JTAG-Booster for
Intel XScale
JTAG-Booster for Intel XScale

Table of Contents

1. General ..5
 1.1. Ordering Information ..6
 1.2. System Requirements ..6
 1.3. Contents of Distribution Disk ...7
 1.4. Connecting your PC to the target system ...8
 1.5. First Example with Intel PXA210/250..10
 1.6. First Example with Intel PXA255/26x ..13
 1.7. First Example with Intel IOP321..15
 1.8. First Example with Intel IXP425..17
 1.9. Trouble Shooting ..19
 1.10. Error Messages..20
 1.11. Initialization file JTAGxxx.INI..25
 1.12. Supported flash devices...56

2. JTAGxxx Parameter Description ...57
 2.1. Program a Flash Device ...60
 2.2. Read a Flash Device to file..64
 2.3. Verify a Flash Device with file...66
 2.4. Dump target memory..68
 2.5. Program an I²C-Device ...70
 2.6. Read an I²C-Device to file...72
 2.7. Verify an I²C-Device with file...74
 2.8. Dump an I²C-Device..76
 2.9. Toggle CPU pins ..78
 2.10. Polling CPU pins ..79
 2.11. Polling CPU pins while the CPU is running ..80
 2.12. Show status of all CPU pins while the CPU is running81

3. Implementation Information ..84

4. Converter Program HEX2BIN.EXE ..86

 5.1. Installation on a clean system...88
 5.2. Installation with already installed version 5.x/6.x of Kithara.................88
 5.3. Installation with already installed version 4.x of Kithara88

JTAG_XScaleb.doc
5.4. De-Installation version 5.x/6.x: ... 89
1. General

The programs JTAG250.EXE, JTAG255.EXE, JTAG321.EXE and JTAG425 use the JTAG port of the Intel XScale processors in conjunction with the small JTAG-Booster:

- to program data into flash memory
- to verify and read the contents of a flash memory
- to make a memory dump
- to access an I²C Device
- to test CPU signals

All functions are done without any piece of software running in the target. No firmware or BIOS must be written. Bootstrap software may be downloaded to initially unprogrammed memories.

The JTAG-BOOSTER’s software is highly optimized to the JTAG chain of a specific target CPU. To give support for all processors of the Intel XScale family, there are three different programs on the distribution disk:

- JTAG250.EXE : Tool for Intel PXA210/250
- JTAG255.EXE : Tool for Intel PXA255/26x
- JTAG321.EXE : Tool for Intel IOP321
- JTAG425.EXE : Tool for Intel IXP425

Please contact us, if you need support for other members of the Intel XScale family.

For latest documentation please refer to the file README.TXT on the distribution disk.
1.1. **Ordering Information**

The following related products are available:

- 9003 JTAG-Booster Intel XScale, 3.3V, PXA210/250, PXA255/26X, IOP321, PXA425
 DOS/Win9x/WinNT/Win2000/WinXP, delivered with adapter type 285

1.2. **System Requirements**

To successfully run this tool the following requirements must be met:

- MSDOS, WIN3.x, WIN9x, WinNT, Win2000 or WindowsXP
 (WinNT/Win2000/WindowsXP is supported with an additional tool, see chapter 5 “Support for Windows NT, Windows 2000 and Windows XP”)
- Intel 80386 or higher
- 205 kByte of free DOS memory
- Parallel Port
1.3. Contents of Distribution Disk

- **JTAG250.EXE**
 - **JTAG250.OVL**
 - Tool for Intel PXA210/250

- **JTAG250.INI**
 - Template configuration file for Intel PXA210/250. See chapter 1.11 "Initialization file JTAGxxx.INI"

- **JTAG255.EXE**
 - **JTAG255.OVL**
 - Tool for Intel PXA255/26x

- **JTAG255.INI**
 - Template configuration file for Intel PXA255/26x. See chapter 1.11 "Initialization file JTAGxxx.INI"

- **JTAG321.EXE**
 - **JTAG321.OVL**
 - Tool for Intel IOP321

- **JTAG321.INI**
 - Template configuration file for Intel IOP321. See chapter 1.11 "Initialization file JTAGxxx.INI"

- **JTAG425.EXE**
 - **JTAG425.OVL**
 - Tool for Intel IXP425

- **JTAG425.INI**
 - Template configuration file for Intel IXP425. See chapter 1.11 "Initialization file JTAGxxx.INI"

- **HEX2BIN.EXE**
 - Converter program to convert Intel HEX and Motorola S-Record files to binary. See chapter 4 "Converter Program HEX2BIN.EXE"

- **WinNT.zip**

- **JTAG_V4xx_FLAS HES.pdf**
 - List of all supported Flash devices

- **README.txt**
 - Release notes, new features, known problems
1.4. Connecting your PC to the target system

The JTAG-Booster can be plugged into standard parallel ports (LPT1-3) with a DB25-Connector.

![Diagram of JTAG-Booster connection](image)

The target end of the cable has the following reference:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2*</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCK</td>
<td>GND</td>
<td>TMS</td>
<td>TRST#</td>
<td>NC</td>
<td>TDI</td>
<td>TDO</td>
<td>+3.3V</td>
<td></td>
</tr>
</tbody>
</table>

*PIN 2 can be detected by the thick cable.

To connect your design to the JTAG-BOOSTER you need a single row berg connector with a spacing of 2.54mm on your PCB. The names refer to the target: Pin 7 is the target’s TDO pin and is an input on the JTAG-Booster’s side.

The 3.3V version of the JTAG-Booster (FS part number 285) is delivered together with this package. Don’t use the 5V version of the JTAG-Booster (FS part number 227) with a 3.3V target. **Don’t apply 5V to the 3.3V version of the JTAG-Booster!**

Your target must be able to power the JTAG-Booster, it draws about 100mA.

Before you start the program, the JTAG-BOOSTER must be plugged to a parallel interface of your PC and to the 8 pin JTAG connector on the target.
The utility is started with the general command line format: JTAGxxx

 JTAGxxx /function [filename] [/option_1] ... [/option_n].

Note that the function must be the first argument followed (if needed) by the filename.

If you want to cancel execution of JTAGxxx, press CTRL-Break-Key.

On any error the program aborts with an MSDOS error level of one.
1.5. First Example with Intel PXA210/250

In the following simple example it is assumed that the JTAG-Booster is connected to LPT1 of your PC and target power is on.

Typing

```
JTAG250 /P MYAPP.BIN
```

at the DOS prompt results in the following output:

```
JTAG250 --- JTAG utility for Intel PXA210/250
Copyright © FS FORTH-SYSTEME GmbH, Breisach
Version 4.xx of mm/dd/yyyy
(1) Configuration loaded from file JTAG250.INI
(2) Target: Generic Target
(3) Using LPT at I/O-address 0378h
(4) JTAG Adapter detected
(5) 1 Device detected in JTAG chain
(6) Device 0: IDCODE=39264013 Intel XScale PXA210/250
(7) Sum of instruction register bits : 5
(8) CPU position : 0
(9) Instruction register offset : 0
(10) Length of boundary scan reg : 385
Looking for a known flash device. Please wait..
(11) Dual Intel 28F128 StrataFlash, 3.3V detected
(12) Bus size is 32 Bit
(13) Erasing Flash-EPROM Block #:0
Programming File MYAPP.BIN
65536 Bytes programmed successfully

Erase Time : 0.8 sec
Programming Time : 28.1 sec
```
(1) The initialization file JTAG250.INI was found in the current directory.

