

Enabling SNMPv3 Security Features in
NET+OS V7.X

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 2/40 V1.6

1 Document History
Date Initials Change Description

7/17/08 JZW Initial Entry
7/18/08 JZW Fill in chapters
7/21/08 JZW Enter typo comments
7/21/08 JZW Continue initial entry
7/23/08 JZW Personal review and edit session
7/23/08 JZW Add table of contents
7/28/08 JZW Add in community v1/v2c backward compat info
8/13/08 JZW Roll in RM Comments

2 Table of Contents
1 Document History ... 2
2 Table of Contents .. 2
3 Introduction ... 4

3.1 Problem Solved ... 4
3.2 Audience ... 4
3.3 Assumptions .. 4
3.4 Scope ... 5
3.5 Theory of Operation .. 5
3.6 Conventions .. 6

4 SNMPv3 Security Structures in NET+OS V7.x ... 6
4.1 Introduction ... 6
4.2 Caveats, placement of API calls ... 6
4.3 User (USM) Structure ... 6
4.4 Security to Group Structure .. 6

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 3/40 V1.6

4.5 Access Structure.. 7
4.6 View tree Structure ... 7
4.7 Community Structure .. 8

5 SNMPv3 Security Structure-related APIs .. 8
5.1 Introduction ... 8
5.2 User with authentication and encryption .. 8

5.2.1 Introduction ... 8
5.2.2 Data structures .. 9
5.2.3 API calls .. 11

5.3 User with authentication only ... 11
5.3.1 Introduction ... 11
5.3.2 Data structures .. 11
5.3.3 API calls .. 14

5.4 User with neither authentication no encryption (open) 14
5.4.1 Introduction ... 14
5.4.2 Data Structures .. 14
5.4.3 APi Calls ... 17

5.5 User with neither authentication nor encryption but restricted view 17
5.5.1 Introduction ... 17
5.5.2 Data Structures .. 17
5.5.3 API Calls ... 21

6 V1/V2c Community Compatibility .. 21
6.1 Introduction ... 21
6.2 V1 community with read only .. 22

6.2.1 Introduction ... 22
6.2.2 Data Structures .. 22
6.2.3 API Calls ... 24

6.3 V1 community with read and write .. 25
6.3.1 Introduction ... 25
6.3.2 Data Structures .. 25
6.3.3 API Calls ... 28

6.4 V2 community with read only .. 28
6.4.1 Introduction ... 28
6.4.2 Data Structures .. 28
6.4.3 API Calls ... 32

6.5 V2 community with read and write .. 32
6.5.1 Introduction ... 32
6.5.2 Data Structures .. 32
6.5.3 API Calls ... 36

6.6 V1 community with read only and restricted view ... 36
6.6.1 Introduction ... 36
6.6.2 Data Structures .. 36
6.6.3 API Calls ... 39

7 Conclusion .. 40

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 4/40 V1.6

3 Introduction
SNMPV3 added security features to the already existing SNMPv1 and SNMPv2c.
Security, in this case, can be broken down in to the following three components,
authentication, privacy and viewport. This white paper discusses, methods and structures
that NET+OS uses for implementing these features in NET+OS’s V7.x SNMP
implementation.

Authentication deals with ensuring that the user who is viewing an agents MIBs is
allowed to access that MIB. It even ensures that the user is authorized to access this agent.
Users who are not so authorized, should be denied access to those MIBS.

Privacy deals with ensuring that no third party can view the data passed (over the
internet) between the management software/user and the agent. Privacy is usually
implemented through encryption.

Lastly, what I am calling viewport, is the ability of the agent to restrict the breadth of the
MIB(s) to which the user has access. This is differentiated from authentication as follows:
The user may have access to the agent but only be able to view MIB2 or his company’s
private MIB, instead of the entire MIB.

3.1 Problem Solved
The methods and structures used in SNMPv3 for implementing security features have a
wide berth and are highly flexible. Unfortunately, in flexibility comes complexity.
SNMPv3 is no exception to this. For example, there are 5 RFCs that are needed to
explain SNMPv3. Additionally, these do not talk about SNMP’s data access, only the
security features added in SNMPv3. William Stalling’s book (which I believe is a great
introduction to this topic) SNMP, SNMPv2, SNMPv3 and RMON1 & 2 book takes 121
pages to explain SNMPv3. So to even get the basic concepts down, there is a lot of
reading to do.

What this white paper hopes to do is boil all this down into some explanations on how to
get basic SNMPv3 features working, in a NET+OS environment. This includes setting up
users, groups, viewports, authentication and privacy. This white paper will also explain
added backward compatibility, thus allowing your SNMPv1 and V2 users to continue
interacting with your device even though you have upgraded it to SNMPv3.

3.2 Audience
This white paper is written in a technical manner and is intended for a technical audience.
This is intended for software engineers and other software practitioners that intend to take
advantage of NET+OS’s SNMPv3 feature set in their applications.

3.3 Assumptions
This white paper assumes that the reader is familiar with the following technologies:

• Digi’s NET+OS development environment (V7.0 & above)
o Green Hills IDE development environment

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 5/40 V1.6

o GNU development environment
 ESP IDE development environment
 Command line interface development environment

• TCP/IP networking
• SNMP (V1/V2c)
• NET+OS API reference guide
• Digi ARM-based chips, development boards and modules
• Developing applications using some combination of the above

Further, if you want to practice the use of the information used in this document we
recommend starting with the snmpv3 sample application. Take that application and added
structures and API calls as outlined in this document. We would recommend that you
read though this document before attempting to make updates to the application. Build
the application, down load it into your device, configure your favorite MIB browser and
test out your updates.

3.4 Scope
The intention of this white paper is quite narrow, compared to what Digi’s NET+OS
development environment offers. This white paper’s focus is adding SNMPv3 security
features to NET+OS applications running with SNMPv3.

This paper does not address any of the following topics:

• Developing applications under any of Digi International’s NET+OS development
environments

• TCP/IP networking
• C programming
• Debugging applications
• Writing, compiling, debugging or including SNMP MIBS
• Writing stub functions for SNMP MIBs
• Porting NET+OS V6.x (V5.x, V4.x…) SNMP-related applications to NET+OS

V7.x
• Using any SNMP-related management software

3.5 Theory of Operation
There are five main structures that define SNMP v3 security in NET+OS. Four of them
deal with security in general. The fifth deals with associating an existing user with an
SNMPv1 or SNMPv2c community name, thus providing backward compatibility. The
security-related structures will be explained. Then the APIs that allow the developer to
insert entries into those structures will be explained. In a separate section, this paper
explains the structure used in implementing SNMPv1 and SNMPv2c compatibility. This
paper will also demonstrate a number of examples of the structures and API calls
required to set up users in different configurations.

