
TN217

Binary and Source Compatibility Issues 
for 4K Flash Sector Sizes

This technical note summarizes compatibility issues that could arise from a change in flash sector size to 
4K from the smaller sector sizes currently used on single-board computers based on the Rabbit 2000 
microprocessor. This technical note supplements an advisory notice that was sent out to existing customers 
of Rabbit Semiconductor.

The information in this technical note is primarily of interest to customers who are programming new units 
with precompiled programs that were compiled with versions of Dynamic C older than 7.20 using 
EPROM burners or “cloning” if their applications write to flash at run-time. This also applies to any cus-
tomers who are using the Rabbit Field Utility (RFU) or Dynamic C to load such programs to production 
units. 

Details on Compatibility Issues

Definitions

binary code—the compiled application stored in a file or in the flash of a target board.

binary-code-compatible—the same binary code will run on different devices when transferred there 
via EPROM burner, “cloning,” or other means.

Recompilation Scenarios
1. Your application does not write to flash.

No problems. Binary compatibility will be retained.

2.  Your application writes to flash and was created with a version of Dynamic C earlier than 6.5x.

The application is not binary-code-compatible with the 4K sector flash and should be recompiled with the latest 
version of Dynamic C. Some source code changes may be required where APIs have changed. In particular, sev-
eral TCP/IP API changes were introduced in version 7.05. These differences are documented in the Dynamic C 
TCP/IP User's Manual.

3.  Your application writes to flash and was created with a version of Dynamic C earlier than 7.20 but later 
than 6.5x.

With the exception of Dynamic C version 6.57, the application is binary-code-compatible with the 4K sector 
flash, but the flash writing performance will be slower unless the code is recompiled using the latest version of 
Dynamic C. Applications written with version 6.57 that write to flash should be recompiled for 4K sector flash.
022-0065 Rev. C www.rabbit.com 1

http://www.rabbit.com


Writing to flash at run time, downloading, and debugging (especially downloading) will all be slow unless 
you upgrade to Dynamic C 7.20 or later. Some source code changes may be required where APIs have 
changed. In particular, several TCP/IP API changes were introduced in version 7.05. These differences are 
documented in the Dynamic C TCP/IP User's Manual.

Applications that depend on interrupts may have problems if not recompiled with version 7.20 or later 
because interrupts are turned off while flash is being written, and they will be turned off for a longer period 
of time with a 4K sector flash. If you recompile your application be sure to test it thoroughly.

Tip—Store Persistent Data to the User Block
The new Dynamic C and flash drivers will always erase the primary flash on a board before loading a pro-
gram. This erasure does not include the System ID block and the User block areas. Do not expect informa-
tion in the primary flash to be retained between compiles except in those areas. The 
writeUserBlock() function is provided to store persistent data in the User block area. Secondary 
flash chips will not be erased unless the program extends into them. The secondary flash will also be 
erased if the program extends into the second flash. If the flash file system is used on the second flash, pro-
gram code cannot be put there, so the files will remain intact.

It is best to use the function writeUserBlock() to write to arbitrary addresses in the primary flash in 
your application. Writes to arbitrary flash addresses on a 4K sector size flash using the WriteFlash() 
library function are supported with any Dynamic C version that has the drivers to support 4K flash sectors. 
However, should a flash sector size larger than 4K be incorporated in the future, the WriteFlash() 
function will not be backwards-compatible, but the writeUserBlock() function will be. 
writeUserBlock() uses a relative offset address into a reserved region of flash that is doubled-buff-
ered in order to avoid excess RAM usage when writing very large sectors. Technical Note 216, Is Your 
Application Ready for Large Sector Flash?, contains more details about flash-writing issues for flash-sec-
tor sizes larger than 4K.
2 www.rabbit.com TN217

http://www.rabbit.com

	Details on Compatibility Issues
	Definitions
	Recompilation Scenarios
	Tip—Store Persistent Data to the User Block