(2) The target identification line of the initialization file is printed here.

(3) The resulting I/O-address of the parallel port is printed here. With WinNT/Win2000/WinXP you must specify the option /LPT2 to access to the standard address 378h.

(4) A JTAG-Booster is found on the parallel port.

(5) The JTAG chain is analyzed. There may be several parts in the JTAG chain. The chain is analyzed and all parts except the Intel PXA210/250 are switched to bypass mode.

(6) The revision (1st digit of the ID) is relevant for the PXA2xx family:
Revision 0 -> PXA250 A0
Revision 1 -> PXA250 A1
Revision 2 -> PAA250 B0
Revision 3 -> PXA250 B1
Revision 4 -> PXA250 B2
Revision 5 -> PXA26x B0, use JTAG255.EXE
Revision 6 -> PXA255 A0, use JTAG255.EXE

(7) The length of all instruction registers in the JTAG chain are added.

(8) The position of the Intel XScale in the JTAG chain is assumed to be zero, if not specified in the command line (see option /CPUPOS=).

(9) The position of the JTAG instruction register of the Intel XScale is assumed to be zero, if not specified in the command line (see option /IROFFS=).

(10) The real length of the boundary scan register is displayed here and compared with the boundary scan register length of a Intel PXA210/250.

(11) Two Flashes Intel 28F128 selected with CS0# where found.

(12) The resulting data bus size is printed here.
(13) In this example one block must be erased.
1.6. First Example with Intel PXA255/26x

In the following simple example it is assumed that the JTAG-Booster is connected to LPT1 of your PC and target power is on.

Typing

```
JTAG255 /P MYAPP.BIN
```

at the DOS prompt results in the following output:

```
JTAG255 --- JTAG utility for Intel PXA255/26x
Copyright © FS FORTH-SYSTEME GmbH, Breisach
Version 4.xx of mm/dd/yyyy
(1) Configuration loaded from file JTAG255.INI
(2) Target: Generic Target
(3) Using LPT at I/O-address 0378h
(4) JTAG Adapter detected
(5) 1 Device detected in JTAG chain
(6) Device 0: IDCODE=69264013  Intel XScale PXA255/26x
(7) Sum of instruction register bits : 5
(8) CPU position : 0
(9) Instruction register offset : 0
(10) Length of boundary scan reg : 410

Looking for a known flash device. Please wait..
(11) Dual Intel 28F128 StrataFlash, 3.3V detected
(12) Bus size is 32 Bit
(13) Erasing Flash-EPROM Block #:0
Programming File MYAPP.BIN
65536 Bytes programmed successfully

Erase Time : 0.8 sec
Programming Time : 29.9 sec
```
The initialization file JTAG255.INI was found in the current directory.

The target identification line of the initialization file is printed here.

The resulting I/O-address of the parallel port is printed here.

A JTAG-Booster is found on the parallel port

The JTAG chain is analyzed. There may be several parts in the JTAG chain. The chain is analyzed and all parts except the Intel PXA255/26x are switched to bypass mode.

The revision (1st digit of the ID) is relevant for the Intel PXA2xx family:
Revision 0 -> PXA250 A0, use JTAG250.EXE
Revision 1 -> PXA250 A1, use JTAG250.EXE
Revision 2 -> PAA250 B0, use JTAG250.EXE
Revision 3 -> PXA250 B1, use JTAG250.EXE
Revision 4 -> PXA250 B2, use JTAG250.EXE
Revision 5 -> PXA26X B0
Revision 6 -> PXA255 A0

The length of all instruction registers in the JTAG chain are added.

The position of the Intel XScale in the JTAG chain is assumed to be zero, if not specified in the command line (see option /CPUPOS=).

The position of the JTAG instruction register of the Intel XScale is assumed to be zero, if not specified in the command line (see option /IROFFS=).

The real length of the boundary scan register is displayed here and compared with the boundary scan register length of a Intel PXA255/26x.

Two Flashes Intel 28F128 selected with CS0# where found.

The resulting data bus size is printed here.

In this example one block must be erased.
1.7. First Example with Intel IOP321

In the following simple example it is assumed that the JTAG-Booster is connected to LPT1 of your PC and target power is on.

Typing

\[\text{JTAG321} /P \text{ MYAPP.BIN} \]

at the DOS prompt results in the following output:

\[\begin{align*}
\text{JTAG321} & \quad \text{--- JTAG utility for Intel IOP321} \\
\text{Copyright} & \quad \text{© FS FORTH-SYSTEME GmbH, Breisach} \\
\text{Version} & \quad 4.xx \text{ of mm/dd/yyyy} \\
(1) & \quad \text{Configuration loaded from file JTAG321.INI} \\
(2) & \quad \text{Target: Generic Target} \\
(3) & \quad \text{Using LPT at I/O-address 0378h} \\
(4) & \quad \text{JTAG Adapter detected} \\
(5) & \quad \text{1 Device detected in JTAG chain} \\
& \quad \text{Device 0: IDCODE=09267013 \ Intel XScale IOP321, Revision 0} \\
(6) & \quad \text{Sum of instruction register bits : 5} \\
(7) & \quad \text{CPU position : 0} \\
(8) & \quad \text{Instruction register offset : 0} \\
(9) & \quad \text{Length of boundary scan reg : 356} \\

\text{Looking for a known flash device. Please wait..} \\
(10) & \quad \text{Dual Intel 28F128 StrataFlash, 3.3V detected} \\
(11) & \quad \text{Bus size is 32 Bit} \\
(12) & \quad \text{Erasing Flash-EPROM Block #:0} \\
& \quad \text{Programming File MYAPP.BIN} \\
& \quad 65536 \text{ Bytes programmed successfully} \\
\text{Erase Time} & \quad : \quad 0.8 \text{ sec} \\
\text{Programming Time} & \quad : \quad 26.0 \text{ sec}
\end{align*} \]
(1) The initialization file JTAG321.INI was found in the current directory.

(2) The target identification line of the initialization file is printed here.

(3) The resulting I/O-address of the parallel port is printed here.

(4) A JTAG-Booster is found on the parallel port.

(5) The JTAG chain is analyzed. There may be several parts in the JTAG chain. The chain is analyzed and all parts except the Intel IOP321 are switched to bypass mode.

(6) The length of all instruction registers in the JTAG chain are added.

(7) The position of the Intel XScale in the JTAG chain is assumed to be zero, if not specified in the command line (see option /CPUPOS=).

(8) The position of the JTAG instruction register of the Intel XScale is assumed to be zero, if not specified in the command line (see option /IROFFS=).

(9) The real length of the boundary scan register is displayed here and compared with the boundary scan register length of a Intel IOP321.

(10) Two Flashes Intel 28F128 selected with PCE0# where found.

(11) The resulting data bus size is printed here.

(12) In this example one block must be erased.
1.8. First Example with Intel IXP425

In the following simple example it is assumed that the JTAG-Booster is connected to LPT1 of your PC and target power is on.

