
LxNETES™ User’s Guide
ConnectCore 9P 9360/9750

 Digi International Inc. 2005. All Rights Reserved.
The Digi logo is a registered trademarks of Digi International, Inc.
All other trademarks mentioned in this document are the property of their respective owners.
Information in this document is subject to change without notice and does not represent a commitment on the part of Digi
International.
Digi provides this document “as is,” without warranty of any kind, either expressed or implied, including, but not limited to, the
implied warranties of fitness or merchantability for a particular purpose. Digi may make improvements and/or changes in this
manual or in the product(s) and/or the program(s) described in this manual at any time.
This product could include technical inaccuracies or typographical errors. Changes are periodically made to the information
herein; these changes may be incorporated in new editions of the publication.

• •

Contents
Chapter 1 Introduction.. 9
Overview..9

Cross-development environment ...9
Linux kernel sources ..10
Template project ..10

Example applications ...10
Features ..11

What’s new in LxNETES 3.2? ..11
Linux Kernel ..11
Bootloader..11
Tool chain ..11

General features ...11
Conventions used in this manual ...13
Acronyms and abbreviations ...14

Chapter 2 Requirements ... 15
System Requirements/Prerequisites...15

System requirements..15
Disk space ..16
Applications & Services ..17
TFTP daemon ..17
NFS server ...18
JTAG-Booster ..19

Chapter 3 Getting Started ... 21
Introduction..21

Connecting host PC with development board..21
Step 1: Connect serial port...21
Step 2: Connect Ethernet interface ..21
Step 3: Configure terminal client...21

Minicom...22
Seyon ...22

Step 4: Connect power ...23
Step 5: Test Ethernet configuration ...24

Installing LxNETES ..25
Guided Installation...26
� � � � � � � 5

Manual Installation ..27
Chapter 4 Building the First Project... 29
Building the Default Project ..29

Step 1: Run configure ..29
Example: ...29

Step 2: Run make...30
Step 3: Run make install ..30

Chapter 5 Application Development.. 31
Writing applications...31

Adding your own applications...31
Example: ...31

Using C++..32
Included example applications ..32
display..32

Debugging applications ...34
Included pre-built applications ..36
Shell applications: busybox ...36
Telnet daemon: utelnetd ..36
Web server: Boa ..36
Debug server: gdbserver ..36
Nano-X/microwindows..37
Embedded Qt ...37

Useful applications ..38
mem ...38

Chapter 6 Kernel Development.. 39
Writing kernel modules ...39

What is a kernel module? ..39
Writing your own kernel modules ...39
Add your source files...39
 Add the module to the build environment ..40
Building and loading of kernel modules..40
Included Kernel modules ...40
minimal ..40

Chapter 7 Advanced Topics ... 41
Modifying the default project ..41
Building a custom project ..43
Boot process...44
6 � � � � � � � L x N E T E S U s e r ’ s G u i d e

Introduction..44
U-Boot ...44

ConnectCore 9P 9360/9750 ...45
Linux boot methods ...46

TFTP/NFS..46
NAND-Flash ..46
NOR Flash ...47
USB..47

Linux boot process...48
Passing arguments to the kernel...50
Automating the image download ...50
Updating the Flash memory...50
Updating a running system (the easy way) ..51
Updating a running system manually ..51

Step 1: Download the new image file to RAM..52
Step 2: Erase the Flash partition ..52
Step 3: Write the image to Flash..52

ConnectCore 9P 9360/9750 ...53
U-Boot ...53
Kernel...53
Root File System..53

Updating a corrupted system using a debugger ...54
ConnectCore 9P 9360/9750 ...54

Chapter 8 Root File System Types ... 55
NFSROOT ...55

Step 1: Set bootargs to be passed to the kernel..56
Step 2: Download the kernel to RAM via TFTP56
Step 3: Launch the kernel from RAM ...56

JFFS2 ...57
Step 1: Set bootargs to be passed to the kernel..58
Step 2: Copy the kernel to RAM ...58
Step 3: Launch the kernel from RAM ...58

Chapter 9 Interfaces & Devices.. 61
Serial interface ...61
USB host interface ...62
I2C interface ..62
SPI interface...62
� � � � � � � 7

LCD interface ..62
Touch screen interface ...62

CC9P9360/9750...62
Compact flash interface ...63

CC9P6360/9750...63
SD card interface ...63
Real time clock (RTC)...63
How to set the initial system date and time ...63
PCI interface ..64

Appendix A ... 65
Related documentation ..65

CD contents ...65
Readme.txt ...66
RelNotes.txt ...66
install.sh ...66
docs ..66
images ..66
ConnectCore 9P 9360 (CC9P9360)...67
ConnectCore 9P 9750 (CC9P9750)...67
hardware ..67
LxNETES ..67

setup...67
upstream...68
U-Boot ...68

Memory layouts ...68
Flash memory layout ..68
ConnectCore 9P 9360 / ConnectCore 9P 9750..68
SDRAM memory layout..68
ConnectCore 9P 9360 / ConnectCore 9P 9750..69

Appendix B .. 71
U-Boot command reference...71
User keys ...75
8 � � � � � � � L x N E T E S U s e r ’ s G u i d e

I n t r o d u c t i o n
Introduction
C H A P T E R 1

Overview

The LxNETES package enables you to easily develop software under Linux 2.6 for Digi
International and FS Forth-Systeme embedded modules supported in this release of
LxNETES.

This document assumes that you have basic knowledge of Linux. In addition, it is
recommended that you have experience with compiling a standard Linux kernel on your
host PC. If you are new to Linux, the following books are recommended for resources:

1.) Linux Device Drivers, 3rd Edition, by J. Corbet, A. Rubini, and G. Kroah-Hartman,
ISBN 0-596-00590-3

2.) Debian Reference
http://www.debian.org/doc/manuals/reference/reference.en.html

The following sections explain the several parts that compose the LxNETES package.

Cross-development environment

Whenever you need to generate code for an embedded target on a development system
with a different microprocessor architecture, you need a cross-development environment.
That is, you need a compiler that executes in your development system (for example a x86
PC) but generates code that executes in a different processor (for example your target is
NET+ARM).

LxNETES provides the GNU cross-development tool chain for NET+ARM, ARM, and
X-Scale, which contains the compiler, linker, assembler, and shared libraries needed to
generate software for the supported platforms.
� � � � � � � 9

O v e r v i e w
Linux kernel sources

The LxNETES package contains the complete source code of the Linux kernel. This
allows you to configure, modify, and create a custom kernel to your specific embedded
system’s needs. Although the kernel sources are the official distribution, some
modifications have been made to adapt the sources to the supported platforms.

Template project

The philosophy of work in LxNETES environment is linked to the idea of ‘projects’. A
project is actually a folder which contains the custom system for a specific target. This
folder will contain:

� The specific kernel configuration

� The root file system, directory structure, and files

� The applications compiled

With one simple command, the compilation process takes care of compiling the kernel,
the applications, generating the target’s file system, and compressing into the final binary
images. The compilation process take place within the project folder with normal user
permissions.

Example applications

As part of the project template, several example applications are included with complete
source code. These examples can be used as templates for your future software
applications. They are distributed in an environment that allows you to compile them for
either of the following systems:

� The target development system (default)

� The target development system with debug information
1 0 � � � � � � � L x N E T E S U s e r ’ s G u i d e

I n t r o d u c t i o n
Features

What’s new in LxNETES 3.2?

Linux Kernel

� Linux Kernel 2.6.12.5

� Added touch screen driver for the ConnectCore 9P family

� Added RTC driver for the ConnectCore 9P family

� Build process based on autoconf

Bootloader

� New U-Boot boot loader, based on version 1.1.3

Tool chain

� gcc-3.4.4 cross compiler for NET+ARM, ARM, and XScale processors

General features

With LxNETES you receive a Development Kit and BSP with the following features:

� Support for Linux kernel 2.6

� Support for the following NET+ARM, ARM, and Intel X-Scale processors:

– NetSilicon: NS9750, NS9360

– Samsung: S3C2440, S3C2410

– Intel: PXA270

– Atmel: AT91RM9200

For existing LxNETES customers: LxNETES 3.2 uses a different uClibc than
previous versions of LxNETES which is not backwards compatible.
Applications built with old uClibc cannot be used in the new environment;
they have to be rebuilt.
� � � � � � � 1 1

F e a t u r e s
� Drivers for the following module components and interfaces:

– SDRAM memory

– Flash memory

– Ethernet

– USB Host

– Serial

– I2C

– RTC

– GPIO

– Watchdog

– LCD Framebuffer

– Compact Flash Cards

– SD Cards

– PCI

– SPI

– Touch Screen

– User Buttons if available

� U-Boot universal bootloader, capable of booting Linux and other operating
systems from Ethernet, Flash memory and USB.

