m m i n g R e f e r e n c e I n f o r m a t i o n

© 2010 Digi International, Inc. 138

TX_QUEUE_STRUCT

typedef struct TX_QUEUE_STRUCT

{

ULONG tx_queue_id;

CHAR_PTR tx_queue_name;

UINT tx_queue_message_size;

ULONG tx_queue_capacity;

ULONG tx_queue_enqueued;

ULONG tx_queue_available_storage;

ULONG_PTR tx_queue_start;

ULONG_PTR tx_queue_end;

ULONG_PTR tx_queue_read;

ULONG_PTR tx_queue_write;

struct TX_THREAD_STRUCT *tx_queue_suspension_list;

ULONG tx_queue_suspended_count;

struct TX_QUEUE_STRUCT

*tx_queue_created_next,

*tx_queue_created_previous;

} TX_QUEUE;

TX_THREAD_STRUCT

typedef struct TX_THREAD_STRUCT

{

ULONG tx_thread_id;

ULONG tx_run_count;

VOID_PTR tx_stack_ptr;

VOID_PTR tx_stack_start;

VOID_PTR tx_stack_end;

ULONG tx_stack_size;

ULONG tx_time_slice;

ULONG tx_new_time_slice;

struct TX_THREAD_STRUCT *tx_ready_next,

*tx_ready_previous;

TX_THREAD_PORT_EXTENSION /* See tx_port.h for details */

CHAR_PTR tx_thread_name;

UINT tx_priority;

UINT tx_state;

UINT tx_delayed_suspend;

UINT tx_suspending;

UINT tx_preempt_threshold;

ULONG tx_priority_bit;

VOID (*tx_thread_entry)(ULONG);

P r o g r a m m i n g R e f e r e n c e I n f o r m a t i o n

© 2010 Digi International, Inc. 139

ULONG tx_entry_parameter;

TX_INTERNAL_TIMER tx_thread_timer;

VOID (*tx_suspend_cleanup)

(struct TX_THREAD_STRUCT *);

VOID_PTR tx_suspend_control_block;

struct TX_THREAD_STRUCT *tx_suspended_next,

*tx_suspended_previous;

ULONG tx_suspend_info;

VOID_PTR tx_additional_suspend_info;

UINT tx_suspend_option;

UINT tx_suspend_status;

struct TX_THREAD_STRUCT *tx_created_next,

*tx_created_previous;

VOID_PTR tx_filex_ptr;

} TX_THREAD;

TX_SEMAPHORE_STRUCT

typedef struct TX_SEMAPHORE_STRUCT

{

ULONG tx_semaphore_id;

CHAR_PTR tx_semaphore_name;

ULONG tx_semaphore_count;

struct TX_THREAD_STRUCT *tx_semaphore_suspension_list;

ULONG tx_semaphore_suspended_count;

struct TX_SEMAPHORE_STRUCT *tx_semaphore_created_next,

*tx_semaphore_created_previous;

} TX_SEMAPHORE;

TX_EVENT_FLAGS_GROUP_STRUCT

typedef struct TX_EVENT_FLAGS_GROUP_STRUCT

{

ULONG tx_event_flags_id;

CHAR_PTR tx_event_flags_name;

ULONG tx_event_flags_current;

UINT tx_event_flags_reset_search;

struct TX_THREAD_STRUCT *tx_event_flags_suspension_list;

ULONG tx_event_flags_suspended_count;

struct TX_EVENT_FLAGS_GROUP_STRUCT

*tx_event_flags_created_next,

*tx_event_flags_created_previous;

P r o g r a m m i n g R e f e r e n c e I n f o r m a t i o n

© 2010 Digi International, Inc. 140

} TX_EVENT_FLAGS_GROUP;

TX_BLOCK_POOL_STRUCT

typedef struct TX_BLOCK_POOL_STRUCT

{

ULONG tx_block_pool_id;

CHAR_PTR tx_block_pool_name;

ULONG tx_block_pool_available;