Typing

```
JTAG425 /P MYAPP.BIN
```

at the DOS prompt results in the following output:

```
JTAG425 --- JTAG utility for Intel IXP425
Copyright © FS FORTH-SYSTEME GmbH, Breisach
Version 4.xx of mm/dd/yyyy

(1) Configuration loaded from file JTAG425.INI
(2) Target: Generic Target with IXP425
(3) Using LPT at I/O-address 0378h
(4) JTAG Adapter detected
(5) 1 Device detected in JTAG chain
(6)   Device 0: IDCODE=09274013 Intel XScale IXP425, Revision 0
(7) Sum of instruction register bits : 7
(8) CPU position : 0
(9) Instruction register offset : 0
(10) Length of boundary scan reg : 498

Looking for a known flash device. Please wait..
(11) Intel 28F128 StrataFlash, 3.3V detected
(12) Bus size is 16 Bit
(13) Erasing Flash-EPROM Block #:0
Programming File MYAPP.BIN
65536 Bytes programmed successfully

Erase Time : 0.8 sec
Programming Time : 72.6 sec
```
JTAG-Booster for Intel XScale

(1) The initialization file JTAG425.INI was found in the current directory.

(2) The target identification line of the initialization file is printed here.

(3) The resulting I/O-address of the parallel port is printed here.

(4) A JTAG-Booster is found on the parallel port

(5) The JTAG chain is analyzed. There may be several parts in the JTAG chain. The chain is analyzed and all parts except the Intel IXP425 are switched to bypass mode.

(6) There are different ID codes for the Intel IXP425:
 x9274013 -> Intel IXP425, 533 MHz
 x9275013 -> Intel IXP425, 400 MHz
 x9276013 -> Intel IXP425, ??? MHz (reserved)
 x9277013 -> Intel IXP425, 266 MHz
 Note: "x" identifies the silicon stepping

(7) The length of all instruction registers in the JTAG chain are added.

(8) The position of the Intel XScale in the JTAG chain is assumed to be zero, if not specified in the command line (see option /CPUPOS=).

(9) The position of the JTAG instruction register of the Intel XScale is assumed to be zero, if not specified in the command line (see option /IROFFS=).

(10) The real length of the boundary scan register is displayed here and compared with the boundary scan register length of a Intel IXP425.

(11) One Flash Intel 28F128 selected with EX_CS0# was found.

(12) The resulting data bus size is printed here.

(13) In this example one block must be erased.
1.9. Trouble Shooting

Avoid long distances between your Host-PC and the target. If you are using standard parallel extension cable, the JTAG-BOOSTER may not work. Don't use Dongles between the parallel port and the JTAG-BOOSTER.

Switch off all special modes of your printer port (EPP, ECP, ...) in the BIOS setup. Only standard parallel port (SPP) mode is allowed.

If there are problems with autodetection of the flash devices use the /DEVICE= option. To speed up autodetection specify one of the options /8BIT /16BIT or /32BIT.

Don't use hardware protected flash memories.

The used chip selects must be defined as output and inactive in the initialization file (see chapter 1.11 “Initialization file JTAGxxx.INI”). Also the address bits must be defined as output.

Use the option /NOWRSETUP to speed up flash programming.
1.10. Error Messages

• **80386 or greater required**
The JTAG-BOOSTER does not work on a 8088/8086 or a 80286 platform.

• **Cable not connected or target power fail**
The JTAG-Booster (or one of the simple Parallel Port JTAG adapters selected with the options /LATTICE /WIGGLER /PLS /TRITON) wasn’t found. Please check connection to parallel port and connection to target. Check target power. Check the command line options. Check your BIOS-Setup. If you are using this program with WinNT, Win2000 or WinXP you must specify /LPT2 or /LPT-BASE=378 to get access to the standard printer port.

• **Can’t open x:\yyy\zzz\JTAGxxx.OVL**
The overlay file JTAGxxx.OVL must be in the same directory as JTAGxxx.EXE.

• **Configuration file XYZ not found.**
The file specified with the option /INI= wasn’t found.

• **Device offset out of range**
The value specified with the option /OFFSET= is greater than the size of the detected flash device.

• **Disk full**
Writing a output file was aborted as a result of missing disk space.

• **Do not specify option /NOCS with any other chip select**
There is a conflict in the command line.

• **Do not specify option /BYTE-MODE. Flash device does not have a byte mode pin.**
The flash device specified with the option /DEVICE= does not support switching between 16 (or 32) bit mode and 8 bit mode. In practice it does not have a pin with the name BYTE#
• **Error creating file:**
The output file could not be opened. Please check free disk space or write protection.

• **Error: Pin-Name is an output only pin**
The specified pin cannot be sampled. Check the command line. Check the initialization file.

• **Error: Pin-Name is an input only pin**
The specified pin cannot be activated. Check the command line. Check the initialization file.

• **Error: Pin-Name may not be read back**
The specified pin can be switched to tristate, but cannot be read back. Check the command line.

• **illegal function:**
The first parameter of the command line must be a valid function. See chapter 2 “JTAGxxx Parameter Description” for a list of supported functions.

• **illegal number:**
The specified number couldn’t be interpret as a valid number. Check the relevant number base.

• **illegal option:**
See chapter 2 “JTAGxxx Parameter Description” for a list of supported options.

• **illegal Pin Type:**
The name specified with the option /PIN= must be one of the list of chapter 1.11 "Initialization file JTAGxxx.INI"

• **illegal Flash Type:**
The name specified with the option /DEVICE= must be one of the list of chapter 1.12 "Supported flash devices".

• **Input file not found:**
The specified file cannot be found
• **Input file is empty:**
 Files with zero length are not accepted

• **" " is undefined**
 Please check the syntax in your configuration file. (See chapter 1.11 "Initialization file JTAGxxx.INI").

• **LPTx not installed**
 The LPT port specified with /LPTx cannot be found. Please check the LPT port or specify a installed LPT port. Check your BIOS setup. If you are using this program with WinNT, Win2000 or WinXP you 1st must install the WinNT support package as described in chapter 5 "Support for Windows NT, Windows 2000 and Windows XP"

• **missing filename**
 Most functions need a filename as second parameter.

• **missing option /I2CCLK=**
 Some functions need the option /I2CCLK= to be defined.

• **missing option /I2CDAT=**
 Some functions need the option /I2CDAT= or the options /I2CDATO= and /I2CDATI= to be defined.

• **missing option /LENGTH=**
 Some functions need the option /LENGTH= to be defined.

• **missing option /PIN=**
 Some functions need the option /PIN= to be defined.

• **More than 9 devices in the JTAG chain or TDO pin stuck at low level**
 The JTAG chain is limited to 9 parts. Check target power. Check the target’s TDO pin.

• **No devices found in JTAG chain or TDO pin stuck at high level**
 A stream of 32 high bits was detected on the pin TDO. TDO may stuck at high level. Check the connection to your target. Check the target power. Check the target’s TDO pin.
• **Option /CPUPOS= out of range**
 The number specified with the option /CPUPOS= must be less or equal to the number of parts minus 1.

• **Option /IROFFS= out of range**
 Please specify a smaller value.

• **Part at specified position is not a Intel XScale**
 The option /CPUPOS= points to a part not a Intel XScale.

• **Pins specified with /I2CCLK= and /I2CDAT= must have different control cells**
 The pin specified with the option /I2CDAT= must be able to be switched to high impedance while the pin specified with option /I2CCLK= is an active output. See chapter 1.11 “Initialization file JTAGxxx.INI”.