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 6/40 V1.6

3.6 Conventions

4 SNMPv3 Security Structures in NET+OS V7.x

4.1 Introduction
There are five basic structures that define a security environment in NET+OS’s snmp
implementation. This section describes these data structures. The following section,
describing APIs, will talk about putting structure entries and APIs together to form a user
access definitions. I will use examples from the example application (snmpv3) to
illustrate structure contents.

4.2 Caveats, placement of API calls
The (NET+OS) treck TCP/IP stack, sets up an initial SNMPv3 security environment,
prior to control being given to applicationStart(). The presumption is that to enable
SNMP, somewhere after applicationStart, naSnmpStart() will be called. If you set up
additional entries, by using the APIs and data structures described below PRIOR to
calling naSnmpStart(), the treck initial SNMP environment, relating to that API and entry
type, will be lost. This may be what you want, as you might want FULL control of all
users, groups, vtfs et al. In addition, this could disable/delete the public/private
(SNMPv1/2c) community names set up in the initial treck environment. If, on the other
hand you want to retain the treck-related SNMP initial SNMP environment settings, you
must call the API calls described below AFTER calling naSnmpStart().

4.3 User (USM) Structure
This defines user names. The entry data structure is defined by the following type:
NaSnmpUsmEntry_t. Along with the user name, a number of other fields need to be set.

The following table contains the fields that are most important:
Field Name Function
Name This will be the users name
SecurityName This is generally set to the same as the Name field
authProtocol Defines the authentication protocol.
privProtocol Defines the privacy protocol

Generally the name field and the securityName field are set to the same string. This is the
name that the MIB browser will use to gain access to the agent. The authProtocol can be
set to either “none” or HMAC-MD5. privProtocol is the privacy protocol used to encrypt
data. privProtocol can be set to either “none” or CDC-DES. Please see the API reference
for the actual values used in these fields.

4.4 Security to Group Structure
This structure establishes a link between users and groups. The entry data structure is
defined by the following data structure: NaSnmnpVacmSecuritytoGroupEntry_t. The

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 7/40 V1.6

system uses the user name to get to the correct entry in this structure. Using the group and
the security model (v1, v2c, v3), from this entry, the system can then gain access to the
user’s access rights.

The following table contains the fields that are most important:
Name Function
Security model V1, V2c, V3
SecurityName Users name
groupName The group name associated with this user and securityModel

Please refer to the API reference guide for additional details on this subject.

4.5 Access Structure
A combination of group name, context prefix, security model and security level are used
to access an entry in this field. The result are accesses to view tree (I called them
viewports) entries. View tree entries define the length and breadth of access to portions
(or all) of a MIB. If your user successfully logs into the agent but your MIB view is
empty, ensure that you called the APIs that add these structures to the system. Also
ensure that the correct MIB view trees are referenced in these structures. Last ensure that
the view trees are defined (exist).

The following table contains the fields that are most important:
Name Function
Security model V1, v2c, v3
Read view Depth and breadth of the MIB from which I can read
Write view Depth and breadth of the MIB to which I can write
Notify view Depth and breadth of the MIB for which I can send traps

4.6 View tree Structure
The view tree table defines the length and breadth of an OID to which the user has access.
References to these are included in an access structure for defining the read, write and
notification access. If your user successfully logs into the agent but you can not access
either the entire MIB or a portion that is important to you, check to ensure that these
structures are correct.

The following are the most important fields of this structure:

Subtree The OID or part of OID to which you want access
Mask Combined with the subtree to define access. See the explanation of mask

below.
View tree
type

Will this subtree be included or excluded from view by the user

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 8/40 V1.6

Tree type Included or excluded

The mask field needs a further explanation, thus I quote from Appendix 17A of Stallings
book SNMP, SNMPv2, SNMPv3 and RMON I and II: “If the mask bit is 1, the sub
identifier is used; If the bit is 0, then the corresponding sub identifier is treated as a
‘wildcard’ in which any value may appear.”

4.7 Community Structure
This table makes backward compatibility to V1 and V2c community names. Please see
the section entitled V1/V2c community Compatibility for information about this.

Community index Must be unique. Generally a string. Will be used as an index into

this table
Community name The name of the community. “public” and “private” are the most

common but any other valid string is acceptable
Community
security name

The V1 or V2 user name that the agent will reference when a
community string is used in accessing the agent

5 SNMPv3 Security Structure-related APIs

5.1 Introduction
In this section, the question “how do I put the structures and APIs together to set up
particular user configurations?”, is explored and hopefully provides you with answers.
This section deals exclusively with SNMPv3 users. In the section entitled V1/V2
Community Compatibility, setting up communities in V1 and V2c is explained. I will
use structures and code from the NET+OS sample application nasnmpv3 to demonstrate
what is required. In the structure definitions, I am including the “bare” strings, in fields
where strings are used. In your use, I would expect (as is done in example application
nasnmpv3) to use manifest constants, such as
#define DIGI_USER “digi_user”. I use “bare” strings here to ensure clarity.

Please note the following: Across these examples certain entries are inserted more than
once. In reality, for example, allMibs needs to be inserted only once. For documentation
purposes and to allow each example to stand alone, I repeat the entry insert API calls.

5.2 User with authentication and encryption

5.2.1 Introduction

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 9/40 V1.6

The following set of structure initializers might be used to set up a user, with full access
to the set of MIBs. In addition, this user will be authenticated and all communications are
encrypted.

5.2.2 Data structures

NaSnmpUsmEntry_t secureUser =
{
 “secure_user_auth_and_priv”,
 (sizeof “secure_user_auth_and_priv”) - 1,
 “secure_user_auth_and_priv”,
 (sizeof “secure_user_auth_and_priv”) - 1,
 {1,3,6,1,4,1,115,0},
 8,
 NA_SNMP_HMACMD5_AUTH_PROTOCOL,
 “the_auth_password”,
 (sizeof “the_auth_password”) - 1,
 "",
 0,
 NA_SNMP_DES_PRIV_PROTOCOL,
 “the_privacy_password”,
 (sizeof “the_privacy_password”) - 1,
 "",
 0,
 “public”,
 (sizeof “public”) - 1,
 NA_SNMP_PERMANENT,
 NA_SNMP_ROW_STATUS_ACTIVE
};

For simplicity, user name and secure user name are the same string. We are using HMAC
for authentication and DES for encryption. Both will need passwords. Further we have
chosen not to utilize keys along with the passwords for authentication and encryption.
This is clearly a decision that the implementer makes.