� C and C++ support for application development

� gcc-3.4.4 cross compiler for Net+ARM, ARM, and XScale processors

� uClibc 0.9.27 for user applications

� Pre-built Busybox and other applications

� Telnet daemon utelnetd

� Web server BOA

� Nano-X and QT embedded sample projects

� Shared library support

� Project-oriented workflow – kernel configuration and rootfs setup are separated
from kernel sources, tool chain sources, thus making it possible to maintain the
project in a revision control system.
1 2 � � � � � � � L x N E T E S U s e r ’ s G u i d e

I n t r o d u c t i o n
� Autoconf driven build process

� All building can be done without root access

� This LxNETES version can coexist with older installations of LxNETES

Conventions used in this manual

The following is a list of the typographical conventions used in this manual:

This manual also uses these frames and symbols:

Style Used for file and directory names, programs and command names,
command-line options, URL, and new terms.

Style Used in examples to show the contents of files, the output from
commands or in the text the C code.

Style Used in examples to show the text that should be typed literally by the
user.

This prompt indicates that the listed commands have to be executed as
a root.

$ This prompt indicates that listed commands have to be executed as a
normal user.

[1] Used to indicate an item of the reference section.

This is a warning. It helps you to solve or to avoid common mistakes or
problems.

This is a tip. It contains useful information about a topic.

$ This is a host computer session
$ And this is what you must input (in bold)
� � � � � � � 1 3

F e a t u r e s
Acronyms and abbreviations

This is a target session
And this is what you must input (in bold)

CGI Common Gateway Interface

CRAMFS Compressed ROM File system

DHCP Dynamic Host Configuration Protocol (RFC 2131)

GDB GNU debugger

GPIO General Purpose Input/Output

INITRD Initial Ram Disk

IP Internet Protocol

JFFS(2) Journaling Flash File System (version 2)

JTAG Joint Test Action Group (IEEE 1149.1)

MMU Memory Management Unit

NFS Network File System

ROMFS ROM File System

ROOTFS Root File System

RTC Real Time Clock

TFTP Trivial File Transfer Protocol

USB Universal Serial Bus
1 4 � � � � � � � L x N E T E S U s e r ’ s G u i d e

R e q u i r e m e n t s
Requirements
C H A P T E R 2

System Requirements/Prerequisites

System requirements

Your development system should be a reasonably fast x86-based host PC with an Ethernet
interface, a serial port, and a parallel port.

Different Linux distributions such as SuSE, Debian, or RedHat can be used for the
development. This documentation is based on the Debian Linux distribution; however,
other distributions with minor changes in the settings can also be used. Please refer to the
manuals of your Linux distribution if settings are not working as described in this
document.

The following software is required on your development system:

� GNU C library glibc 2.3

� GNU C compiler gcc >= 2.95.3 (3.3 or higher recommended)

� GNU make version >= 3.80

� awk

� perl >= 5.6.0

� autoconf >= 2.59

� Terminal client software (such as Minicom or Seyon)

� TFTP daemon

� NFS daemon

� rsync
� � � � � � � 1 5

S y s t e m R e q u i r e m e n t s / P r e r e q u i s i t e s
� DOS or DOS-emulator (such as dosemu)

Optional but recommended components:

� Qt3 development tools

For using LxNETES, a recent Linux distribution based on GNU C Library glibc version
2.3 (a free implementation of the Standard C Library) is needed. To find out which glibc
version is installed on your system use the following commands:

Please make sure that you use GNU Make version 3.80 or later. Check yours with the
following command:

Check the versions of required applications with these commands:

Disk space

The LxNETES installation needs 400 MB of free disk space. Every project you create
needs another 100 MB free disk space. The LxNETES installation and the projects can be
located on different hard disks.

Check if there is enough space available on your drive by executing the following
command:

The “df” command displays the amount of disk space available. The option h displays the
space. For detailed information read the man page of “df”.

$ ldd --version
$ ls -l /lib/libc*so

$ make –v

$ gcc --version
$ perl -v
$ autoconf --version

$ df -h
1 6 � � � � � � � L x N E T E S U s e r ’ s G u i d e

R e q u i r e m e n t s
Applications & Services

To use this software, your system has to be configured to build a standard Linux 2.6. If
you can build a kernel for your development platform, you can be sure that all the
necessary software is installed.

Depending on the network services used during the development, additional daemons may
have to be installed.

TFTP daemon

U-Boot is able to write files to the Flash memory of the module. A TFTP server is
required to transport these files from your host computer to the target. Debian users can
execute the following command to install a TFTP server:

After completing installation, create a directory using the path “/tftboot” where exported
files are located. Your images can be placed in the directory automatically by the
LxNETES build environment. You must be root to create this directory.

To make sure that your TFTP server is using the “/tftpboot” directory, check the Internet
daemons configuration file "/etc/inetd.conf". It should contain an entry similar to the
following:

If the entry is not there, use an editor and change the file accordingly.

apt-get install tftpd

mkdir /tftpboot
chmod 1777 /tftpboot

tftp dgram udp wait nobody /usr/sbin/tcpd /usr/sbin/in.tftpd -s /tftpboot
� � � � � � � 1 7

S y s t e m R e q u i r e m e n t s / P r e r e q u i s i t e s
NFS server

Use the network file system (NFS) to simplify application debugging on the target. NFS
allows your target to mount its root file system with read/write permissions from the host
computer over Ethernet. NFS also allows you to access the file system from the target and
from the host computer the same time.

The NFS server configuration details are beyond the scope of this User's Manual and are
very specific to the various distributions. This manual only describes the modifications
necessary on hosts running a Debian distribution. Please refer to your Linux distribution
manual to setup a NFS server if you are using a different distribution.

When the NFS server package (Debian package nfs-kernel-server) is installed on Debian,
there is a file "/etc/exports" that contains information on exported directories and its
access rights. Add the following line to this file to provide read/write access for your
target:

BOOTDIR needs to be replaced with the path to the NFS root directory which is exported
to the target. The IP_ADDRESS needs to be replaced with the IP address of your target.

Please refer to the Linux man pages for detailed information about the /etc/exports file.
The build process copies the NFS root to /export/nfsroot-<platformname>; e.g. to export
the rootfs for cc9p9750, write the following to /etc/exports:

For simplicity’s sake you can export the whole /exports dir for a complete subnet, e.g.:

 BOOTDIR IP_ADDRESS(rw,all_squash,async)

/exports/nfsroot-cc9p9750dev 192.168.42.10(rw,all_squash,async)

/exports 192.168.42.0/24(rw,all_squash,async)
1 8 � � � � � � � L x N E T E S U s e r ’ s G u i d e

R e q u i r e m e n t s
After modifying the exports file, the NFS server has to be restarted with the following
command:

JTAG-Booster

The JTAG-Booster software for hardware Flash updates is a DOS application. It must be
installed on a native DOS / Windows host or a virtual machine like "dosemu" under
Linux.

Execute "dosemu" as root to gain full hardware access. The configuration file of dosemu
needs the entry:

To install the JTAG-Booster software, copy the directory "hardware" from the CD to any
directory on the hard disk. This directory may also contain a file "Readme.txt" with the
latest instructions. Ensure that the parallel port is accessible for the application. If you are
using Microsoft Windows NT, 2000, or XP, you have to install the "Kithara DOS Enabler"
which is shipped on the LxNETES CD. A detailed manual can be found on the CD in the
folder "hardware".

/etc/init.d/nfs-kernel-server restart

$_ports = "fast range 0x378 0x37a fast range 0x3f8 0x3ff range 0x778 0x77a”
� � � � � � � 1 9

S y s t e m R e q u i r e m e n t s / P r e r e q u i s i t e s
2 0 � � � � � � � L x N E T E S U s e r ’ s G u i d e

G e t t i n g S t a r t e d
Getting Started
C H A P T E R 3

Introduction

This chapter describes how to configure and test your host PC and development board
(target) and how to start up the device for the very first time.

Connecting host PC with development board

Step 1: Connect serial port

Connect the host PC to the development board (target) using a serial null-modem cable.
The serial connection is used to interact with the target device.

Step 2: Connect Ethernet interface

The Ethernet connection can be established by connecting a crossover cable directly to the
development board’s Ethernet port and your host PC. Alternatively, if you already have a
running network configuration, you can connect the development board to your hub or
switch.

Step 3: Configure terminal client

Configure a terminal client to view the serial console output the target prints on the serial
interface. Minicom or Seyon are the most usual applications. Configure the serial
parameters for 38400 baud, no parity, 8 data bits, and 1 stop bit.
� � � � � � � 2 1

I n t r o d u c t i o n
To use a terminal client as non-root user, either you need read/write access to
/dev/ttyS<n> or the client has to be setuid root.

Minicom

To configure minicom, start it as root by entering:

Go to “Serial port setup” and change the values to your environment.

Figure 3-4: Minicom settings

Next time start minicom as a standard user with:

Seyon

Start Seyon as a standard user by entering:

Go to “Seyon Command” window and press “Set”. In the “Settings” window you can
adjust the settings.

Unless otherwise stated, it is assumed your target is connected to the first serial
port (COM 1, ttyS0) of your host. If you use another port, change the “ttyS<n>”
to the appropriate number.

minicom –s

$ minicom

$ seyon -modems /dev/ttyS0
2 2 � � � � � � � L x N E T E S U s e r ’ s G u i d e

G e t t i n g S t a r t e d
Figure 3-2: Seyon Settings

Step 4: Connect power

Connect the included power supply to the development board. After power-on, the LEDs
on the board will light up and 2-4 seconds later the system will print boot messages on the
console. After 20-25 seconds, the boot loader has unpacked and launched the pre-installed
Linux kernel from the built-in Flash memory.