• **Pins specified with /I2CCLK= and /I2CDATI= must have different control cells**
 The pin specified with the option /I2CDATI= must be able to be switched to high impedance while the pin specified with option /I2CCLK= is an active output. See chapter 1.11 “Initialization file JTAGxxx.INI”.

• **Pins specified with /I2CDATO= and /I2CDATI= must have different control cells**
 The pin specified with the option /I2CDATI= must be able to be switched to high impedance while the pin specified with option /I2CDATO= is an active output. See chapter 1.11 “Initialization file JTAGxxx.INI”.

• **Specify only one of these options:**
 Some options are exclusive (i.e. /8BIT and /16BIT). Don't mix them.

• **Sum of instruction register bits to low. Should be at least 5 bits for a Intel XScale (7 bits for the IXP425)**
 The sum of all instruction register bits in the JTAG chain does not fit to the Intel XScale. Check the target connection. Check the target CPU type. Check the settings for /IROFFS= and /CPUPOS=, if there are several parts in the JTAG chain.
• **Target no longer connected**
 There is a cyclic check of the JTAG chain. Check target power. Check target connection.

• **There are unknown parts in the JTAG chain. Please use the option /IROFFS= to specify the instr. reg. offset of the CPU.**
 If there are unknown parts in the JTAG chain, the program isn’t able to determine the logical position of the CPU’s instruction register.

• **There is no Intel XScale in the JTAG chain**
 No Intel XScale was found in the JTAG chain. Check the target power. Try with option /DRIVER=4 again.

• **Value of option /FILE-OFFSET out of range**
 The value of the option /FILE-OFFSET= points behind end of file.

• **Wrong driver #**
 The value specified with the option /DRIVER= is out of range.

• **Wrong Flash Identifier (xxxx)**
 No valid identifier found. Check the specified chip select signal and the bus width. Try with the option /DEVICE=.

• **Wrong length of boundary scan register. Should be 385 for a Intel PXA210/250. (Should be 410 for a Intel PXA255/26x/Should be 356 for a Intel IOP321/ Should be 498 for a Intel IXP425.)**
 The length of the boundary scan register of the selected part (if there are more than one in the chain) does not fit to the Intel XScale. Check the target connection. Check the target CPU type. Check the settings for /IROFFS= and /CPUPOS=, if there are several parts in the JTAG chain.
1.11. Initialization file JTAGxxx.INI

This file is used to define the default direction and level of all CPU signals. This file must be carefully adapted to your design with the Intel XScale. The Target-Entry is used to identify your design which is displayed with most commands.

When the program JTAGxxx.EXE is started it scans the current directory for an existing initialization file named JTAGxxx.INI. If no entry is found the default values are used. You may also specify the initialization file with the option /INI= . If the specified file isn't found, the program aborts with an error message.

The CPU pins can also be used with the functions /BLINK (chapter 2.9), /PIN? (chapter 2.10) and /SAMPLE (chapter 2.11) to test the signals on your design.

The sample file below represents the values which are used for default initialization when no initialization file could be found in the current directory and no initialization file is specified with the option /INI=.

Changes to the structure of the file could result in errors. Remarks can be added by using //.
Sample File JTAG250.INI:

// Description file for Intel PXA210/250
Target: Generic Target
// Adapt this file carefully to your design!!
// All chip select signals are set to output and inactive.
// The chip-selects for the external PC-Card are set to output and inactive.
// All signals should be defined. Undefined signals are set to their defaults.
// Pin names are defined in upper case.
// Low active signal are signed with a trailing #.

// The following pins are complete bidirectional pins.
// The direction of each pin can be set independent of the other pins.
// Each pin can be used as an input.
GPIO0 Inp
GPIO1 Inp // GP_RST#, GPreset input
GPIO2 Inp
GPIO3 Inp
GPIO4 Inp
GPIO5 Inp
GPIO6 Inp // MMCCLK, MMC clock output
GPIO7 Inp // 48MHZ, 48MHz clock output
GPIO8 Inp // MMCCS0, MMC chip select 0
GPIO9 Inp // MMCCS1, MMC chip select 1
GPIO10 Inp // RTCCCLK, RTC 1Hz output
GPIO11 Inp // 3.6MHZ, 3.6MHz clock output
GPIO12 Inp // 32KHZ, 32kHz clock output
GPIO13 Inp // MBGNT, memory controller grant
GPIO14 Inp // MBREQ, memory controller alternate bus master request
GPIO15 Out,Hi // CS1#, chip select 1
GPIO16 Inp // PWM0, PWM0 output
GPIO17 Inp // PWM1, PWM1 output
GPIO18 Inp // RDY, ext. bus ready input
GPIO19 Inp // DREQ1, ext. DMA request 1
GPIO20 Inp // DREQ0, ext. DMA request 0
GPIO21 Inp
GPIO22 Inp
GPIO23 Inp // SSPSCLK, SSP clock output
GPIO24 Inp // SSPSFRM, SSP frame
GPIO25 Inp // SSPTXD, SSP transmit data
GPIO26 Inp // SSPRXD, SSP receive data
GPIO27 Inp // SSPEXTCLK, SSP ext. clock input
GPIO28 Inp // BITCLK, AC97 bit clock input
BITCLK, AC97 bit clock output
BITCLK, I2S bit clock output
BITCLK, I2S bit clock output

GPIO29 Inp // SDATA_IN0, AC97 sdata input 0
 // SDATA_IN, I2S sdata input

GPIO30 Inp // SDATA_OUT, AC97 sdata output
 // SDATA_OUT, I2S sdata output

GPIO31 Inp // SYNC, AC97 sync output
 // SYNC, I2S sync output

GPIO32 Inp // SDATA_IN1, AC97 sdata input 1
 // SYSCLK, I2S system clock output

GPIO33 Out,Hi // CS5#, chip select 5

GPIO34 Inp // FFRXD, FFUART receive data
 // MMCCS0, MMC chip select 0

GPIO35 Inp // FFCTS#, FFUART clear to send

GPIO36 Inp // FFDCD#, FFUART data carrier detect

GPIO37 Inp // FFDSR#, FFUART data terminal ready

GPIO38 Inp // FFRI#, FFUART ring indicator

GPIO39 Inp // FFTXD, FFUART transmit data
 // MMCCS1, MMC chip select 1

GPIO40 Inp // FFDTR#, FFUART data terminal ready

GPIO41 Inp // FFRTS#, FFUART request to send

GPIO42 Inp // BTRXD, BTUART receive data

GPIO43 Inp // BTTXD, BTUART transmit data

GPIO44 Inp // BTCTS#, BTUART clear to send

GPIO45 Inp // BTRTS#, BTUART request to send

GPIO46 Inp // RXD, STD_UART receive data
 // IRRXD, IR receive data

GPIO47 Inp // TXD, STD_UART transmit data
 // IRTXD, IR transmit data

GPIO48 Inp // POE#, Card Space output enable

GPIO49 Inp // PWE#, Card Space write enable

GPIO50 Inp // PIOR#, Card Space I/O read

GPIO51 Inp // PIOW#, Card Space I/O write

GPIO52 Out,Hi // PCE1#, Card Space card enable 1, !!!