We now need to define a group. This will be used later. This defines access and can be
shared by multiple users, if needed.

NaSnmpVacmAccessEntry_t accessForAuth_and_priv_User =
{
 “auth_and_priv_group”,
 (sizeof “auth_and_priv_group”) - 1,
 "",
 0,
 NA_SNMP_VACM_SECURITY_MODEL_USM,

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 10/40 V1.6

 NA_SNMP_VACM_SECURITY_LEVEL_AUTH_PRIV,
 NA_SNMP_VACM_ACCESS_CONTEXT_MATCH_EXACT,
 “allMib”,
 (sizeof “allMib”) - 1,
 “allMib”,
 (sizeof “allMib”) - 1,
 “allMib”,
 (sizeof “allMib”) - 1,
 NA_SNMP_PERMANENT
};

NA_SNMP_VACM_SECURITY_MODEL_USM means that this is defined using the
snmpV3 security model. We’ll use v1 and v2 later. Do not worry about the string “allMib,
right now. We will address it later. Take it as this user has access to the entire MIB. Also
you’ll notice three initializers using the view “allMib”. The first defines read access. The
second defines write access and the third defines notification access.

NaSnmpVacmViewTreeFamilyEntry_t theAllMibVTF =
{
 "allMib",
 (sizeof "allMib") - 1,
 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_INCLUDED,
 NA_SNMP_PERMANENT
};

This is the definition of allMib as referenced above. It gives full and unbridled access to
the entire MIB. Clearly this is only for an authenticated user or a user with read rights
only. NA_SNMP_VACM_INCLUDED states that the entire OID presented in the
structure is included in what the user can access.

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 11/40 V1.6

 NaSnmpVacmSecurityToGroupEntry_t s2gForSecureUser =
{
 NA_SNMP_VACM_SECURITY_MODEL_USM,
 “secure_user_auth_and_priv”,
 (sizeof “secure_user_auth_and_priv”) - 1,
 “auth_and_priv_group”,
 (sizeof “auth_and_priv_group”) - 1,
 NA_SNMP_PERMANENT
};

This structure links the user to the group.
NA_SNMP_VACM_SECURITY_MODEL_USM states that this is an SNMP v3 security
model. So when this entry is inserted, user “secure_user_auth_and_priv” will be
associated with group “auth_and_priv_group”.

5.2.3 API calls
The following API calls using the data structures mentioned above, would be used to set
up this user environment.

naSnmpInsertUserEntry(&secureUser);
naSnmpInsertS2GEntry(&s2gForSecureUser);
naSnmpInsertVacmAccessEntry(&accessForAuth_and_priv_User);
naSnmpInsertVtfEntry(&theAllMibVTF);

5.3 User with authentication only

5.3.1 Introduction
In this example, the user is authenticated by the communications are not encrypted. As in
the last example, the user has full access to the MIB.

5.3.2 Data structures

NaSnmpUsmEntry_t secureUserAuthOnly =
{
 “secure_user_auth_only”,
 (sizeof “secure_user_auth_only”) - 1,
 secure_”user_auth_only”,
 (sizeof “secure_user_auth_only”) - 1,
 {1,3,6,1,4,1,115,0},
 8,
 NA_SNMP_HMACMD5_AUTH_PROTOCOL,
 “the_auth_password”,

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 12/40 V1.6

 (sizeof “the_auth_password”) - 1,
 "",
 0,
 NA_SNMP_NO_PRIV_PROTOCOL,
 “”,
 0,
 "",
 0,
 “public”,
 (sizeof “public”) - 1,
 NA_SNMP_PERMANENT,
 NA_SNMP_ROW_STATUS_ACTIVE
};

For simplicity, user name and secure user name are the same string. We are using HMAC
for authentication. Also you will notice that no encryption is used and thus no encryption
password is required or included. Further we have chosen not to utilize keys along with
the passwords for authentication and encryption. This is clearly a decision that the
implementer makes.

We now need to define a group. This will be used later. This defines access and can be
shared by multiple users, if needed.

NaSnmpVacmAccessEntry_t accessForAuthOnly =
{
 “auth_only_group”,
 (sizeof “auth_only_group”) - 1,
 "",
 0,
 NA_SNMP_VACM_SECURITY_MODEL_USM,
 NA_SNMP_VACM_SECURITY_LEVEL_AUTH_NO_PRIV,
 NA_SNMP_VACM_ACCESS_CONTEXT_MATCH_EXACT,
 “allMib”,
 (sizeof “allMib”) - 1,
 “allMib”,
 (sizeof “allMib”) - 1,
 “allMib”,
 (sizeof “allMib”) - 1,
 NA_SNMP_PERMANENT
};

NA_SNMP_VACM_SECURITY_MODEL_USM means that this is defined using the
snmpV3 security model. We’ll use v1 and v2 later. Do not worry about the string “allMib,
right now. We will address it later. Take it as this user has access to the entire MIB.
You’ll also notice three initilizers that contain the view “allMib”. The first refers to read
access. The second to write access and the third to notification access.

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 13/40 V1.6

NaSnmpVacmViewTreeFamilyEntry_t theAllMibVTF =
{
 "allMib",
 (sizeof "allMib") - 1,
 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_INCLUDED,
 NA_SNMP_PERMANENT
};

This is the definition of allMib as referenced above. It gives full and unbridled access to
the entire MIB. Clearly this is only for an authenticated user or a user with read rights
only. NA_SNMP_VACM_INCLUDED states that the entire OID presented in the
structure is included in what the user can access.

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 14/40 V1.6

 NaSnmpVacmSecurityToGroupEntry_t s2gForSecureUserAuthOnly =
{
 NA_SNMP_VACM_SECURITY_MODEL_USM,
 “secure_user_auth_only”,
 (sizeof “secure_user_auth_only”) - 1,
 “auth_only_group”,
 (sizeof “auth_only_group”) - 1,
 NA_SNMP_PERMANENT
};

This structure links the user to the group.
NA_SNMP_VACM_SECURITY_MODEL_USM states that this is an snmp v3 security
model. So when this entry is inserted, user “secure_user_auth_only” will be associated
with group “auth_only_group”.