You will see output on the terminal client similar to the output below.
� � � � � � � 2 3

I n t r o d u c t i o n
After Linux started successfully, you can enter commands such as "ls", "cd", or "cat"on
the shell.

Step 5: Test Ethernet configuration

The target uses a default IP address on the 192.168.42.x network. We recommend
configuring a network separate from your company network which is dedicated to the
LxNETES development. You can do this by adding and configuring an additional network
card to use an IP address from the 192.168.42.0 subnet, e.g. 192.168.42.1.

U-Boot 1.1.3

U-Boot code: 20F00000 -> 20F1529C BSS: -> 20F19A80

RAM Configuration:

Bank #0: 20000000 32 MB

AM29LV128M (16MB)

Flash: 16 MB

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

Booting image at 20100000 ...

 Image Name: Linux-2.6.12

 Created: 2005-06-17 11:29:13 UTC

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 2478816 Bytes = 2.4 MB

 Load Address: 20008000

 Entry Point: 20008000

 Verifying Checksum ... OK

OK

Starting kernel ...

Linux version 2.6.12 (root@lxnetes) (gcc driver version 3.4.4 executing gcc version 3.4.4

CPU: ARM920Tid(wb) [41129200] revision 0 (ARMv4T)

CPU0: D VIVT write-back cache

CPU0: I cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets

CPU0: D cache: 16384 bytes, associativity 64, 32 byte lines, 8 sets

Machine: ATMEL AT91RM9200

Memory policy: ECC disabled, Data cache writeback

...

...

...

BusyBox v1.00 Built-in shell (ash)

Enter 'help' for a list of built-in commands.
2 4 � � � � � � � L x N E T E S U s e r ’ s G u i d e

G e t t i n g S t a r t e d
The target network parameters can be changed in U-Boot using the "setenv" command.
You can see the IP address of the target by issuing this command:

In this example, the target device has been given an IP address of 192.168.42.10. You can
test the proper functioning of the network by doing a ping to your host machine (Ctrl+C to
stop).

Installing LxNETES

An installation script on the CD will do the installation automatically. However, there are
some things the script cannot do such as setting up your DHCP or NFS server.

To install LxNETES, you must mount the CD. Enter the following:

ifconfig eth0
Link encap:Ethernet HWaddr 12:34:56:78:9A:BC

 inet addr:192.168.42.10 Bcast:192.168.42.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:3453 errors:0 dropped:0 overruns:0 frame:0
 TX packets:62 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:399740 (390.3 KiB) TX bytes:6726 (6.5 KiB)
 Interrupt:24 Base address:0xc000

ping 192.168.42.1
PING 192.168.42.1 (192.168.42.1): 56 data bytes
64 bytes from 192.168.42.1: icmp_seq=0 ttl=64 time=10.6 ms
64 bytes from 192.168.42.1: icmp_seq=1 ttl=64 time=0.8 ms
64 bytes from 192.168.42.1: icmp_seq=2 ttl=64 time=0.8 ms
64 bytes from 192.168.42.1: icmp_seq=3 ttl=64 time=0.9 ms

--- 192.168.42.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 0.8/3.2/10.6 ms

$ mount /media/cdrom
� � � � � � � 2 5

G u i d e d I n s t a l l a t i o n
Guided Installation

After mounting the CD you are ready to run the installer. Use the following commands to
start (depending on your distribution's mount point):

If the script detects a Perl/Tk installation, a graphical installer will start. If it does not
detect that Perl/Tk is installed, the installer will run on the console.

Select the directory where LxNETES should be installed. Click "Select" or type in the
path. If the directory doesn't exist, the installer will create it for you.

If you plan to be the only developer on your system it is a good idea to install LxNETES
to your home-directory. Otherwise you should use a global directory like "/usr/local".

After selecting the installation, click "INSTALL". If an error accurs (e.g. no permissions
to write to the directory) the progress bar will turn red and an error message will appear.

If your system isn't able to run the graphical installer, a shell-installer will run.

The Installer will ask for the directory LxNETES should be installed.

The mount point of the CD drive depends on your distribution. SuSE e.g.
uses "/mnt/cdrom" as the default mount point. Check your "/etc/fstab" or ask
your Administrator to do this for you.

$ /media/cdrom/install.sh

Write to directories like "/usr/local" by starting the installer as root..
2 6 � � � � � � � L x N E T E S U s e r ’ s G u i d e

G e t t i n g S t a r t e d
Manual Installation

Instead of using the installation script you can do the installation manually. Just copy the
directory "LxNETES" on the CDROM to a directory on your host PC.
� � � � � � � 2 7

M a n u a l I n s t a l l a t i o n
2 8 � � � � � � � L x N E T E S U s e r ’ s G u i d e

B u i l d i n g t h e F i r s t P r o j e c t
Building the First Project
C H A P T E R 4

Building the Default Project

Until now you have worked with the pre-loaded, default kernel image on the target. The
next step is to rebuild it on your development host PC to familiarize yourself with the
build process.

Step 1: Run configure

Start a new shell and change into your LxNETES installation directory.

Create a new directory underneath and change to that directory.

Then execute configure for your platform to configure your project.

Example:

This configures your project for the default platform. If you want to configure another
platform, you have to specify it as a parameter to the configure script, for example

The names for available platform:

� ConnectCore 9P 9360: cc9p9360dev

~$ cd $HOME/LxNETES-3.2

~/LxNETES-3.2$ mkdir build

~/LxNETES-3.2$ cd build

~/LxNETES-3.2/build$../configure

checking whether make sets $(MAKE)... yes
...

~/LxNETES-3.2/build$../configure --enable-platform=cc9p9750dev

checking whether make sets $(MAKE)... yes

...
� � � � � � � 2 9

B u i l d i n g t h e D e f a u l t P r o j e c t
� ConnectCore 9P 9750: cc9p9750dev

Please check if the script used the correct platform and detected the right directory to
install the kernel and the nfsroot directory. If you used the suggested paths in the setup of
the TFTPD and NFS server, the output of configure should contain:

If configure returns an error, you can provide the correct paths to use:

Step 2: Run make

After configure finished successfully, run make:

This will build your first kernel image.

Step 3: Run make install

If the configure script was able to detect the directories for exporting a root file system via
TFTP and NFS serving, add install to the make command to copy the output files from the
build process to the appropriate locations.

checking which directory to install bootfiles to... /tftpboot

checking which directory to install nfsroot to... /exports

--enable-exportdir=/path/to/exportdir
--enable-tftpbootdir=/path/to/tftpbootdir

~/LxNETES-3.2/build$ make

 SHIPPED linux/.config

 MAKE uImage

...

~/LxNETES-3.2/build$ make install

...

You need write permissions in the corresponding directories.
3 0 � � � � � � � L x N E T E S U s e r ’ s G u i d e

A p p l i c a t i o n D e v e l o p m e n t
Application Development
C H A P T E R 5

Writing applications

The user applications are stored in subdirectory apps/ of the project folder.

The template project includes several demo applications for use as templates to begin
developing your own programs. They will automatically build and copy to the folder
“/usr/bin/” of the target when building the system.

Adding your own applications

To add a new application, run the script bin/add_app with the name of the new
application as first parameter.

Example:

This command creates a sample application named ‘customapp’ in the folder apps/
customapp in the source directory. Edit the file apps/customapp/customapp.c to insert
your application code.

To use more than one source file, just create the source files and modify Makefile.in to
include the files in the build process.

On the next call to make install, the application is added to your root file system.

~/LxNETES-3.2/build_custom$ bin/add_app customapp
� � � � � � � 3 1

W r i t i n g a p p l i c a t i o n s
Using C++

A sample C++ application “hello_world” is included in “apps/misc/src/hello_world”.

You can use this sample application as a template to develop your own C++ applications.

Just use add_app as above and adapt the Makefile.in according to hello_world_cpp/
Makefile.in

Included example applications

There are several applications included in the project template with full source code:

display

This is a simple application that demonstrates the usage of the Common Gateway
Interface (CGI) to communicate data between the embedded web server (BOA) and a
target’s application.

Open a web browser in your development PC and type the IP address of the target in the
address box to access the embedded web page of the target.

You may enter any filename on the text box and click the Display button. The filename
will be given to the application which will send the contents of the file to your browser:
3 2 � � � � � � � L x N E T E S U s e r ’ s G u i d e

A p p l i c a t i o n D e v e l o p m e n t
Table 6-3: /proc/cpuinfo contents
� � � � � � � 3 3

D e b u g g i n g a p p l i c a t i o n s
Debugging applications

The purpose of a debugger is to allow you to see what is going on his own programs while
they execute. For that purpose the GDB debugger is used by means of the gdbserver
application that runs on the target side and communicates with the host computer. This
communication can happen on the serial port or through Ethernet (the latter is preferred
for being much faster).

The use of the GDB debugger is out of the scope of this manual. You can get more
information about it in the standard GDB man pages.