ULONG tx_block_pool_total;

CHAR_PTR tx_block_pool_available_list;

CHAR_PTR tx_block_pool_start;

ULONG tx_block_pool_size;

ULONG tx_block_pool_block_size;

struct TX_THREAD_STRUCT*tx_block_pool_suspension_list;

ULONG tx_block_pool_suspended_count;

struct TX_BLOCK_POOL_STRUCT

*tx_block_pool_created_next,

*tx_block_pool_created_previous;

} TX_BLOCK_POOL;

TX_BYTE_POOL_STRUCT

typedef struct TX_BYTE_POOL_STRUCT

{

ULONG tx_byte_pool_id;

CHAR_PTR tx_byte_pool_name;

ULONG tx_byte_pool_available;

ULONG tx_byte_pool_fragments;

CHAR_PTR tx_byte_pool_list;

CHAR_PTR tx_byte_pool_search;

CHAR_PTR tx_byte_pool_start;

ULONG tx_byte_pool_size;

struct TX_THREAD_STRUCT*tx_byte_pool_owner;

struct TX_THREAD_STRUCT*tx_byte_pool_suspension_list;

ULONG tx_byte_pool_suspended_count;

struct TX_BYTE_POOL_STRUCT *tx_byte_pool_created_next,

*tx_byte_pool_created_previous;

} TX_BYTE_POOL;

P r o g r a m m i n g R e f e r e n c e I n f o r m a t i o n

© 2010 Digi International, Inc. 141

TX_MUTEX_STRUCT

typedef struct TX_MUTEX_STRUCT

{

ULONG tx_mutex_id;

CHAR_PTR tx_mutex_name;

ULONG tx_mutex_ownership_count;

TX_THREAD *tx_mutex_owner;

UINT tx_mutex_inherit;

UINT tx_mutex_original_priority;

UINT tx_mutex_original_threshold;

struct TX_THREAD_STRUCT

*tx_mutex_suspension_list;

ULONG tx_mutex_suspended_count;

struct TX_MUTEX_STRUCT

*tx_mutex_created_next,

*tx_mutex_created_previous;

} TX_MUTEX;

	Using This Guide
	About this guide
	Who should read this guide
	What’s in this guide
	Conventions used in this guide
	Related documentation
	Digi Information

	Introduction to the NET+OS Kernel Guide
	NET+OS kernel unique features
	The picokernel architecture
	ANSI C source code
	Embedded applications
	Real-time Software
	Multitasking
	Tasks vs. threads

	NET+OS kernel benefits
	Improved responsiveness
	Software maintenance
	Increased throughput
	Processor isolation
	Dividing the application
	Ease of use
	Improving time-to-market
	Protecting the software investment

	Thread execution
	Thread execution states
	Thread priorities
	Thread scheduling
	Round-robin scheduling
	Time-slicing
	Preemption
	Preemption-threshold
	Priority inheritance
	Thread creation
	Thread control block
	tx_run_count
	tx_state
	Currently executing thread
	Thread stack area
	Location of a thread stack
	Size of a thread stack
	Memory pitfalls
	Reentrancy
	Thread priority pitfalls
	Priority overhead
	Debugging pitfalls

	Message queues
	Creating message queues
	Message size
	Message queue capacity
	Queue memory area
	Thread suspension
	Queue control block
	Message destination pitfall

	Counting semaphores
	Mutual exclusion
	Event notification
	Creating counting semaphores
	Thread suspension
	Semaphore control block
	Deadly embrace
	Priority inversion

	Mutexes
	Mutex mutual exclusion
	Creating mutexes
	Thread suspension
	Mutex control block
	Deadly embrace
	Priority inversion
	Event flags
	Creating event flag groups
	Thread suspension
	Event flag group control block

	Memory block pools
	Creating memory block pools
	Memory block size
	Pool capacity
	Pool’s memory area
	Thread suspension
	Memory block pool control block
	Overwriting memory blocks