GPIO53 Out,Hi // PCE2#, Card Space card enable 2, !!!
 // MMCCLK, MMC clock output

GPIO54 Inp // PSKTSEL#, Card Space socket select
 // MMCCLK, MMC clock output

GPIO55 Inp // PREG#, Card Space register select

GPIO56 Inp // PWAIT#, Card Space wait input

GPIO57 Inp // IOIS16#, Card Space I/O bus width select

GPIO58 Inp // L_DD0, LCD data pin 0
GPIO59 Inp // L_DD1, LCD data pin 1
GPIO60 Inp // L_DD2, LCD data pin 2
GPIO61 Inp // L_DD3, LCD data pin 3
GPIO62 Inp // L_DD4, LCD data pin 4
GPIO63 Inp // L_DD5, LCD data pin 5
GPIO64 Inp // L_DD6, LCD data pin 6
GPIO65 Inp // L_DD7, LCD data pin 7
GPIO66 Inp // L_DD8, LCD data pin 8
// MBREQ, memory controller alternate bus master request
GPIO67 Inp // L_DD9, LCD data pin 9
// MMCCS0, MMC chip select 0
GPIO68 Inp // L_DD10, LCD data pin 10
// MMCCS1, MMC chip select 1
GPIO69 Inp // L_DD11, LCD data pin 11
// MMCCCLK, MMC clock output
GPIO70 Inp // L_DD12, LCD data pin 12
// RTCCLK, RTC 1Hz output
GPIO71 Inp // L_DD13, LCD data pin 13
// 3.6MHZ, 3.6MHz clock output
GPIO72 Inp // L_DD14, LCD data pin 14
// 32KHZ, 32kHz clock output
GPIO73 Inp // L_DD15, LCD data pin 15
// MBGNT, memory controller grant
GPIO74 Inp // L_FCLK, LCD frame clock
GPIO75 Inp // L_LCLK, LCD line clock
GPIO76 Inp // L_PCLK, LCD pixel clock
GPIO77 Inp // L_BIAS, LCD AC bias drive
GPIO78 Out,Hi // CS2#, chip select 2
GPIO79 Out,Hi // CS3#, chip select 3
GPIO80 Out,Hi // CS4#, chip select 4
MMDAT Inp // MMC data pin
MMCMD Inp // MMC command pin
CS0# Out,Hi // Boot Chip Select

// Group 85: All pins in this group must be set to the same direction
// These pins are bidirectional
MD0 Inp // Memory Data Bus
MD1 Inp // Memory Data Bus
MD2 Inp // Memory Data Bus
MD3 Inp // Memory Data Bus
MD4 Inp // Memory Data Bus
MD5 Inp // Memory Data Bus
MD6 Inp // Memory Data Bus
MD7 inp // Memory Data Bus
MD8 inp // Memory Data Bus
MD9 inp // Memory Data Bus
MD10 inp // Memory Data Bus
MD11 inp // Memory Data Bus
MD12 inp // Memory Data Bus
MD13 inp // Memory Data Bus
MD14 inp // Memory Data Bus
MD15 inp // Memory Data Bus

// Group 84: All pins in this group must be set to the same direction
// These pins are bidirectional
MD16 inp // Memory Data Bus
MD17 inp // Memory Data Bus
MD18 inp // Memory Data Bus
MD19 inp // Memory Data Bus
MD20 inp // Memory Data Bus
MD21 inp // Memory Data Bus
MD22 inp // Memory Data Bus
MD23 inp // Memory Data Bus
MD24 inp // Memory Data Bus
MD25 inp // Memory Data Bus
MD26 inp // Memory Data Bus
MD27 inp // Memory Data Bus
MD28 inp // Memory Data Bus
MD29 inp // Memory Data Bus
MD30 inp // Memory Data Bus
MD31 inp // Memory Data Bus

// Group 205: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
RD/WR# out,hi // Read/Write#
DQM2 out,lo //
DQM3 out,lo //

// Group 207: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
WE# out,hi //
OE# out,hi //
// Group 208: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
SDCLK1 Out,Lo //
SDCS0# Out,Hi //
DQM0 Out,Lo // SDRAM DQM0
DQM1 Out,Lo // SDRAM DQM1
SDCAS# Out,Hi // SDRAM CAS#
SDRAS# Out,Hi // SDRAM RAS#
MA0 Out,Lo //
MA1 Out,Lo //
MA2 Out,Lo //
MA3 Out,Lo //
MA4 Out,Lo //
MA5 Out,Lo //
MA6 Out,Lo //
MA7 Out,Lo //
MA8 Out,Lo //
MA9 Out,Lo //
MA10 Out,Lo //
MA11 Out,Lo //
MA12 Out,Lo //
MA13 Out,Lo //
MA14 Out,Lo //
MA15 Out,Lo //
MA16 Out,Lo //
MA17 Out,Lo //
MA18 Out,Lo //
MA19 Out,Lo //
MA20 Out,Lo //
MA21 Out,Lo //
MA22 Out,Lo //
MA23 Out,Lo //
MA24 Out,Lo //
MA25 Out,Lo //

// Group 81: All pins in this group must be set to the same direction
// These pins are bidirectional
USB_N Inp //
USB_P Inp //
// The following pins are output only pins.
// Setting to input (tristate) one of these pins results in an error.
PWR_EN Out,Hi // Enable ext. power supply
RESET_OUT# Out,Lo // Reset output
ACRESET# Out,Lo // AC97 audio port reset output
SDCLK0 Out,Lo // SDRAM clock output 0
SDCLK2 Out,Lo // SDRAM clock output 2
SDCKE0 Out,Lo // SDRAM clock enable 0
SDCKE1 Out,Lo // SDRAM clock enable 1
SDCS1# Out,Hi // SDRAM chip select 1
SDCS2# Out,Hi // SDRAM chip select 2
SDCS3# Out,Hi // SDRAM chip select 3

// The following pins are input only.
// Setting to output of one of these pins results in an error.
// Declaration of the direction of these pins is optional.
TEST Inp // Test Mode input, must be grounded
TESTCLK Inp // Test clock input, should be grounded
VDD_FAULT# Inp // VDD fault
BATT_FAULT# Inp // Battery fault
BOOT_SEL0 Inp // boot programming select pin
BOOT_SEL1 Inp // boot programming select pin
BOOT_SEL2 Inp // boot programming select pin
RESET# Inp // hard reset input
Sample File JTAG255.INI:

// Description file for Intel PXA255/26x
Target: Generic Target
// Adapt this file carefully to your design!!
// All chip select signals are set to output and inactive.
// The chip select for the external PC-Card are set to output and inactive.
// All signals should be defined. Undefined signals are set to their defaults.
// Pin names are defined in upper case.
// Low active signal are signed with a trailing #.