In order to debug an application it has to be rebuilt with debug information. To do that,
enter the target binary build directory (e.g. "apps/mem") and rebuild the application with
the following command:

A binary mem will be created and copied to the rootfs. Restart the target with the new
rootfs.

Run the debug server on the target with the following commands:

Port number 2001 was selected randomly.

Now start the debug client on the host and connect to the target with

~/LxNETES3.2$ rm apps/mem/*.o apps/mem/mem

~/LxNETES3.2$ make apps DEBUG=1 install

gdbserver localhost:2001 /usr/bin/mem
Process /mem created; pid = 39
Listening on port 2001
Remote debugging from host 192.168.42.1
->

~/LxNETES3.2$../bin/arm-linux-gdb mem
GNU gdb 6.3
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i386-pc-linux-gnu --target=arm-linux-
uclibc"
...
(gdb)
3 4 � � � � � � � L x N E T E S U s e r ’ s G u i d e

A p p l i c a t i o n D e v e l o p m e n t
In the debug interface type

The supported architectures can be displayed with the following command:

Choose the right architecture for your target.

Type "c" for continue.

You can now debug your application. Alternatively, you may try an external graphical
debugger like "ddd" or use "arm-linux-gdbtui" on the command line instead of
"arm-linux-gdb".

$ (gdb) set architecture ARCHITECTURE
$ (gdb) set solib-absolute-prefix <INSTALL_DIR>
$ (gdb) target remote TARGET.IP:2001

$ (gdb) set architecture
Requires an argument. Valid arguments are arm, armv2, armv2a, armv3,
armv3m, armv4, armv4t, armv5, armv5t, armv5te, xscale, ep9312, iwmmxt,
auto.

Valid
Argument

C
C

9C

C
C

X
P

2
70

U
N

C
90

A
9M

24
10

A
9M

24
40

C
C

9P
93

60
/9

7
50

armv4 x x

armv5te x x

xscale x

When debugging with the BDI2000:

On the A9M9750DEV development board, set dip-switch S4-1 and S4-3 to "on"
� � � � � � � 3 5

D e b u g g i n g a p p l i c a t i o n s
Included pre-built applications

The sources for the included applications can be found in the software folder on the
LxNETES CD.

Shell applications: busybox

The “busybox” includes all standard shell applications like “cat”, “chmod”, “echo”,

“mount”, “sh” and some more. They are linked into one static application to save flash
memory, at the cost of a larger RAM footprint for each application, so this is not
recommended for daemons. LxNETES has stripped off the less important applications in
order to obtain a small busybox binary.

Telnet daemon: utelnetd

Utelnetd is a small telnet daemon. It is launched by “init”. For login use the Telnet on our
host computer to connect to the target.

You don’t need to provide username or password.

Web server: Boa

Boa is a small single-tasking HTTP server. The configuration file “boa.conf” is located in
the “/etc/boa/” directory on the target. It can be modified on the host system. There it is
located in “base_rootfs/etc/boa/” in the source directory.

Debug server: gdbserver

With gdbserver it is possible to debug on a remote machine while the debugger itself runs
on the host system.
3 6 � � � � � � � L x N E T E S U s e r ’ s G u i d e

A p p l i c a t i o n D e v e l o p m e n t
Nano-X/microwindows

Nano-X makes it possible to write applications using the framebuffer with an API similar
to Xlib. There are two demo applications. To use either you must start with the nano-X
server.

and then the application.

For further details see http://www.microwindows.org/

Embedded Qt

Embedded Qt is a small variant from the Troll Tech Cross Platform GUI toolkit. A demo
is included. To start the demo enter the following:

For further information see http://www.trolltech.com/products/qt3/embedded/

nano-X &

nanox_bar &

On targets with small flash, nano-X is disabled by default. You may pass
“--enable nano-X” to configure, despite the flash size, but you risk overwriting the
rootfs on the target.

qthello -qws

On targets with small flash, Qt is disabled by default. You may pass “--enable qt” to
configure, despite the flash size, but you risk overwriting the rootfs on the target.
� � � � � � � 3 7

U s e f u l a p p l i c a t i o n s
Useful applications

mem

With this application you can read and write the contents of the SDRAM.

All the options of this tool are accessible through a command line. Just type an 'h' to list all
the available commands:

mem

-> h

c <addr> [<len>]: Display char at

w <addr> [<len>]: Display word at

i <addr> [<len>]: Display int at

s <addr>: Display string at

B <addr> <val> [<len>]: Write byteval at addr

W <addr> <val> [<len>]: Write wordval at addr

I <addr> <val> [<len>]: Write intval at addr

/ <addr> <txt> [<len>]: Search string at

h :Display this help

q :Quit

-> b 0x31000000 32

0x31000000: 0xff 0xff 0xff 0xbf 0xfd 0x7d 0xbf 0xcd 0xf9 0xfb 0xfe 0xfb 0xff
0xfb 0xff 0xfb

0x31000010: 0xbf 0xd7 0xf5 0xff 0xff 0xff 0xf7 0xff 0xff 0xff 0xee 0xff 0x7f
0x7f 0xff 0xe7

->
3 8 � � � � � � � L x N E T E S U s e r ’ s G u i d e

K e r n e l D e v e l o p m e n t
Kernel Development
C H A P T E R 6

Writing kernel modules

What is a kernel module?

Modules are pieces of code that can be loaded and unloaded into the kernel upon demand. They are useful
because they extend the functionality of the kernel without the need to reboot the system.

A typical kernel module is the device driver, which allows the kernel to access hardware connected to the
system. Without modules, you would have to build substantial kernels and add new functionality directly
into the kernel image. Besides having extensive kernels, you would be required to rebuild and reboot the
kernel for every new functionality.

Writing your own kernel modules

Some kernel modules are included as examples. They can be found in the modules/ subdirectory of the
project folder. Each kernel module must be stored in a different folder.

The easiest way to create your own kernel module is to clone one of the existing modules:

Add your source files

Add the sources for your kernel module directly to the new folder you’ve just created, and remove the
original source files of the folder that you cloned.

~/LxNETES3.2$ cd modules

~/LxNETES3.2/modules$ cp -r minimal my_kmodule

~/LxNETES3.2/modules$ cd my_kmodule
� � � � � � � 3 9

W r i t i n g k e r n e l m o d u l e s
 Add the module to the build environment

You have to edit "my_kmodule/Makefile.in" so that the build environment knows what files to build.

To include them for the target build, append them to obj-m like "obj-m += my_module.o". The modules
must be named like their C-source files. Usable object modules will have the extension ".ko".

Then you have to add the module to the list of available modules. Edit the configure.ac and modify the
line adding the module minimal to add your module to the list.

Building and loading of kernel modules

For building the new kernel module, just rebuild your project by issuing make in the build directory.

If you reboot your target with the newly created rootfs (or if you mount your rootfs via nfs), The
modules can be loaded in the target with "modprobe my_kmodule"

There is an example "minimal.c" for the most minimalist kernel module. Try it with
"modprobe/minimal"

Included Kernel modules

minimal

This is a minimalist kernel module which actually does nothing. It is only a module to test the
functionality of the load and unload functions of the kernel.

Add your kernel modules here
obj-m += my_module.o

LXNETES_KMODULES([minimal my_kmodule])

modprobe /minimal
Minimal driver $Revision: 1.1 $ loaded

cat /proc/modules
minimal 1536 0 - Live 0xbf000000

rmmod minimal
Minimal driver unloaded

cat /proc/modules
4 0 � � � � � � � L x N E T E S U s e r ’ s G u i d e

A d v a n c e d T o p i c s
Advanced Topics
C H A P T E R 7

Modifying the default project

The following information is the default kernel configuration for LxNETES:

� serial baudrate 38400 bps

� Ethernet enabled

� uses devfs per default

The default configuration is made up of 2 layers:

� Kernel command line parameters: set by U-Boot

� Kernel configuration: lowest priority

The kernel command line parameters can overwrite some configurations. However, if
there is no boot loader, the only way the kernel command line parameters can be entered is
by compiling them into the kernel.

To change the kernel configuration to the needs of your target system, enter the following
commands from the project build directory:

The menu-driven kernel configuration tool “xconfig” is started. Here you can do your
changes.

Figure 8-1: Kernel configuration

$ make xconfig
� � � � � � � 4 1

M o d i f y i n g t h e d e f a u l t p r o j e c t
Once you have configured the kernel to your system needs, save the configuration and
exit. To rebuild the kernel use one of the build commands seen before.

$ make (to build the entire project)
$ make uImage(to build only the linux kernel)
4 2 � � � � � � � L x N E T E S U s e r ’ s G u i d e

A d v a n c e d T o p i c s
Building a custom project

To create a custom project, that is a project for your custom hardware, first configure the
default project. Follow the steps described in "Building the Default Project" up to running
configure. Then run:

In this example, ConnectCore 9P 9360 dev module (cc9p9360dev)was used as the template
project. Substitute the platform that is most similar to the platform you intend to create.

Then create a new build directory and configure for your custom platform:

Check the detected settings are correct in the new run of configure.

Now you can reconfigure your custom kernel by running:

You can build and install the project for the default platform after the previous steps are
complete.