5.3.3 API calls
The following API calls using the data structures mentioned above, would be used to set
up this user environment.

naSnmpInsertUserEntry(&secureUserAuthOnly);
naSnmpInsertS2GEntry(&s2gForSecureUserAuthOnly);
naSnmpInsertVacmAccessEntry(&accessForAuthOnly);
naSnmpInsertVtfEntry(&theAllMibVTF);

5.4 User with neither authentication no encryption (open)

5.4.1 Introduction

In this example, the user is not authenticated and any data moved between agent and
management software is not encrypted. As in the last example, the user has full access to
the MIB.

5.4.2 Data Structures

NaSnmpUsmEntry_t insecureUser =
{
 “insecure_user”,
 (sizeof “insecure_user”) - 1,
 “insecure_user”,
 (sizeof “insecure_user”) - 1,
 {1,3,6,1,4,1,115,0},
 8,

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 15/40 V1.6

 NA_SNMP_NO_AUTH_PROTOCOL,
 “”,
 0,
 "",
 0,
 NA_SNMP_NO_PRIV_PROTOCOL,
 “”,
 0,
 "",
 0,
 “public”,
 (sizeof “public”) - 1,
 NA_SNMP_PERMANENT,
 NA_SNMP_ROW_STATUS_ACTIVE
};

For simplicity, user name and secure user name are the same string. We are employing
NO authentication protocol. Also you will notice that no encryption is used and thus no
encryption password is required or included. Further we have chosen not to utilize keys
along with the passwords for authentication and encryption. This is clearly a decision that
the implementer makes.

We now need to define a group. This will be used later. This defines access and can be
shared by multiple users, if needed.

NaSnmpVacmAccessEntry_t accessForOpen =
{
 “open_group”,
 (sizeof “open_group”) - 1,
 "",
 0,
 NA_SNMP_VACM_SECURITY_MODEL_USM,
 NA_SNMP_VACM_SECURITY_LEVEL_NO_AUTH_NO_PRIV,
 NA_SNMP_VACM_ACCESS_CONTEXT_MATCH_EXACT,
 “allMib”,
 (sizeof “allMib”) - 1,
 “allMib”,
 (sizeof “allMib”) - 1,
 “allMib”,
 (sizeof “allMib”) - 1,
 NA_SNMP_PERMANENT
};

NA_SNMP_VACM_SECURITY_MODEL_USM means that this is defined using the
snmpV3 security model. We’ll use v1 and v2 later. Do not worry about the string “allMib,
right now. We will address it later. Take it as this user has access to the entire MIB.

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 16/40 V1.6

You’ll also notice three initilizers that contain the view “allMib”. The first refers to read
access. The second to write access and the third to notification access. Also notice that
NA_SNMP_VACM_SECURITY_LEVEL_NO_AUTH_NO_PRIV is used. This means
that this group represents users with neither authentication needs nor encryptions needs.

NaSnmpVacmViewTreeFamilyEntry_t theAllMibVTF =
{
 "allMib",
 (sizeof "allMib") - 1,
 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_INCLUDED,
 NA_SNMP_PERMANENT
};

This is the definition of allMib as referenced above. It gives full and unbridled access to
the entire MIB. Clearly this is only for an authenticated user or a user with read rights
only. NA_SNMP_VACM_INCLUDED states that the entire OID presented in the
structure is included in what the user can access.

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 17/40 V1.6

 NaSnmpVacmSecurityToGroupEntry_t s2gForInSecureUser =
{
 NA_SNMP_VACM_SECURITY_MODEL_USM,
 “insecureUser”,
 (sizeof “insecureUser”) - 1,
 “open_group”,
 (sizeof “open_group”) - 1,
 NA_SNMP_PERMANENT
};

This structure links the user to the group.
NA_SNMP_VACM_SECURITY_MODEL_USM states that this is an snmp v3 security
model. So when this entry is inserted, user “insecureUser” will be associated with group
“open_group”.

5.4.3 APi Calls
The following API calls using the data structures mentioned above, would be used to set
up this user environment.

naSnmpInsertUserEntry(&insecureUser);
naSnmpInsertS2GEntry(&s2gForInSecureUser);
naSnmpInsertVacmAccessEntry(&accessForOpen);
naSnmpInsertVtfEntry(&theAllMibVTF);

5.5 User with neither authentication nor encryption but
restricted view

5.5.1 Introduction

In this example, the user is not authenticated and any data moved between agent and
management software is not encrypted. But, as opposed to prior users, this user will have
very limited read access and no write access to the MIB.

5.5.2 Data Structures

NaSnmpUsmEntry_t insecureUserRestrictAccess =
{
 “insecure_user_restrict_access”,
 (sizeof “insecure_user_restrict_access”) - 1,
 “insecure_user_restrict_access”,

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 18/40 V1.6

 (sizeof “insecure_user_restrict_access”) - 1,
 {1,3,6,1,4,1,115,0},
 8,
 NA_SNMP_NO_AUTH_PROTOCOL,
 “”,
 0,
 "",
 0,
 NA_SNMP_NO_PRIV_PROTOCOL,
 “”,
 0,
 "",
 0,
 “public”,
 (sizeof “public”) - 1,
 NA_SNMP_PERMANENT,
 NA_SNMP_ROW_STATUS_ACTIVE
};

For simplicity, user name and secure user name are the same string. We are employing
NO authentication protocol. Also you will notice that no encryption is used and thus no
encryption password is required or included. Further we have chosen not to utilize keys
along with the passwords for authentication and encryption. This is clearly a decision that
the implementer makes.

We now need to define a group. This will be used later. This defines access and can be
shared by multiple users, if needed.

NaSnmpVacmAccessEntry_t accessForOpen_with_restrict =
{
 “open_group_with_restrict”,
 (sizeof “open_group_with_restrict”) - 1,
 "",
 0,
 NA_SNMP_VACM_SECURITY_MODEL_USM,
 NA_SNMP_VACM_SECURITY_LEVEL_NO_AUTH_NO_PRIV,
 NA_SNMP_VACM_ACCESS_CONTEXT_MATCH_EXACT,
 “myMib”,
 (sizeof “myMib”) - 1,
 “none”,
 (sizeof “none”) - 1,
 “allMib”,
 (sizeof “allMib”) - 1,
 NA_SNMP_PERMANENT
};

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 19/40 V1.6

NA_SNMP_VACM_SECURITY_MODEL_USM means that this is defined using the
snmpV3 security model. We’ll use v1 and v2 later. Do not worry about the string
“myMib, right now. We will address it later. Take it as this user has access to a very
limited viewport into the MIB. You’ll also notice three initializers containing “myMib,
“none” and allMib, respectively. The first refers to read access. The second to write
access and the third to notification access. Thus, this user has no write access. Also notice
that NA_SNMP_VACM_SECURITY_LEVEL_NO_AUTH_NO_PRIV is used. This
means that this group represents users with neither authentication needs nor encryptions
needs.