// The following pins are complete bidirectional pins.
// The direction of each pin can be set independent of the other pins.
// Each pin can be used as an input.
GPIO0 Inp //
GPIO1 Inp // GP_RST#, GPreset input
GPIO2 Inp //
GPIO3 Inp //
GPIO4 Inp //
GPIO5 Inp //
GPIO6 Inp // MMCCLK, MMC clock output
GPIO7 Inp // 48MHZ, 48MHz clock output
GPIO8 Inp // MMCCS0, MMC chip select 0
GPIO9 Inp // MMCCS1, MMC chip select 1
 // USB_RCV, USB client single-ended interface RCV
GPIO10 Inp // RTCCLK, RTC 1Hz output
GPIO11 Inp // 3.6MHZ, 3.6MHz clock output
GPIO12 Inp // 32KHZ, 32kHz clock output
GPIO13 Inp // MBGNT, memory controller grant
GPIO14 Inp // MBREQ, memory controller alternate bus master request
GPIO15 Out,Hi // CS1#, chip select 1
GPIO16 Inp // PWM0, PWM0 output
GPIO17 Inp // PWM1, PWM1 output
GPIO18 Inp // RDY, ext. bus ready input
GPIO19 Inp // DREQ1, ext. DMA request 1
GPIO20 Inp // DREQ0, ext. DMA request 0
GPIO21 Inp //
GPIO22 Inp //
GPIO23 Inp // SSPSCLK, SSP clock output
GPIO24 Inp // SSPSFRM, SSP frame
GPIO25 Inp // SSPTXD, SSP transmit data
GPIO26 Inp // SSPRXD, SSP receive data
GPIO27 Inp // SSPEXTCLK, SSP ext. clock input
GPIO28 Inp // BITCLK, AC97 bit clock input
 // BITCLK, AC97 bit clock output
 // BITCLK, I2S bit clock input
 // BITCLK, I2S bit clock output
GPIO29 Inp // SDATA_IN0, AC97 sdata input 0
 // SDATA_IN, I2S sdata input
GPIO30 Inp // SDATA_OUT, AC97 sdata output
 // SDATA_OUT, I2S sdata output
GPIO31 Inp // SYNC, AC97 sync output
 // SYNC, I2S sync output
GPIO32 Inp // SDATA_IN1, AC97 sdata input 1
 // SYSCLK, I2S system clock output
 // USB_VP, USB client single-ended interface VP
GPIO33 Out,Hi // CS5#, chip select 5
GPIO34 Inp // FFRXD, Full Function UART receive data
 // MMCCS0, MMC chip select 0
 // USB_VM, USB client single-ended interface VM
GPIO35 Inp // FFCTS#, Full Function UART clear to send
GPIO36 Inp // FFDCD#, Full Function UART data carrier detect
GPIO37 Inp // FFDSR#, Full Function UART data terminal ready
GPIO38 Inp // FFRI#, Full Function UART ring indicator
GPIO39 Inp // FFTXD, Full Function UART transmit data
 // MMCCS1, MMC chip select 1
 // USB_VPO, USB client single-ended interface VPO
GPIO40 Inp // FFDTR#, Full Function UART data terminal ready
GPIO41 Inp // FFRTS#, Full Function UART request to send
GPIO42 Inp // BTRXD, Bluetooth UART receive data
 // HWRXD, Hardware UART receive data
GPIO43 Inp // BTTXD, Bluetooth UART transmit data
 // HWRTXD, Hardware UART transmit data
GPIO44 Inp // BTCTS#, Bluetooth UART clear to send
 // HWCTS#, Hardware UART clear to send
GPIO45 Inp // BTRTS#, Bluetooth UART request to send
 // HWRTS#, Hardware UART request to send
GPIO46 Inp // RXD, STD_UART receive data
 // IRRXD, IrDA receive data
GPIO47 Inp // TXD, STD_UART transmit data
 // IRTXD, IrDA transmit data
GPIO48 Inp // POE#, Card Space output enable
 // HWTXD, Hardware UART transmit data
GPIO49 Inp // PWE#, Card Space write enable
 // HWRXD, Hardware UART receive data
GPIO50 Inp // PIOR#, Card Space I/O read
<table>
<thead>
<tr>
<th>GPIO</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Inp</td>
<td>// HWCTS#, Hardware UART clear to send</td>
</tr>
<tr>
<td>52</td>
<td>Out,Hi</td>
<td>// PCE1#, Card Space card enable 1, !!!</td>
</tr>
<tr>
<td>53</td>
<td>Out,Hi</td>
<td>// PCE2#, Card Space card enable 2, !!!</td>
</tr>
<tr>
<td>54</td>
<td>Inp</td>
<td>// MMCCLK, MMC clock output</td>
</tr>
<tr>
<td>55</td>
<td>Inp</td>
<td>// PSKTSSEL#, Card Space socket select</td>
</tr>
<tr>
<td>56</td>
<td>Inp</td>
<td>// MMCCLK, MMC clock output</td>
</tr>
<tr>
<td>57</td>
<td>Inp</td>
<td>// PREG#, Card Space register select</td>
</tr>
<tr>
<td>58</td>
<td>Inp</td>
<td>// PWAIT#, Card Space wait input</td>
</tr>
<tr>
<td>59</td>
<td>Inp</td>
<td>// USB_VMO, USB client single-ended interface VMO</td>
</tr>
<tr>
<td>60</td>
<td>Inp</td>
<td>// IOIS16#, Card Space I/O bus width select</td>
</tr>
<tr>
<td>61</td>
<td>Inp</td>
<td>// USB_OE#, USB client single-ended interface OE#</td>
</tr>
<tr>
<td>62</td>
<td>Inp</td>
<td>// L_DD0, LCD data pin 0</td>
</tr>
<tr>
<td>63</td>
<td>Inp</td>
<td>// L_DD1, LCD data pin 1</td>
</tr>
<tr>
<td>64</td>
<td>Inp</td>
<td>// L_DD2, LCD data pin 2</td>
</tr>
<tr>
<td>65</td>
<td>Inp</td>
<td>// L_DD3, LCD data pin 3</td>
</tr>
<tr>
<td>66</td>
<td>Inp</td>
<td>// L_DD4, LCD data pin 4</td>
</tr>
<tr>
<td>67</td>
<td>Inp</td>
<td>// L_DD5, LCD data pin 5</td>
</tr>
<tr>
<td>68</td>
<td>Inp</td>
<td>// L_DD6, LCD data pin 6</td>
</tr>
<tr>
<td>69</td>
<td>Inp</td>
<td>// L_DD7, LCD data pin 7</td>
</tr>
<tr>
<td>70</td>
<td>Inp</td>
<td>// L_DD8, LCD data pin 8</td>
</tr>
<tr>
<td>71</td>
<td>Inp</td>
<td>// MBREQ, memory controller alternate bus master request</td>
</tr>
<tr>
<td>72</td>
<td>Inp</td>
<td>// L_DD9, LCD data pin 9</td>
</tr>
<tr>
<td>73</td>
<td>Inp</td>
<td>// MMCCS0, MMC chip select 0</td>
</tr>
<tr>
<td>74</td>
<td>Inp</td>
<td>// L_DD10, LCD data pin 10</td>
</tr>
<tr>
<td>75</td>
<td>Inp</td>
<td>// MMCCS1, MMC chip select 1</td>
</tr>
<tr>
<td>76</td>
<td>Inp</td>
<td>// L_DD11, LCD data pin 11</td>
</tr>
<tr>
<td>77</td>
<td>Inp</td>
<td>// MMCCS2, MMC chip select 2</td>
</tr>
<tr>
<td>78</td>
<td>Inp</td>
<td>// L_DD12, LCD data pin 12</td>
</tr>
<tr>
<td>79</td>
<td>Inp</td>
<td>// RTCCLK, RTC 1Hz output</td>
</tr>
<tr>
<td>80</td>
<td>Inp</td>
<td>// L_DD13, LCD data pin 13</td>
</tr>
<tr>
<td>81</td>
<td>Inp</td>
<td>// 3.6MHZ, 3.6MHz clock output</td>
</tr>
<tr>
<td>82</td>
<td>Inp</td>
<td>// L_DD14, LCD data pin 14</td>
</tr>
<tr>
<td>83</td>
<td>Inp</td>
<td>// 32KHZ, 32kHz clock output</td>
</tr>
<tr>
<td>84</td>
<td>Inp</td>
<td>// L_DD15, LCD data pin 15</td>
</tr>
<tr>
<td>85</td>
<td>Inp</td>
<td>// MBGNT, memory controller grant</td>
</tr>
<tr>
<td>86</td>
<td>Inp</td>
<td>// L_FCLK, LCD frame clock</td>
</tr>
<tr>
<td>87</td>
<td>Inp</td>
<td>// L_LCLK, LCD line clock</td>
</tr>
<tr>
<td>88</td>
<td>Inp</td>
<td>// L_PCLK, LCD pixel clock</td>
</tr>
<tr>
<td>89</td>
<td>Inp</td>
<td>// L_BIAS, LCD AC bias drive</td>
</tr>
<tr>
<td>90</td>
<td>Out,Hi</td>
<td>// CS2#, chip select 2</td>
</tr>
<tr>
<td>91</td>
<td>Out,Hi</td>
<td>// CS3#, chip select 3</td>
</tr>
<tr>
<td>GPIO80</td>
<td>Out,Hi</td>
<td>CS4#, chip select 4</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>GPIO81</td>
<td>Inp</td>
<td>NSSPCLK, Network synchronous serial port (output)</td>
</tr>
<tr>
<td>GPIO82</td>
<td>Inp</td>
<td>NSSPSFRM, Network synchronous serial frame signal (output)</td>
</tr>
<tr>
<td>GPIO83</td>
<td>Inp</td>
<td>NSSPTXD, Network synchronous serial port transmit (output)</td>
</tr>
<tr>
<td>GPIO84</td>
<td>Inp</td>
<td>NSSPRXD, Network synchronous serial port receive (input)</td>
</tr>
<tr>
<td>GPIO85</td>
<td>Inp</td>
<td></td>
</tr>
<tr>
<td>GPIO86</td>
<td>Out,Hi</td>
<td>SDCS2#, SDRAM chip select 2</td>
</tr>
<tr>
<td>GPIO87</td>
<td>Out,Hi</td>
<td>SDCS3#, SDRAM chip select 3</td>
</tr>
<tr>
<td>GPIO88</td>
<td>Out,Hi</td>
<td>RD/WR#, Read/Write#</td>
</tr>
<tr>
<td>GPIO89</td>
<td>Out,Lo</td>
<td>ACRESET#, AC97 audio port reset output</td>
</tr>
<tr>
<td>MMDAT</td>
<td>Inp</td>
<td>MMC data pin</td>
</tr>
<tr>
<td>MMCMD</td>
<td>Inp</td>
<td>MMC command pin</td>
</tr>
<tr>
<td>CS0#</td>
<td>Out,Hi</td>
<td>Boot Chip Select</td>
</tr>
</tbody>
</table>