$ ~/LxNETES-3.2/build$ bin/add_platform –b cc9p9360dev custom
$ checking whether make sets $(MAKE)... yes
$...

~/LxNETES-3.2/build$ cd ..

~/LxNETES-3.2$ mkdir build_custom

~/LxNETES-3.2$ cd build_custom

~/LxNETES-3.2/build_custom$../configure –-enable-platform=custom

...

~/LxNETES-3.2/build_custom$ make xconfig

You need QT installed to run make xconfig (Debian package libqt3-mt-dev). If you don't
have it, use menuconfig (requiring ncurses, Debian package libncurses5-dev).

You have to run make xconfig in the build directory. Running in other directories (e.g.
~/LxNETES-3.2/build_custom, ~/LxNETES-3.2/build_custom/linux, or ~/LxNETES-3.2/
linux) will fail.
� � � � � � � 4 3

B o o t p r o c e s s
Boot process

This chapter describes the boot process of U-Boot and Linux.

Introduction

A boot loader is a small piece of software that executes soon after powering up a
computer. On a desktop PC it resides on the master boot record (MBR) of the hard drive
and is executed after the PC BIOS performs various system initializations. The boot
loader then passes system information to the kernel and then executes the kernel. For
instance, the boot loader tells the kernel which hard drive partition to mount as root.

In an embedded system the role of the boot loader is more complicated since these
systems do not have a BIOS to perform the initial system configuration. The low level
initialization of the microprocessor, memory controllers and other board specific hardware
varies from board to board and CPU to CPU. These initializations must be performed
before a Linux kernel image can execute.

At a minimum, a boot loader for an embedded system performs the following functions:

� Initialize the hardware, especially the memory controller.

� Provides boot parameters for the operating system image.

� Starts the operating system image.

Additionally, most boot loaders also provide convenient features that simplify
development and update of the firmware:

� Reading and writing arbitrary memory locations.

� Uploading new binary images to the board's RAM via a serial line or Ethernet

� Copying binary images from RAM to Flash memory.

U-Boot

After power-up or reset the processor loads the U-Boot boot loader. This is performed in
different steps and depends on the target.
4 4 � � � � � � � L x N E T E S U s e r ’ s G u i d e

A d v a n c e d T o p i c s
ConnectCore 9P 9360/9750

On the ConnectCore 9P 9360 and ConnectCore 9P 9750 modules, the SPI boot loader is
loaded from the SPI EEPROM which initializes the RAM. Then additional code (~1kB) is
loaded into RAM (address 0x0). This code loads U-Boot from NAND flash and executes
it.

In the next step, U-Boot configures the serial console, the Ethernet interface and the Flash
memory and loads the settings stored as environment variables in the nonvolatile memory.

Then, it waits some seconds (programmable) before it loads and starts the operating
system image. You can stop the auto-boot process by sending a character to the serial port
(pressing a key on the serial console connected to the target). If stopped, U-Boot displays
a command line console similar to this:

U-Boot 1.1.3 (Sep 15 2005 - 17:02:40) FS.1

CC9P9360 module on A9M9750DEV_1 development board

CPLD Version: 2.1

FPGA Version: 2.1

U-Boot code: 00080000 -> 000A6020 BSS: -> 000B8A00

RAM Configuration:

Bank # 0: 00000000 32 MB

NAND: 32 MB

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

CC9P9360 #
� � � � � � � 4 5

L i n u x b o o t m e t h o d s
Linux boot methods

Linux is booted by U-Boot in one of the following ways:

� TFTP/NFS

� Flash memory

� USB storage device (e.g. an USB memory stick)

The following information describes each boot method.

TFTP/NFS

With this method, the Linux kernel is downloaded through Ethernet via TFTP protocol
from the server's TFTP folder.

Use the "tftp" command from the U-Boot command line to copy a kernel image from your
TFTP server to the target's RAM. Then use "bootm" to execute it.

NAND-Flash

This method will load the Linux kernel and the root file system from NAND Flash.

Use the "nand read.jffs2" command to load the kernel from the NAND flash.

After copying the kernel image from NAND to flash you can run it with "bootm".

setenv bootargs console=...
ip=$(ipaddr):$(serverip)::$(netmask):2440:eth0:off root=nfs
nfsroot=$(serverip):$(npath)

tftp <load_addr> <kernel_image>
bootm <load_addr>

A faster way to do this is to use the "boot_net" macro, which loads a kernel image from your
TFTP server to the target's RAM and then connect to a root file system via NFS.

setenv bootargs console=...
ip=$(ipaddr):$(serverip)::$(netmask):2440:eth0:off root=/dev/mtdblock2
rootfstype=jffs2

nand read.jffs2s <load_addr> <start flash> <kernel_image_size>
bootm <load_addr>
4 6 � � � � � � � L x N E T E S U s e r ’ s G u i d e

A d v a n c e d T o p i c s
NOR Flash

Use the following commands if you have NOR Flash (similar to booting from NAND).

USB

It is possible to load a kernel image from a USB storage device. Copy the kernal to the
FAT partition of the USB device.

Copy the kernal to the USB stick.

The commands update_kernel_usb and guu are provided.

Enter the following to copy the kernel from the USB stick to the memory.

The image can now be executed with the bootm command.

There is also a macro for boot_usb which does both steps. It is run boot_usb.

A faster way to do this is to use the "boot_flash" macro.

setenv bootargs console=...
ip=$(ipaddr):$(serverip)::$(netmask):2440:eth0:off root=/dev/mtdblock2
rootfstype=jffs2

cp.b <start flash> <load_addr> <kernel_image_size>
bootm <load_addr>

A faster way to do this is to use the "boot_flash" macro.

run guu

run boot_usb
� � � � � � � 4 7

L i n u x b o o t p r o c e s s
Update the kenel from the USB stick to the memory and write it to flash memory.

Linux boot process

The command “bootm” uncompress the kernel and runs the function start_kernel(). Once
the kernel is started, several options are given to the kernel: machine type, command line
and ATAG list. The kernel itself does some basic initialization;

� MMU

� Machine Type

� Interrupt Handler

� Timer

� Loading drivers

run update_kernel_usb
4 8 � � � � � � � L x N E T E S U s e r ’ s G u i d e

A d v a n c e d T o p i c s

Uncompressing
Linux...

done, booting the kernel.

Linux version 2.6.12.5-fs.1 (jdietsch@onyx.fsforth.de) (gcc version 3.4.4) #1
Mon Sep 19 17:30:44 CEST 2005

CPU: ARM926EJ-Sid(wb) [41069264] revision 4 (ARMv5TEJ)

CPU0: D VIVT write-back cache

CPU0: I cache: 8192 bytes, associativity 4, 32 byte lines, 64 sets

CPU0: D cache: 4096 bytes, associativity 4, 32 byte lines, 32 sets

Machine: A9M9360

Memory policy: ECC disabled, Data cache writeback

NS9360 Rev. 0, running at 176 MHz

Built 1 zonelists

Kernel command line: console=ttyS0,38400
ip=192.168.42.10:192.168.42.1:192.168.42.1:255.255.255.0:a9m9360:eth0:off
nfsroot=192.168.42.1:/exports/nfsroot-cc9p9360dev root=nfs

PID hash table entries: 256 (order: 8, 4096 bytes)

Console: colour dummy device 80x30

Dentry cache hash table entries: 8192 (order: 3, 32768 bytes)

Inode-cache hash table entries: 4096 (order: 2, 16384 bytes)

Memory: 32MB = 32MB total

Memory: 29756KB available (2097K code, 387K data, 104K init)

Mount-cache hash table entries: 512

CPU: Testing write buffer coherency: ok

NET: Registered protocol family 16

SCSI subsystem initialized

usbcore: registered new driver usbfs

Freeing init memory: 104K

Mounting kernel filesystems: proc sysfs /dev/pts.

Starting syslog daemon: syslogd.

Starting boa webserver: boa.

Starting telnet server: utelnetd.

BusyBox v1.00 (2005.09.05-08:11+0000) Built-in shell (ash)

Enter 'help' for a list of built-in commands.

/ #
� � � � � � � 4 9

L i n u x b o o t p r o c e s s
If a wrong command line parameter for "console=" is used, nothing will be displayed after
"done, booting the kernel". The system may continue to boot. You may connect to the
target by Telnet after telnetd is configured .

After finishing the initialization, the filesystems are mounted and the process "/sbin/init"
is started with process ID 0. Init runs all applications stated in "/etc/inittab", e.g. "/etc/
init.d/rcS", the various daemons like telnetd and shells on the serial consoles.

Passing arguments to the kernel

Depending on the kernel settings, additional command line arguments may be given to the
kernel. This can be modified by editing the std_bootarg environment variable. For
example, to enable a console on a different serial port than the standard one when Linux
boots, add 'console=ttyS1':

Automating the image download

It is also possible to automate the boot process to always boot by network when the target
is reset. Adjust the environment variable "bootcmd" to contain the " run boottftp” script
seen before:

Don't forget "saveenv" to store your settings.

Updating the Flash memory

This chapter describes how you can update the U-Boot boot loader, the Linux kernel, and
the root file system in the Flash memory of the module.