NaSnmpVacmViewTreeFamilyEntry_t theAllMibVTF =
{
 "allMib",
 (sizeof "allMib") - 1,
 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_INCLUDED,
 NA_SNMP_PERMANENT
};

This is the definition of allMib as referenced above. It gives full and unbridled access to
the entire MIB. Clearly this is only for an authenticated user or a user with read rights
only. NA_SNMP_VACM_INCLUDED states that the entire OID presented in the
structure is included in what the user can access. For this user, this is applied to notify
access only.

NaSnmpVacmViewTreeFamilyEntry_t theNoneVTF =
{
 "none",
 (sizeof "allMib") - 1,
 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_EXCLUDED,
 NA_SNMP_PERMANENT
};

This is the definition of the vtf “none” You will notice that it looks strikingly like
allMib’s definition. The difference being that allMib uses
NA_SNMP_VACM_INCLUDED, while “none” uses NA_SNMP_VACM_EXCLUDED.
Thus for allMib the entire is included in the view. In “none” the entire MIB is excluded
from the view. This user has NO write access.

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 20/40 V1.6

NaSnmpVacmViewTreeFamilyEntry_t theMyMibVTF =
{
 "myMib",
 (sizeof "myMib") - 1,
 {1,3,6,1,4,1,905,0},
 8,
 {0xFE},
 1,
 NA_SNMP_VACM_INCLUDED,
 NA_SNMP_PERMANENT
};

There are a couple of things to notice here. First, There is more than just 1 contained in
the allowed OID. So we are selecting a particular part of the MIB to make part of our
viewport. Second the {0xFE} is new. This tells the software to use the first 7 digits in the
OID in the definition of the viewports. In essence, {0xFE} is ANDed with the OID to
come up with the portion of the MIB to which this user has access. Also the use of
NA_SNMP_VACM_INCLUDED says that we have access to this portion of the MIB to
the exclusion of all other parts. Thus, this user has read access to a very limited portion of
the MIB.

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 21/40 V1.6

 NaSnmpVacmSecurityToGroupEntry_t s2gForInSecureUserRestricted =
{
 NA_SNMP_VACM_SECURITY_MODEL_USM,
 “insecure_user_restrict_access”,
 (sizeof “insecure_user_restrict_access”) - 1,
 “open_group_with_restrict”,
 (sizeof “open_group_with_restrict”) - 1,
 NA_SNMP_PERMANENT
};

This structure links the user to the group.
NA_SNMP_VACM_SECURITY_MODEL_USM states that this is an snmp v3 security
model. So when this entry is inserted, user “insecure_user_restrict_access” will be
associated with group “open_group_with_restrict”.

5.5.3 API Calls
The following API calls using the data structures mentioned above, would be used to set
up this user environment.

naSnmpInsertUserEntry(&insecureUserRestrictAccess);
naSnmpInsertS2GEntry(&s2gForInSecureUserRestricted);
naSnmpInsertVacmAccessEntry(&accessForOpen_with_restrict);
naSnmpInsertVtfEntry(&theMyMibVTF);
naSnmpInsertVtfEntry(&theNoneVTF);
naSnmpInsertVtfEntry(&theAllMibVTF);

6 V1/V2c Community Compatibility

6.1 Introduction
This section discusses using the community names public and private in V1 and V2c
mode. It also discusses setting up your own community names. These allow backward
compatibility to V1 and V2c users.

Community names work a little different then regular (v3) names. For v1 and v2c
community names, there must be a user name, access and s2g set of structures set up.
Then in the community entry, the community name is associated with the user name.
Once this is done, the community name can access the agent. Its access rights will be the
same as those of the associated user name.

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 22/40 V1.6

6.2 V1 community with read only

6.2.1 Introduction
This user will have open read access but no write access. There will be a community
name created and that community name can read access the agent though this user. We
will go through all the steps that were performed for previous users but there will be an
additional one, namely adding a community entry.

6.2.2 Data Structures

The following structure sets up a user named digiV1Community. The user uses no
authentication and no encryption.

NaSnmpUsmEntry_t digiNoAuthNoEnc =
{
 “digiV1Open”,
 (sizeof “digiV1Open”) - 1,
 “digiV1Open”,
 (sizeof “digiV1Open”) - 1,
 {1,3,6,1,4,1,115,0},
 8,
 NA_SNMP_NO_AUTH_PROTOCOL,
 "",
 0,
 "",
 0,
 NA_SNMP_NO_PRIV_PROTOCOL,
 "",
 0,
 "",
 0,
 ““public””,
 (sizeof ““public””) - 1,
 NA_SNMP_PERMANENT,
 NA_SNMP_ROW_STATUS_ACTIVE
};

digiVTF_seeAllMib is set up to give this user access to the entire MIB. This will be used
for read access.

NaSnmpVacmViewTreeFamilyEntry_t digiVTF_seeAllMib =
{
 "digiAllMib",
 (sizeof " digiAllMib ") - 1,
 {1,0},
 1,

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 23/40 V1.6

 {0x00},
 1,
 NA_SNMP_VACM_INCLUDED,
 NA_SNMP_PERMANENT
};

VTF_seeNone is set up to give the user access to none of the MIB. This will be used for
write access.

NaSnmpVacmViewTreeFamilyEntry_t digiVTF_seeNone =
{
 "digiNoneMib",
 (sizeof " digiNoneMib ") - 1,
 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_EXCLUDED,
 NA_SNMP_PERMANENT
};

The accessDigiV1Community is set up to give users assigned to this group read access to
the entire MIB, no write access and full notify access.

NaSnmpVacmAccessEntry_t accessDigiV1Community =
{
 “digiV1Group”,
 (sizeof “digiV1Group”) - 1,
 "",
 0,
 NA_SNMP_VACM_SECURITY_MODEL_SNMPv1,
 NA_SNMP_VACM_SECURITY_LEVEL_NO_AUTH_NO_PRIV,
 NA_SNMP_VACM_ACCESS_CONTEXT_MATCH_EXACT,
 "digiAllMib", // read access to MIB
 (sizeof "digiAllMib") - 1,
 "digiNoneMib ", // write access to nothing
 (sizeof "digiNoneMib") -1,
 "digiAllMib", // notify do anything you want
 (sizeof "digiAllMib") - 1,
 NA_SNMP_PERMANENT

};

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 24/40 V1.6

This structure associates our newly made user name with a V1 group having the access
models we want.