// Group 85: All pins in this group must be set to the same direction
// These pins are bidirectional
MD0	Inp	Memory Data Bus
MD1	Inp	Memory Data Bus
MD2	Inp	Memory Data Bus
MD3	Inp	Memory Data Bus
MD4	Inp	Memory Data Bus
MD5	Inp	Memory Data Bus
MD6	Inp	Memory Data Bus
MD7	Inp	Memory Data Bus
MD8	Inp	Memory Data Bus
MD9	Inp	Memory Data Bus
MD10	Inp	Memory Data Bus
MD11	Inp	Memory Data Bus
MD12	Inp	Memory Data Bus
MD13	Inp	Memory Data Bus
MD14	Inp	Memory Data Bus
MD15	Inp	Memory Data Bus

// Group 84: All pins in this group must be set to the same direction
// These pins are bidirectional
MD16	Inp	Memory Data Bus
MD17	Inp	Memory Data Bus
MD18	Inp	Memory Data Bus
MD19	Inp	Memory Data Bus
MD20	Inp	Memory Data Bus
MD21	Inp	Memory Data Bus
MD22	Inp	Memory Data Bus
MD23	Inp	Memory Data Bus
MD24 Inp // Memory Data Bus
MD25 Inp // Memory Data Bus
MD26 Inp // Memory Data Bus
MD27 Inp // Memory Data Bus
MD28 Inp // Memory Data Bus
MD29 Inp // Memory Data Bus
MD30 Inp // Memory Data Bus
MD31 Inp // Memory Data Bus

// Group 205: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
DQM2 Out,Lo //
DQM3 Out,Lo //

// Group 207: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
WE# Out,Hi //
OE# Out,Hi //

// Group 208: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
SDCLK1 Out,Lo //
SDCS0# Out,Hi //
DQM0 Out,Lo // SDRAM DQM0
DQM1 Out,Lo // SDRAM DQM1
SDCAS# Out,Hi // SDRAM CAS#
SDRAS# Out,Hi // SDRAM RAS#
MA0 Out,Lo //
MA1 Out,Lo //
MA2 Out,Lo //
MA3 Out,Lo //
MA4 Out,Lo //
MA5 Out,Lo //
MA6 Out,Lo //
MA7 Out,Lo //
MA8 Out,Lo //
MA9 Out,Lo //
MA10 Out,Lo //
MA11 Out,Lo //
MA12 Out,Lo //
MA13 Out,Lo //
MA14 Out,Lo //
MA15 Out,Lo //
MA16 Out,Lo //
MA17 Out,Lo //
MA18 Out,Lo //
MA19 Out,Lo //
MA20 Out,Lo //
MA21 Out,Lo //
MA22 Out,Lo //
MA23 Out,Lo //
MA24 Out,Lo //
MA25 Out,Lo //

// Group 81: All pins in this group must be set to the same direction
// These pins are bidirectional
USB_N Inp //
USB_P Inp //

// The following pins are output only pins.
// Setting to input (tristate) one of these pins results in an error.
PWR_EN Out,Hi // Enable ext. power supply
RESET_OUT# Out,Lo // Reset output
SDCLK0 Out,Lo // SDRAM clock output 0
SDCLK2 Out,Lo // SDRAM clock output 2
SDCKE0 Out,Lo // SDRAM clock enable 0
SDCKE1 Out,Lo // SDRAM clock enable 1
SDCS1# Out,Hi // SDRAM chip select 1

// The following pins are input only.
// Setting to output of one of these pins results in an error.
// Declaration of the direction of these pins is optional.
TEST Inp // Test Mode input, must be grounded
TESTCLK Inp // Test clock input, should be grounded
VDD_FAULT# Inp // VDD fault
BATT_FAULT# Inp // Battery fault
BOOT_SEL0 Inp // boot programming select pin
BOOT_SEL1 Inp // boot programming select pin
BOOT_SEL2 Inp // boot programming select pin
RESET# Inp // hard reset input
Sample File JTAG321.INI:

// Description file for Intel IOP321
Target: Generic Target
// Adapt this file carefully to your design!!
// All chip select signals are set to output and inactive.
// All signals should be defined. Undefined signals are set to their defaults.
// Pin names are defined in upper case.
// Low active signal are signed with a trailing #.