It is strongly recommended that you test your images before updating the Flash memory
by downloading them over Ethernet using TFTP.

setenv std_bootarg console=ttyS1
saveenv

setenv bootcmd run boot_net
saveenv

If you want to store a script with several commands into a variable, separate each
command with a semicolon prefixed with a "\" to prevent ending the setenv
command itself. (i.e. setenv MyCommand cmd1\;cmd2\;cmd3)
5 0 � � � � � � � L x N E T E S U s e r ’ s G u i d e

A d v a n c e d T o p i c s
Updating a running system (the easy way)

On a running system, that is a system able to start the boot loader, U-Boot contains pre-
defined macros that can update the on-module flash memory.

Power up (or reset) the target. After 2-4 seconds, the boot loader messages appear on the
serial port. Hit any key to interrupt the auto-boot process. You can break into the U-Boot
command line interface by pressing any key.

There are 3 main flash partitions: U-Boot, kernel image, and a root file system. To update
a partition using a TFTP server, run one or more of the following macros from the U-Boot
prompt:

You can also copy the images onto a vfat formatted usb-stick, connect it to the target, and
run one or more of these macros from the U-Boot prompt:

Updating a running system manually

Advanced users may want to have more control over the flash update process. In this case,
use the steps below to update an image on a running system. It is presumed you are using
the memory layout as described in Appendix A of this document.

.

If the boot loader is corrupted, you have to first use a debugger to restore
the boot loader which then can be used to restore the remaining images.

run update_uboot_tftp
run update_kernel_tftp
run update_rootfs_tftp

run update_uboot_usb
run update_kernel_usb
run update_rootfs_usb

For more information about the use of U-Boot commands, refer Appendix A or
the related documentation in Appendix B.
� � � � � � � 5 1

L i n u x b o o t p r o c e s s
Step 1: Download the new image file to RAM

The first step is to download the image into RAM. Specify the start address, the end
address, and the size of the image in RAM, for example:

Step 2: Erase the Flash partition

The second step is to erase the Flash partition sectors. Specify the start address and the end
address of the range to be deleted.

For modules with NAND flash, use this command:

For modules with NOR flash, use this command:

Step 3: Write the image to Flash

After the image is downloaded into RAM and the flash erased, the new image can be
copied into Flash.

For modules with NAND flash, use this command:

mw.l <start address in RAM> <end address in RAM> <image size>
tftp <start address> <image name>
Filename <image name>.
Load address: <memory address>

Loading:

 ###

 ###

 ##

done

nand erase <start address in Flash> <size>

erase <start address in Flash> <end address in Flash>

nand write.jffs2 <start address in RAM> <start address in Flash> <image
size>
5 2 � � � � � � � L x N E T E S U s e r ’ s G u i d e

A d v a n c e d T o p i c s
For modules with NOR flash, use this command:

ConnectCore 9P 9360/9750

The following commands are to update the U-Boot loader, Kernel image, and Root file
system.

U-Boot

To update the U-Boot boot loader, type:

mw.l 100000 ffffffff 10000

tftp 100000 <u-boot_image>

nand erase 0 40000

nand write.jffs2 100000 0 u-boot_image_size

reset

Kernel

To update the Linux kernel image, type:

tftp 100000 <kernel_image>

nand erase 40000 2C0000

nand write.jffs2 100000 40000 kernel_image_size

Root File System

To update the root file system, type:

tftp 100000 <rootfs_image>

nand erase 300000 (Size of flash – 3MB)

nand write.jffs2 100000 300000 rootfs_image_size

cp.b <start address in RAM> <start address in Flash> <image size>
� � � � � � � 5 3

U p d a t i n g a c o r r u p t e d s y s t e m u s i n g a d e b u g g e r
Updating a corrupted system using a debugger

ConnectCore 9P 9360/9750

If the Flash memory has become corrupted and the system cannot boot anymore, then the
Flash memory must be re-programmed using the JTAG interface and the JTAG-Booster.

Connect the JTAG-Boosters 8-pin connector to the development board (JTAG X12). The
two black cables point to pin 1.

Set DIP-switch S4-1 to "on" and S4-2 to S4-8 to "off".

Copy the JTAG tools from the LxNETES-3.2 CD to the host system. A detailed manual
how to setup the JTAG-Booster can be found on the LxNETES-3.2 CD, hardware/jtag.

On a Linux system use a tool like dosemu to get the JTAG tools running.

Once you have installed the JTAG tools on your host computer, copy the U-Boot image
that you want to program into the Flash memory, to the same directory and execute the
batch file to flash U-Boot.

After a successful programming of U-Boot, the kernel and the Root File System can be
updated (if they were corrupted, too).
5 4 � � � � � � � L x N E T E S U s e r ’ s G u i d e

R o o t F i l e S y s t e m T y p e s
Root File System Types

C H A P T E R 8

The following describes the different possibilities which can be used as root file system.
The type of rootfs must be passed as an argument to kernel by means of the bootargs
environment variable of U-Boot.

NFSROOT

The rootfs may be in a different computer on the network and not within the target. This
can be useful if, for example, a RAM disk is too small to include all the necessary files, or
allow rapid turnaround during testing and development.

An NFS root allows quick kernel downloads, helps ensure file system integrity (since the
server is basically impervious to crashes by the client), and provides virtually infinite
storage.

During development it feel free to use an NFS directory as root file system. This avoids
unnecessary flash erases, which on a power failure will result in the need to re-program
the kernel into flash. It also increases the lifetime of the module because the flash has a
limited number of erase cycles. Initialization scripts may be quickly modified since a
failure will not result in an unusable system. Initialization scripts can be fixed on the host
then reset the target.

The root file system can be installed to "/exports/BOOTDIR" issuing this command in the
project directory

To test the new image run the following command at the U-Boot prompt in your target:

$ make install-nfsroot
� � � � � � � 5 5

This script does three steps (that you can also do manually):

Step 1: Set bootargs to be passed to the kernel

The environmental variable bootargs must be updated to tell Linux that the rootfs is taken
via NFS. To manually do this enter the following commands (it is supposed that the
network variables serverip and nfspath have been already set). The values for ip and
console have to be filled depending on the platform.

Step 2: Download the kernel to RAM via TFTP

The following commands download the “/tftpboot/uImage-unc90” image to RAM
memory

Step 3: Launch the kernel from RAM

Now that the kernel image has been downloaded to RAM, we can execute Linux with the
following command

run boot_net

setenv bootargs nfsroot=$(serverip):$(nfspath) root=nfs ip=... console=...
saveenv

tftp 20100000 uImage-unc90dev

bootm 20100000

Remember that you must have the U-Boot network environment variables properly
configured (ipaddr, serverip,...).
5 6 � � � � � � � L x N E T E S U s e r ’ s G u i d e

R o o t F i l e S y s t e m T y p e s
JFFS2

JFFS is a log-structured journaling flash file system which was designed to be used on
Flash devices in embedded systems. It was originally developed for the 2.0 kernel by Axis
Communications. JFFS2 is an improved version of JFFS which includes compression and
improved read/write access.

Find more about JFFS2 at http://sourceware.org/jffs2

NAND chips are not guaranteed to be error free and most chips have bad blocks.
Therefore, U-Boot as well as Linux has to know how to handle these bad blocks. Both use
JFFS2 for this purpose.

U-boot provides the commands "nand read.jffs2.s" and "nand write.jffs2". Both
commands are skipping bad blocks. Therefore, there must be some space left for reserve
blocks. In U-Boot you can run the "nand bad" command for a summary of known bad
blocks on the flash device.

In Linux a JFFS2 driver for NOR and NAND chips can be used.

If a jffs2 image should be copied to a partition it must be ensured that the image was
created with the correct erase size of the used chip. Otherwise Linux will print error
messages on the screen.

To reduce memory allocation Linux uses a virtual erase size if the physical erase size of
the chip is to small. A message like the one below may be printed on the console

Another message which could be printed on the console is

This message doesn't indicate a problem. Instead, it is printed if a block of data is partially
written. These messages will disappear when the garbage collection restructures the
remaining space

jffs2: Erase block size too small (XXKiB. Using virtual blocks size(XXKiB)
instead

Empty flash at 0xXXXXXXXX ends at 0xXXXXXXXX
� � � � � � � 5 7

The message above is printed if the file system was not cleanly unmounted. The system
should not be powered off before all partitions are unmounted. After a clean unmount, the
message should disappear.

Step 1: Set bootargs to be passed to the kernel

The environmental variable bootargs must be updated to tell Linux that the rootfs is taken
from Flash and it is stored in JFFS2 file system. Enter the following commands to
manually initate these commands:

Step 2: Copy the kernel to RAM

Depending on the flash type of your platform, use for NOR flash the following command
to copy the kernel from Flash to RAM memory:

For NAND flash use the following command:

Step 3: Launch the kernel from RAM

Now that the kernel image has been copied to RAM, we can execute Linux with the
following command:

jffs2_get_inode_nodes(): Data CRC failed on node at 0xXX XXXXXX: Read
0xXXXXXXXX, calculated 0xXXXXXXXX

setenv bootargs root=/dev/mtdblock3 rw rootfstype=jffs2 ip=... console=...
saveenv

cp.b <startaddr> <loadaddr> <image_size>

nand read.jffs2s <loadaddr> <startaddr> <image_size>

bootm <loadaddr>
5 8 � � � � � � � L x N E T E S U s e r ’ s G u i d e

R o o t F i l e S y s t e m T y p e s
You should use a separate data partition for your data which is frequently updated so
your rootfs does not get corrupted.
� � � � � � � 5 9

6 0 � � � � � � � L x N E T E S U s e r ’ s G u i d e

I n t e r f a c e s & D e v i c e s
Interfaces & Devices

C H A P T E R 9

The following interfaces and devices are supported in the current LxNETES version:

Refer to the documentation that came with the development board for the location of the
interfaces on the board as well as any board configuration required to enable these
interfaces.