	Memory byte pools
	Creating memory byte pools
	Pool capacity
	Pool’s memory area
	Thread suspension
	Memory byte pool control block
	Un-deterministic behavior
	Overwriting memory blocks

	Application timers
	Timer intervals
	Timer accuracy
	Timer execution
	Creating application timers
	Application timer control block
	Excessive timers

	Relative time
	Interrupts
	Interrupt control
	NET+OS kernel managed interrupts
	ISR template
	High-frequency interrupts
	Interrupt latency

	the NET+OS Kernel
	Execution overview
	Initialization
	Thread execution
	Interrupt service routines (ISR)
	Application timers

	Memory usage
	Static memory usage
	Dynamic memory usage

	Initialization
	System reset
	Development tool initialization
	The main function
	The tx_kernel_enter function
	Application definition function
	Interrupts

	NET+OS Kernel Services
	Summary of NET+OS kernel API functions
	Memory block pool services
	Memory byte pool services
	Event flag services
	Interrupt control
	Message queue services
	Semaphore services
	Mutex services
	Thread control services
	Time services
	Timer services

	Return values and disabled error checking
	NET+OS kernel API functions
	tx_block_allocate
	Format
	Arguments
	Return values
	Allowed from
	Preemption possible
	tx_block_pool_create
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_block_pool_delete
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_block_pool_info_get
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_block_pool_prioritize
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_block_release
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_byte_allocate
	Format
	Arguments
	Return values
	Allowed from
	Preemption possible
	tx_byte_pool_create
	Format
	Arguments
	Return values
	Allowed from
	Preemption possible
	tx_byte_pool_delete
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_byte_pool_info_get
	Format
	Arguments
	Return values
	Allowed from
	Preemption possible
	tx_byte_pool_prioritize
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_byte_release
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_event_flags_create
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_event_flags_delete
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_event_flags_get
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_event_flags_info_get
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_event_flags_set
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_interrupt_control
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_mutex_create
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_mutex_delete
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_mutex_get
	Format
	Arguments
	Usage notes
	Return Values
	Allowed from
	Preemption possible
	tx_mutex_info_get
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_mutex_prioritize
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_mutex_put
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_queue_create
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_queue_delete
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_queue_flush
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_queue_front_send
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_queue_info_get
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_queue_prioritize
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_queue_receive
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_queue_send
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_semaphore_create
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_semaphore_delete
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_semaphore_get
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_semaphore_info_get
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_semaphore_prioritize
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_semaphore_put
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_thread_create
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_thread_delete
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_thread_identify
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_thread_info_get
	Format
	Arguments
	Return values
	Allowed from
	Preemption possible
	tx_thread_preemption_change
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_thread_priority_change
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_thread_relinquish
	Format
	Arguments
	Return values
	Allowed from
	Preemption possible
	tx_thread_resume
	Format
	Arguments
	Return value
	Allowed from
	Preemption possible
	tx_thread_sleep
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_thread_suspend
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_thread_terminate
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_thread_time_slice_change
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_thread_wait_abort
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_time_get
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_time_set
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_timer_activate
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_timer_change
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_timer_create
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_timer_deactivate
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_timer_delete
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible
	tx_timer_info_get
	Format
	Arguments
	Return Values
	Allowed from
	Preemption possible

	NET+OS Kernel Design Goals
	Principal design goals
	Simplicity
	Scalability
	High performance

	NET+OS kernel ANSI C library
	Include files
	tx_api.h file
	tx_port.h file

	NET+OS kernel constants
	Listed alphabetically
	Listed by value

	NET+OS kernel data types
	TX_INTERNAL_TIMER_STRUCT
	TX_TIMER_STRUCT
	TX_QUEUE_STRUCT
	TX_THREAD_STRUCT
	TX_SEMAPHORE_STRUCT
	TX_EVENT_FLAGS_GROUP_STRUCT
	TX_BLOCK_POOL_STRUCT
	TX_BYTE_POOL_STRUCT
	TX_MUTEX_STRUCT

	Programming Reference Information