NaSnmpVacmSecurityToGroupEntry_t s2gForjzwV1 =
{
 NA_SNMP_VACM_SECURITY_MODEL_SNMPv1,
 “digiV1Open”,
 (sizeof “digiV1Open”) - 1,
 “digiV1Group”,
 (sizeof “digiV1Group”) - 1,
 NA_SNMP_PERMANENT
};

This last step is new relative to the users we set up in the prior section. This sets up a
community name and associates that community name with an existing user name.
Remember that when creating v1 and v2c communities, to keep the community names
the same. This is because generally you want to have v1 and v2c communities of the
same name but different versions accessing the agent.

NaSnmpCommunityTableEntry_t digiV1CommunityEntry =
{
 “digiV1CommunityIndex”,
 “digiCommunity”,
 “digiV1Open”,
 "",
 "",
 "",
 (sizeof “digiV1CommunityIndex”) - 1,
 (sizeof “digiCommunity”) - 1,
 (sizeof “digiV1Open”) - 1,
 0,
 0,
 0,
 NA_SNMP_PERMANENT
};

6.2.3 API Calls

naSnmpInsertUserEntry(&digiNoAuthNoEnc);
naSnmpInsertVtfEntry(&digiVTF_seeAllMib);
naSnmpInsertVtfEntry(&digiVTF_seeNone);
naSnmpInsertS2GEntry(&s2gFordigiV1);
naSnmpInsertVacmAccessEntry(&accessDigiV1Community);
naSnmpInsertCommunityTableEntry(&digiV1CommunityEntry);

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 25/40 V1.6

6.3 V1 community with read and write

6.3.1 Introduction
This user will have open read access but no write access. There will be a community
name created and that community name can read access the agent though this user. We
will go through all the steps that were performed for previous users but there will be an
additional one, namely adding a community entry.

6.3.2 Data Structures
The following structure sets up a user named digiV1Community. The user uses no
authentication and no encryption.

NaSnmpUsmEntry_t digiNoAuthNoEnc =
{
 “digiV1Open”,
 (sizeof “digiV1Open”) - 1,
 “digiV1Open”,
 (sizeof “digiV1Open”) - 1,
 {1,3,6,1,4,1,115,0},
 8,
 NA_SNMP_NO_AUTH_PROTOCOL,
 "",
 0,
 "",
 0,
 NA_SNMP_NO_PRIV_PROTOCOL,
 "",
 0,
 "",
 0,
 ““public””,
 (sizeof ““public””) - 1,
 NA_SNMP_PERMANENT,
 NA_SNMP_ROW_STATUS_ACTIVE
};

digiVTF_seeAllMib is set up to give this user access to the entire MIB. This will be used
for read access.

NaSnmpVacmViewTreeFamilyEntry_t digiVTF_seeAllMib =
{
 "digiAllMib",
 (sizeof " digiAllMib ") - 1,

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 26/40 V1.6

 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_INCLUDED,
 NA_SNMP_PERMANENT
};

VTF_seeNone is set up to give the user access to none of the MIB. This will be used for
write access.

NaSnmpVacmViewTreeFamilyEntry_t digiVTF_seeNone =
{
 "digiNoneMib",
 (sizeof " digiNoneMib ") - 1,
 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_EXCLUDED,
 NA_SNMP_PERMANENT
};

The accessDigiV1Community is set up to give users assigned to this group read access to
the entire MIB, no write access and full notify access.

NaSnmpVacmAccessEntry_t accessDigiV1Community =
{
 “digiV1Group”,
 (sizeof “digiV1Group”) - 1,
 "",
 0,
 NA_SNMP_VACM_SECURITY_MODEL_SNMPv1,
 NA_SNMP_VACM_SECURITY_LEVEL_NO_AUTH_NO_PRIV,
 NA_SNMP_VACM_ACCESS_CONTEXT_MATCH_EXACT,
 "digiAllMib", // read access to MIB
 (sizeof "digiAllMib") - 1,
 "digiAllMib", // read access to MIB
 (sizeof "digiAllMib") - 1,
 "digiAllMib", // notify do anything you want
 (sizeof "digiAllMib") - 1,
 NA_SNMP_PERMANENT

};

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 27/40 V1.6

This structure associates our newly made user name with a V1 group having the access
models we want.

NaSnmpVacmSecurityToGroupEntry_t s2gFordigiV1 =
{
 NA_SNMP_VACM_SECURITY_MODEL_SNMPv1,
 “digiV1Open”,
 (sizeof “digiV1Open”) - 1,
 “digiV1Group”,
 (sizeof “digiV1Group”) - 1,
 NA_SNMP_PERMANENT
};

This last step is new relative to the users we set up in the prior section. This sets up a
community name and associates that community name with an existing user name.
Remember that when creating v1 and v2c communities, to keep the community names
the same. This is because generally you want to have v1 and v2c communities of the
same name but different versions accessing the agent. Important reminder, for each
community you set up, its community index (first field in the structure) must be unique.

NaSnmpCommunityTableEntry_t digiV1CommunityEntry =
{
 “digiV1CommunityIndex”,
 “digiCommunity”,
 “digiV1Open”,
 "",
 "",
 "",
 (sizeof “digiV1CommunityIndex”) - 1,
 (sizeof “digiCommunity”) - 1,
 (sizeof “digiV1Open”) - 1,
 0,
 0,
 0,
 NA_SNMP_PERMANENT
};

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 28/40 V1.6

6.3.3 API Calls

naSnmpInsertUserEntry(&digiNoAuthNoEnc);
naSnmpInsertVtfEntry(&digiVTF_seeAllMib);
naSnmpInsertS2GEntry(&s2gFordigiV1);
naSnmpInsertVacmAccessEntry(&accessDigiV1Community);
naSnmpInsertCommunityTableEntry(&digiV1CommunityEntry);

6.4 V2 community with read only

6.4.1 Introduction

6.4.2 Data Structures

The following structure sets up a user named digiV1Community. The user uses no
authentication and no encryption.