Serial interface

A driver for the serial interfaces is included and enabled in the default kernel
configuration. Devices can be accessed via /dev/ttyS<n>.

a9m2410 a9m2440 cc9c cc9p9360 cc9p9750 ccxp270 unc90

Compact Flash X X X X X
only available
on the
UNCBASCF
base board

Ethernet X X X X X X X

I2C Interface X X X X X X X

LCD X X X X X

PCI n/a n/a n/a n/a X n/a n/a

RTC X X X X X X

SD card X X n/a

Serial X X X X X X X

SPI X X X X

Touch screen X X X X

USB Host X X X X X X X
� � � � � � � 6 1

USB host interface

A USB host driver is included and enabled in the default kernel configuration. To operate
multiple USB devices simultaneously, connect a USB hub to the USB host port.

A memory stick can be mounted as followed

I2C interface

A driver for the I2C interface is included and enabled in the default kernel configuration.
Devices attached to the I2C interface can be accessed via /sys/bus/i2c/device/<your
device>.

SPI interface

A driver for the SPI interface is included and enabled in the default kernel configuration.
It can be accessed via /sys/bus/spi/device/<your device>.

LCD interface

A LCD frame buffer driver is included and enabled in the default Linux kernel
configuration.

Touch screen interface

CC9P9360/9750

A driver for the touch controller on the LCDMODARM development board, which is
connected via SPI, is included and enabled in the default Linux kernel configuration.

lxmount usb
ls -l /media/usbdisk
6 2 � � � � � � � L x N E T E S U s e r ’ s G u i d e

I n t e r f a c e s & D e v i c e s
Compact flash interface

CC9P6360/9750

A driver for the internal Compact Flash (CF) card interface is included and enabled in the
default kernel configuration.

A CF card can be mounted as follows

SD card interface

A SD card can be mounted as follows:

Real time clock (RTC)

A driver for the RTC, which is connected to the I2C interface, is included and enabled in
the default kernel configuration.

The system time and date is automatically set to the values of the RTC when the kernel
boots. This is done by calling /sbin/hwclock -s.

How to set the initial system date and time

Initially, the RTC doesn’t have a correct time/date value, so establish the correct time/date
on the Linux system using the date command. The parameters are given in the format
MMDDhhmmYYYY (month,day,hour,minutes,year). For example, if the date is June, 3rd
2005, at 13:22 enter:

lxmount cf
ls -l /media/cf

lxmount sd
ls -l /media/sd

date 060313222005

Fri Jun 3 13:22:00 UTC 2005
� � � � � � � 6 3

The next step is to store this information into the RTC. Use the application hwclock:

Now you can reset or power off your target. The small battery on the development board
will keep the correct time/date values and are saved when you power up your target again.

PCI interface

A driver for the PCI interface can be enabled in the kernel configuration. You can use
Mini-PCI cards with the Mini-PCI slot on the development board.

hwclock

Fri Jun 3 13:22:44 UTC 2005 0.000000 seconds
6 4 � � � � � � � L x N E T E S U s e r ’ s G u i d e

• •

Appendix A

Related documentation

CD contents

The CD contains all the necessary software and documentation needed for LxNETES.

Note: The folders 'images', 'LxNETES' and 'hardware' contain their own readme.txt file
including additional information about the directory content.

http://www.modarm9.com ModARM9 home page for forum, download area and FAQs

http://www.fsforth.de Manufacturer of UNC20, ModNET50, ModARM9

http://www.kernel.org Homepage of the Linux Kernel

http://u-boot.sourceforge.net Homepage of the U-Boot Loader

http://www.uclibc.org
Homepage of the user library and user applications. Toolchain
is also created by uclibc's build flow

http://www.abatron.ch Manufacturer of the BDI2000 for debugging via JTAG

http://www.samsung.com Manufacturer of S3C2410 processor

http://www.netsilicon.com Manufacturer of NS9750/ NS9360 processor

http://www.atmel.com Manufacturer of AT91RM9200 processor

Linux Device Drivers ISBN 0-596-00590-3

http://sourceware.org/jffs2 JFFS2 overview

http://sources.redhat.com/jffs2 Detailed Information about JFFS2

http://www.gnu.org/software/gdb/
documentation

GDB debugger documentation
� � � � � � � 6 5

R e l a t e d d o c u m e n t a t i o n
There following folders are on the CD:

Readme.txt

Briefly describes LxNETES and lists the CD contents.

RelNotes.txt

Contains the last release information.

install.sh

A script to install LxNETES on your host computer. For more information see chapter 4
(installation).

docs

The doc folder contains this User's Manual and additional documentation.

images

This folder contains pre-built images for your target platform. These images are already
programmed into the Flash memory on all modules shipped with a development kit.

The files in the imags folder are named according to the following scheme:

File Description

u-boot-<platform>.bin U-Boot boot loader image for <platform>

uImage-<platform> Linux kernel image for <platform>

rootfs-<platform> Root file system for <platform>
6 6 � � � � � � � L x N E T E S U s e r ’ s G u i d e

ConnectCore 9P 9360 (CC9P9360)

ConnectCore 9P 9750 (CC9P9750)

hardware

This folder contains hardware specific content. The JTAG Booster software (if
supported by the target platform) is located here, hardware reference manuals
and (depending on your target platform) files for CPLD logic.

Please refer to the documentation in this directory for more information.

LxNETES

These files will be installed on the development host computer during the
installation process. This includes source code and the environment to build the
complete LxNETES distribution

setup

This folder contains files needed to install LxNETES

File Description

u-boot-cc9p9360dev.bin U-Boot boot loader image for the ConnectCore 9P 9360 module on the
ConnectCore 9P development board.

uImage-cc9p9360dev.bin Linux kernel image for the ConnectCore 9P 9360 module on the ConnectCore
9P development board.

rootfs-cc9p9360dev.jffs2 Root file system for the ConnectCore 9P 9360 module.

File Description

u-boot-cc9p9750dev.bin
U-Boot boot loader image for ConnectCore 9P 9750 module on the
ConnectCore 9P development board (A9M9750DEV, P/N 376).

uImage-cc9p9750dev
The Linux kernel image for the ConnectCore 9P 9750 module on the
ConnectCore 9P development board (A9M9750DEV).

rootfs-cc9p9750dev.jffs2 Root file system for the ConnectCore 9P 9750 module.
� � � � � � � 6 7

M e m o r y l a y o u t s
upstream

LxNETES is based on various open source projects. The original source code
from these projects is stored in this folder. The following source code is
included:

Linux

Buildroot

U-Boot

This folder contains the source code of U-Boot including all patches which are
necessary for the specific target.

Memory layouts

Flash memory layout

The partitioning of the nonvolatile memory is described in this following table.

ConnectCore 9P 9360 / ConnectCore 9P 9750

SDRAM memory layout

The following tables describe some typical addresses in memory used by U-Boot and
Linux.

Flash Start Address Size Partition Name mtdblock/

0x00000000 0x00040000 U-Boot 0

0x00040000 0x002C0000 Kernel 1

0x00300000 (Size of flash – 3MB) rootfs 2
6 8 � � � � � � � L x N E T E S U s e r ’ s G u i d e

ConnectCore 9P 9360 / ConnectCore 9P 9750

RAM Start
Address

RAM End
Address

Description Used by

0x00000000 0x00080000 U-Boot stack

U-Boot0x00080000 TEXT_BASE

0x00080000 0x000C0000 U-Boot

0x00100000
default load address in U-
Boot for Linux kernel

Linux

0x00108000
entry point of the
decompressed kernel
� � � � � � � 6 9

M e m o r y l a y o u t s
7 0 � � � � � � � L x N E T E S U s e r ’ s G u i d e

• •

Appendix B

U-Boot command reference

This chapter gives an overview of common used U-Boot commands. Detailed information
can be found at:

http://www.denx.de/wiki/view/DULG/Manual?stickboard=tqm8xxl

To get to the U-Boot prompt press any key immediately after you have powered the target
on or pressed reset. At the prompt type “help” or “?” to get an overview of the supported
commands.
� � � � � � � 7 1

http://www.denx.de/wiki/view/DULG/Manual?stickboard=tqm8xxl

U - B o o t c o m m a n d r e f e r e n c e
help
? - alias for 'help'
autoscr - run script from memory
base - print or set address offset
bdinfo - print Board Info structure
boot - boot default, i.e., run 'bootcmd'
bootd - boot default, i.e., run 'bootcmd'
bootelf - Boot from an ELF image in memory
bootm - boot application image from memory
bootp - boot image via network using BootP/TFTP protocol
bootvx - Boot vxWorks from an ELF image
cmp - memory compare
coninfo - print console devices and information
cp - memory copy
crc32 - checksum calculation
date - get/set/reset date & time
echo - echo args to console
eeprom - EEPROM sub-system
fatinfo - print information about filesystem
fatload - load binary file from a dos filesystem
fatls - list files in a directory (default /)
fsinfo - print information about filesystems
fsload - load binary file from a filesystem image
go - start application at address 'addr'
help - print online help
icrc32 - checksum calculation
iloop - infinite loop on address range
imd - i2c memory display
iminfo - print header information for application image
imls - list all images found in flash
imm - i2c memory modify (auto-incrementing)
imw - memory write (fill)
inm - memory modify (constant address)
iprobe - probe to discover valid I2C chip addresses
itest - return true/false on integer compare
loadb - load binary file over serial line (kermit mode)
loads - load S-Record file over serial line
loop - infinite loop on address range
ls - list files in a directory (default /)
md - memory display
mm - memory modify (auto-incrementing)
mtest - simple RAM test
mw - memory write (fill)
nand - NAND sub-system
nboot - boot from NAND device
nfs - boot image via network using NFS protocol
nm - memory modify (constant address)
ping - send ICMP ECHO_REQUEST to network host
printenv- print environment variables
rarpboot- boot image via network using RARP/TFTP protocol
reset - Perform RESET of the CPU
run - run commands in an environment variable
saveenv - save environment variables to persistent storage
setenv - set environment variables
sleep - delay execution for some time
tftpboot- boot image via network using TFTP protocol
usb - USB sub-system
usbboot - boot from USB device
version - print monitor version
7 2 � � � � � � � L x N E T E S U s e r ’ s G u i d e

Each of these commands has additional help available, which can be viewed by entering
help <command>.

The following table explains some of the more often used commands:

All numeric values, which are needed for different commands, are interpreted as
HEX values. Entering 30100000 means 0x30100000.To speed up programming,
the real size of the image files can be used. In the commands above we have
used the maximum size of the partition instead of the actual size of the image
files (0x180000 words = 3 Mb)

bootm ADDR ARG
boots image from ADDR passing arguments ARG. ARG is the
address of the initrd image

boot, bootd boots image via running default bootcmd

nand bad prints a list of bad blocks on the current device

nand erase OFF SIZE erase SIZE bytes from OFF

nand erase clean
erase entire NAND Flash

WARNING: after this command, U-Boot has to be reprogrammed

nand read ADDR OFF SIZE
read SIZE bytes from OFF in NAND flash to ADDR. If there are
bad blocks the command stops with an error.

nand read.jffs2s ADDR OFF SIZE
read SIZE bytes from OFF in NAND flash to ADDR. Bad blocks are
skipped.

nand write ADDR OFF SIZE
write SIZE bytes from ADDR to OFF in NAND flash. If there are
bad blocks or writing fails the command stops with an error.

nand write.jffs2 ADDR OFF SIZE
write SIZE bytes from ADDR to OFF in NAND flash. Bad blocks
are skipped.

printenv prints the environment variables

saveenv stores the changed environment variables persistently

setenv VARIABLE VALUE
sets the environment variable VARIABLE to the given value
VALUE. If a semicolon is used, to set different variables, it has to
be masked with “\”

run VARIABLE executes the commands of VARIABLE like a script

tftp ADDR image
loads image to ADDR via network using TFTP and the environment
variables “ipaddr” and “serverip”

usb reset enables and resets the USB interface

usb scan scans the bus for attached USB storage devices

usb tree shows the connected devices
� � � � � � � 7 3

U - B o o t c o m m a n d r e f e r e n c e
Note that not all U-Boot commands are supported by every platform. The following table
shows which are available:

fatload usb DEV:PART ADDR
image

loads image to ADDR from USB storage device DEV with the
partiton number PART to ADDR

help shows all of the available commands

help ITEM
shows all of the available commands belonging to a particular item.
e.g. help nand

C
C

9C

C
C

X
P

27
0

U
N

C
90

A
9M

24
10

A
9M

24
40

C
C

9P

? X X X X X X
a u t o s c r X X X X X X
b a s e X X X X X X
b d i n f o X X X X X
b o o t X X X X X X
b o o t d X X X X X X
b o o t e l f X X X X
b o o t m X X X X X
b o o t p X X X X X
b o o t v x
c m p X X X X X
c o n i n f o X X X X X
c p X X X X X
c r c 3 2 X X X X X
d a t e X X X X
e c h o X X X X X
e e p r o m X X X
f a t i n f o X X X X X
f a t l o a d X X X X X
f a t l s X X X X X
f s i n f o X X X X
f s l o a d X X X X
g o X X X X X
h e l p X X X X X
i c r c 3 2 X X X X X
i l o o p
i m d X
i m i n f o X X X X
i m l s X
i m m X
i m w X
i n m X
i p r o b e X X X X X
i t e s t X X X X X
l o a d b X X X X X
l o a d s
l o o p X
l s x X X X
m d x X X X X
m m x X X X X
m t e s t x X X X X
m w X X X X
n a n d X X X
n b o o t X X X
n f s X X X X X
n m X
p i n g X X X X X
p r i n t e n v X X X X X
r a r p b o o t X
r e s e t X X X X X
r u n X X X X X
s a v e e n v X X X X X
s e t e n v X X X X X
s l e e p X X X X
t f t p b o o t X X X X X
u s b X X X X X
7 4 � � � � � � � L x N E T E S U s e r ’ s G u i d e

The command “run” allows to execute variables as sequence od commands.

Here values of other variables could be used to simplify the scripts. (e.g. $(filesize))

Example (A9M24x0):

The following variables are available:

ipaddr = 192.168.42.10

serverip = 192.168.42.1

loadaddress = 0x30100000

bootfile = uImage-a9m2410dev

setenv bootcmd tftp\;bootm

This command is identical with:

setenv bootcmd tftp 30100000 uImage-a9m2410dev\;bootm 30100000

and:

setenv bootcmd tftp 30100000 $(bootfile)\;bootm 30100000

User keys

Note: CC9P9360/9750 and A9M2410/2440 only

There are two User Keys on the development board, which can be used with functions
from U-Boot. It is common to use them for booting different kernel versions or using
different rootfs. For example:

When User Key 1 is pressed in the start phase of U-Boot, the contents of the variable
“key1” is executed, i.e. the target will boot from a USB medium.

When User Key 2 is pressed the target boots via TFTP/NFS.

setenv key1 run boot_usb
setenv key2 run boot_net
saveenv
� � � � � � � 7 5

	Introduction
	Overview
	Cross-development environment
	Linux kernel sources
	Template project

	Features
	What’s new in LxNETES 3.2?
	General features
	Conventions used in this manual
	Acronyms and abbreviations

	Requirements
	System Requirements/Prerequisites
	System requirements
	Disk space
	Applications & Services
	TFTP daemon
	NFS server
	JTAG-Booster

	Getting Started
	Introduction
	Connecting host PC with development board
	Minicom
	Seyon

	Installing LxNETES
	Guided Installation
	Manual Installation

	Building the First Project
	Building the Default Project

	Application Development
	Writing applications
	Adding your own applications
	Using C++

	Debugging applications
	Included pre-built applications
	Shell applications: busybox
	Telnet daemon: utelnetd
	Web server: Boa
	Debug server: gdbserver
	Nano-X/microwindows
	Embedded Qt

	Useful applications
	mem

	Kernel Development
	Writing kernel modules
	What is a kernel module?
	Writing your own kernel modules
	Add your source files
	Add the module to the build environment
	Building and loading of kernel modules
	Included Kernel modules
	minimal

	Advanced Topics
	Modifying the default project
	Building a custom project
	Boot process
	Introduction

	U-Boot
	ConnectCore 9P 9360/9750

	Linux boot methods
	TFTP/NFS
	NAND-Flash
	NOR Flash
	USB

	Linux boot process
	Passing arguments to the kernel
	Automating the image download
	Updating the Flash memory
	Updating a running system (the easy way)
	Updating a running system manually
	ConnectCore 9P 9360/9750

	Updating a corrupted system using a debugger
	ConnectCore 9P 9360/9750

	Root File System Types
	NFSROOT
	JFFS2

	Interfaces & Devices
	Serial interface
	USB host interface
	I2C interface
	SPI interface
	LCD interface
	Touch screen interface
	Compact flash interface
	SD card interface
	Real time clock (RTC)
	How to set the initial system date and time
	PCI interface
	Related documentation
	CD contents
	Readme.txt
	RelNotes.txt
	install.sh
	docs
	images
	ConnectCore 9P 9360 (CC9P9360)
	ConnectCore 9P 9750 (CC9P9750)
	hardware
	LxNETES

	Memory layouts
	Flash memory layout
	ConnectCore 9P 9360 / ConnectCore 9P 9750
	SDRAM memory layout
	ConnectCore 9P 9360 / ConnectCore 9P 9750

	U-Boot command reference
	User keys