NaSnmpUsmEntry_t digiV2NoAuthNoEnc =
{
 “digiV2Open”,
 (sizeof “digiV2Open”) - 1,
 “digiV2Open”,
 (sizeof “digiV2Open”) - 1,
 {1,3,6,1,4,1,115,0},
 8,
 NA_SNMP_NO_AUTH_PROTOCOL,
 "",
 0,
 "",
 0,
 NA_SNMP_NO_PRIV_PROTOCOL,
 "",
 0,
 "",
 0,
 ““public””,
 (sizeof ““public””) - 1,
 NA_SNMP_PERMANENT,
 NA_SNMP_ROW_STATUS_ACTIVE
};

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 29/40 V1.6

digiVTF_seeAllMib is set up to give this user access to the entire MIB. This will be used
for read access.

NaSnmpVacmViewTreeFamilyEntry_t digiVTF_seeAllMib =
{
 "digiAllMib",
 (sizeof " digiAllMib ") - 1,
 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_INCLUDED,
 NA_SNMP_PERMANENT
};

VTF_seeNone is set up to give the user access to none of the MIB. This will be used for
write access.

NaSnmpVacmViewTreeFamilyEntry_t digiVTF_seeNone =
{
 "digiNoneMib",
 (sizeof " digiNoneMib ") - 1,
 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_EXCLUDED,
 NA_SNMP_PERMANENT
};

The accessDigiV2Community is set up to give users assigned to this group read access to
the entire MIB, no write access and full notify access.

NaSnmpVacmAccessEntry_t accessDigiV2Community =
{
 “digiV2Group”,
 (sizeof “digiV2Group”) - 1,
 "",
 0,
 NA_SNMP_VACM_SECURITY_MODEL_SNMPv2c,
 NA_SNMP_VACM_SECURITY_LEVEL_NO_AUTH_NO_PRIV,
 NA_SNMP_VACM_ACCESS_CONTEXT_MATCH_EXACT,
 "digiAllMib", // read access
 (sizeof "digiAllMib") - 1,

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 30/40 V1.6

 "digiNoneMib", // write access
 (sizeof "digiNoneMib") - 1,
 "digiAllMib", // notify do anything you want
 (sizeof "digiAllMib") - 1,
 NA_SNMP_PERMANENT

};

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 31/40 V1.6

This structure associates our newly made user name with a V2 group having the access
models we want.

NaSnmpVacmSecurityToGroupEntry_t s2gForjzwV2 =
{
 NA_SNMP_VACM_SECURITY_MODEL_SNMPv2c,
 “digiV2Open”,
 (sizeof “digiV2Open”) - 1,
 “digiV2Group”,
 (sizeof “digiV2Group”) - 1,
 NA_SNMP_PERMANENT
};

This last step is new relative to the users we set up in the prior section. This sets up a
community name and associates that community name with an existing user name.
Remember that when creating v1 and v2c communities, to keep the community names
the same. This is because generally you want to have v1 and v2c communities of the
same name but different versions accessing the agent. Important reminder, for each
community you set up, its community index (first field in the structure) must be unique.

NaSnmpCommunityTableEntry_t digiV2CommunityEntry =
{
 “digiV2CommunityIndex”,
 “digiCommunity”,
 “digiV2Open”,
 "",
 "",
 "",
 (sizeof “digiV2CommunityIndex”) - 1,
 (sizeof “digiCommunity”) - 1,
 (sizeof “digiV2Open”) - 1,
 0,
 0,
 0,
 NA_SNMP_PERMANENT
};

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 32/40 V1.6

6.4.3 API Calls

naSnmpInsertUserEntry(&digiV2NoAuthNoEnc);
naSnmpInsertVtfEntry(&digiVTF_seeAllMib);
naSnmpInsertVtfEntry(&digiVTF_seeNone);
naSnmpInsertS2GEntry(&s2gForjzwV2);
naSnmpInsertVacmAccessEntry(&accessDigiV2Community);
naSnmpInsertCommunityTableEntry(&digiV2CommunityEntry);

6.5 V2 community with read and write

6.5.1 Introduction

6.5.2 Data Structures
The following structure sets up a user named digiV2Community. The user uses no
authentication and no encryption.

NaSnmpUsmEntry_t digiNoAuthNoEnc =
{
 “digiV2Open”,
 (sizeof “digiV2Open”) - 1,
 “digiV2Open”,
 (sizeof “digiV2Open”) - 1,
 {1,3,6,1,4,1,115,0},
 8,
 NA_SNMP_NO_AUTH_PROTOCOL,
 "",
 0,
 "",
 0,
 NA_SNMP_NO_PRIV_PROTOCOL,
 "",
 0,
 "",
 0,
 ““public””,
 (sizeof ““public””) - 1,
 NA_SNMP_PERMANENT,
 NA_SNMP_ROW_STATUS_ACTIVE
};

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 33/40 V1.6

digiVTF_seeAllMib is set up to give this user access to the entire MIB. This will be used
for read access.

NaSnmpVacmViewTreeFamilyEntry_t digiVTF_seeAllMib =
{
 "digiAllMib",
 (sizeof " digiAllMib ") - 1,
 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_INCLUDED,
 NA_SNMP_PERMANENT
};

VTF_seeNone is set up to give the user access to none of the MIB. This will be used for
write access.

NaSnmpVacmViewTreeFamilyEntry_t digiVTF_seeNone =
{
 "digiNoneMib",
 (sizeof " digiNoneMib ") - 1,
 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_EXCLUDED,
 NA_SNMP_PERMANENT
};

The accessDigiV2Community is set up to give users assigned to this group read access to
the entire MIB, no write access and full notify access.

NaSnmpVacmAccessEntry_t accessDigiV2Community =
{
 “digiV2Group”,
 (sizeof “digiV2Group”) - 1,
 "",
 0,
 NA_SNMP_VACM_SECURITY_MODEL_SNMPv2c,
 NA_SNMP_VACM_SECURITY_LEVEL_NO_AUTH_NO_PRIV,
 NA_SNMP_VACM_ACCESS_CONTEXT_MATCH_EXACT,
 "digiAllMib", // read access to MIB
 (sizeof "digiAllMib") - 1,

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 34/40 V1.6

 "digiAllMib", // read access to MIB
 (sizeof "digiAllMib") - 1,
 "digiAllMib", // notify do anything you want
 (sizeof "digiAllMib") - 1,
 NA_SNMP_PERMANENT

};

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 35/40 V1.6

This structure associates our newly made user name with a V1 group having the access
models we want.

NaSnmpVacmSecurityToGroupEntry_t s2gForjzwV2 =
{
 NA_SNMP_VACM_SECURITY_MODEL_SNMPv2c,
 “digiV2Open”,
 (sizeof “digiV2Open”) - 1,
 “digiV2Group”,
 (sizeof “digiV2Group”) - 1,
 NA_SNMP_PERMANENT
};

This last step is new relative to the users we set up in the prior section. This sets up a
community name and associates that community name with an existing user name.
Remember that when creating v1 and v2c communities, to keep the community names
the same. This is because generally you want to have v1 and v2c communities of the
same name but different versions accessing the agent. Important reminder, for each
community you set up, its community index (first field in the structure) must be unique.

NaSnmpCommunityTableEntry_t digiV2CommunityEntry =
{
 “digiV2CommunityIndex”,
 “digiCommunity”,
 “digiV2Open”,
 "",
 "",
 "",
 (sizeof “digiV2CommunityIndex”) - 1,
 (sizeof “digiCommunity”) - 1,
 (sizeof “digiV2Open”) - 1,
 0,
 0,
 0,
 NA_SNMP_PERMANENT
};

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 36/40 V1.6

6.5.3 API Calls

naSnmpInsertUserEntry(&digiNoAuthNoEnc);
naSnmpInsertVtfEntry(&digiVTF_seeAllMib);
naSnmpInsertS2GEntry(&s2gForjzwV2);
naSnmpInsertVacmAccessEntry(&accessDigiV2Community);
naSnmpInsertCommunityTableEntry(&igiV2CommunityEntry);

6.6 V1 community with read only and restricted view

6.6.1 Introduction

6.6.2 Data Structures
The following structure sets up a user named digiV1Community. The user uses no
authentication and no encryption.

NaSnmpUsmEntry_t digiNoAuthNoEnc =
{
 “digiV1OpenRest”,
 (sizeof “digiV1OpenRest”) - 1,
 “digiV1OpenRest”,
 (sizeof “digiV1OpenRest”) - 1,
 {1,3,6,1,4,1,115,0},
 8,
 NA_SNMP_NO_AUTH_PROTOCOL,
 "",
 0,
 "",
 0,
 NA_SNMP_NO_PRIV_PROTOCOL,
 "",
 0,
 "",
 0,
 ““public””,
 (sizeof “public”) - 1,
 NA_SNMP_PERMANENT,
 NA_SNMP_ROW_STATUS_ACTIVE
};

VTF_seeNone is set up to give the user access to none of the MIB. This will be used for
write access.

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 37/40 V1.6

NaSnmpVacmViewTreeFamilyEntry_t theMyMibVTF =
{
 "myMib",
 (sizeof "myMib") - 1,
 {1,3,6,1,4,1,905,0},
 8,
 {0xFE},
 1,
 NA_SNMP_VACM_INCLUDED,
 NA_SNMP_PERMANENT
};

VTF_seeNone is set up to give the user access to none of the MIB. This will be used for
write access.

NaSnmpVacmViewTreeFamilyEntry_t digiVTF_seeNone =
{
 "digiNoneMib",
 (sizeof " digiNoneMib ") - 1,
 {1,0},
 1,
 {0x00},
 1,
 NA_SNMP_VACM_EXCLUDED,
 NA_SNMP_PERMANENT
};

The accessDigiV1Community is set up to give users assigned to this group read access to
the entire MIB, no write access and full notify access.

NaSnmpVacmAccessEntry_t accessDigiV1Community =
{
 “digiV1GroupRest”,
 (sizeof “digiV1GroupRest”) - 1,
 "",
 0,
 NA_SNMP_VACM_SECURITY_MODEL_SNMPv1,
 NA_SNMP_VACM_SECURITY_LEVEL_NO_AUTH_NO_PRIV,
 NA_SNMP_VACM_ACCESS_CONTEXT_MATCH_EXACT,
 "myMib", // read access to MIB
 (sizeof "myMib") - 1,
 "myMib", // write access to nothing

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 38/40 V1.6

 (sizeof "myMib") -1,
 "myMib", // notify do anything you want
 (sizeof "myMib") - 1,
 NA_SNMP_PERMANENT

};

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 39/40 V1.6

This structure associates our newly made user name with a V1 group having the access
models we want.

NaSnmpVacmSecurityToGroupEntry_t s2gFordigiV1 =
{
 NA_SNMP_VACM_SECURITY_MODEL_SNMPv1,
 “digiV1OpenRest”,
 (sizeof “digiV1OpenRest”) - 1,
 “digiV1GroupRest”,
 (sizeof “digiV1GroupRest”) - 1,
 NA_SNMP_PERMANENT
};

This last step is new relative to the users we set up in the prior section. This sets up a
community name and associates that community name with an existing user name.
Remember that when creating v1 and v2c communities, to keep the community names
the same. This is because generally you want to have v1 and v2c communities of the
same name but different versions accessing the agent.

NaSnmpCommunityTableEntry_t digiV1CommunityEntry =
{
 “digiV1CommunityIndex”,
 “digiCommunityRest”,
 “digiV1OpenRest”,
 "",
 "",
 "",
 (sizeof “digiV1CommunityIndex”) - 1,
 (sizeof “digiCommunityRest”) - 1,
 (sizeof “digiV1OpenRest”) - 1,
 0,
 0,
 0,
 NA_SNMP_PERMANENT
};

6.6.3 API Calls
naSnmpInsertUserEntry(&digiNoAuthNoEnc);
naSnmpInsertVtfEntry(&theMyMibVTF);
naSnmpInsertVtfEntry(&digiVTF_seeNone);
naSnmpInsertS2GEntry(&s2gFordigiV1);
naSnmpInsertVacmAccessEntry(&accessDigiV1Community);
naSnmpInsertCommunityTableEntry(&digiV1CommunityEntry);

Enabling SNMPv3 Security Features in NET+OS V7.x

Copyright 2008 Digi International Page 40/40 V1.6

7 Conclusion
There is a lot to know in successfully setting up users in SNMPv3. It can be a little
daunting but it is not impossible. I hope that this document has help present information
about setting up SNMPv3 security in a way that you can apply it to creating NET+OS
applications and successfully accessing SNMP agents, in those applications view your
SNMP management software.

We do recommend supplemental texts on this subject, for further information. William
Stallings’ SNMP, SNMPv2, SNMPv3 and RMON I and II is a good solid book
describing all versions of SNMP including but not limited to SNMPv3.