// Group 39: All pins in this group must be set to the same direction
// These pins are bidirectional
 PCE0# Out,Hi // PBI Peripheral Chip Enable 0
 // RST_MODE# configuration pin latch at pos. edge of P_RST#
 PCE1# Out,Hi // PBI Peripheral Chip Enable 1
 // RETRY configuration pin latch at pos. edge of P_RST#
 PCE2# Out,Hi // PBI Peripheral Chip Enable 2
 // 32BITPCI# configuration pin latch at pos. edge of P_RST#
 PCE3# Out,Hi // PBI Peripheral Chip Enable 3
 // P_BOOT16# configuration pin latch at pos. edge of P_RST#
 PCE4# Out,Hi // PBI Peripheral Chip Enable 4
 // PBI66MHZ# configuration pin latch at pos. edge of P_RST#
 PCE5# Out,Hi // PBI Peripheral Chip Enable 5
 // PBI100MHZ# configuration pin latch at pos. edge of P_RST#

// Group 40: All pins in this group must be set to the same direction
// These pins are bidirectional
 AD24 Inp // PBI Address/Data Bus
 AD25 Inp // PBI Address/Data Bus
 AD26 Inp // PBI Address/Data Bus
 AD27 Inp // PBI Address/Data Bus
 AD28 Inp // PBI Address/Data Bus
 AD29 Inp // PBI Address/Data Bus
 AD30 Inp // PBI Address/Data Bus
 AD31 Inp // PBI Address/Data Bus

// Group 41: All pins in this group must be set to the same direction
// These pins are bidirectional
 AD16 Inp // PBI Address/Data Bus
 AD17 Inp // PBI Address/Data Bus
 AD18 Inp // PBI Address/Data Bus
 AD19 Inp // PBI Address/Data Bus
 AD20 Inp // PBI Address/Data Bus
AD21 Inp // PBI Address/Data Bus
AD22 Inp // PBI Address/Data Bus
AD23 Inp // PBI Address/Data Bus

// Group 42: All pins in this group must be set to the same direction
// These pins are bidirectional
AD8 Inp // PBI Address/Data Bus
AD9 Inp // PBI Address/Data Bus
AD10 Inp // PBI Address/Data Bus
AD11 Inp // PBI Address/Data Bus
AD12 Inp // PBI Address/Data Bus
AD13 Inp // PBI Address/Data Bus
AD14 Inp // PBI Address/Data Bus
AD15 Inp // PBI Address/Data Bus

// Group 43: All pins in this group must be set to the same direction
// These pins are bidirectional
AD0 Inp // PBI Address/Data Bus
AD1 Inp // PBI Address/Data Bus
AD2 Inp // PBI Address/Data Bus
AD3 Inp // PBI Address/Data Bus
AD4 Inp // PBI Address/Data Bus
AD5 Inp // PBI Address/Data Bus
AD6 Inp // PBI Address/Data Bus
AD7 Inp // PBI Address/Data Bus

// Group 51: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
A2 Out,Lo // PBI Demultiplexed Address
A3 Out,Lo // PBI Demultiplexed Address

// Group 52: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
WIDTH0 Out,Lo // PBI
WIDTH1 Out,Lo // PBI
Group 53: All pins in this group must be set to the same direction
These pins are tristateable, but can not be read back
BE0# Out,Lo // PBI Byte Enable for AD0..7 for 32/16Bit
 // PBI Address Bit A0 for 8Bit
BE1# Out,Lo // PBI Byte Enable for AD8..15 for 32Bit
 // PBI Address Bit A1 for 16/8Bit
BE2# Out,Lo // PBI Byte Enable for AD16..23 for 32Bit
BE3# Out,Lo // PBI Byte Enable for AD24..31 for 32Bit
 // PBI Byte Enable for AD8..15 for 16Bit

Group 111: All pins in this group must be set to the same direction
These pins are bidirectional
P_AD32 Inp // PCI Data upper bits
P_AD33 Inp //
P_AD34 Inp //
P_AD35 Inp //
P_AD36 Inp //
P_AD37 Inp //
P_AD38 Inp //
P_AD39 Inp //
P_AD40 Inp //
P_AD41 Inp //
P_AD42 Inp //
P_AD43 Inp //
P_AD44 Inp //
P_AD45 Inp //
P_AD46 Inp //
P_AD47 Inp //
P_AD48 Inp //
P_AD49 Inp //
P_AD50 Inp //
P_AD51 Inp //
P_AD52 Inp //
P_AD53 Inp //
P_AD54 Inp //
P_AD55 Inp //
P_AD56 Inp //
P_AD57 Inp //
P_AD58 Inp //
P_AD59 Inp //
P_AD60 Inp //
P_AD61 Inp //
P_AD62 Inp //
// Group 112: All pins in this group must be set to the same direction
// These pins are bidirectional
P_AD0 Inp // PCI Address/Data
P_AD1 Inp //
P_AD2 Inp //
P_AD3 Inp //
P_AD4 Inp //
P_AD5 Inp //
P_AD6 Inp //
P_AD7 Inp //
P_AD8 Inp //
P_AD9 Inp //
P_AD10 Inp //
P_AD11 Inp //
P_AD12 Inp //
P_AD13 Inp //
P_AD14 Inp //
P_AD15 Inp //
P_AD16 Inp //
P_AD17 Inp //
P_AD18 Inp //
P_AD19 Inp //
P_AD20 Inp //
P_AD21 Inp //
P_AD22 Inp //
P_AD23 Inp //
P_AD24 Inp //
P_AD25 Inp //
P_AD26 Inp //
P_AD27 Inp //
P_AD28 Inp //
P_AD29 Inp //
P_AD30 Inp //
P_AD31 Inp //

// Group 113: All pins in this group must be set to the same direction
// These pins are bidirectional
P_CBE0# Inp // PCI Command and Byte Enable
P_CBE1# Inp // PCI Command and Byte Enable
P_CBE2# Inp // PCI Command and Byte Enable
P_CBE3# Inp // PCI Command and Byte Enable
JTAG-Booster for Intel XScale

// Group 114: All pins in this group must be set to the same direction
// These pins are bidirectional
P_CBE4# Inp // PCI Byte Enable
P_CBE5# Inp // PCI Byte Enable
P_CBE6# Inp // PCI Byte Enable
P_CBE7# Inp // PCI Byte Enable

// Group 224: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
M_CK0 Out,Lo // DDR Memory Clock
M_CK0# Out,Hi // DDR Memory Clock

// Group 225: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
M_CK1 Out,Lo // SDRAM Memory Clock
M_CK1# Out,Hi // SDRAM Memory Clock

// Group 226: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
M_CK2 Out,Lo // SDRAM Memory Clock
M_CK2# Out,Hi // SDRAM Memory Clock

// Group 227: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
SCS0# Out,Hi // SDRAM Chip Select
SCS1# Out,Hi // SDRAM Chip Select
SRAS# Out,Hi // SDRAM Row Address Strobe
SCAS# Out,Hi // SDRAM Column Address Strobe
SWE# Out,Hi // SDRAM Write Enable
M_RST# Out,Lo // SDRAM Reset Output
RCVENO# Out,Hi // SDRAM Receive Enable Out
SCKE0 Out,Lo // SDRAM Clock Enable Output
SCKE1 Out,Lo // SDRAM Clock Enable Output

// Group 228: All pins in this group must be set to the same direction
// These pins are tristateable, but can not be read back
SBA0 Out,Lo // SDRAM Bank Address
SBA1 Out,Lo // SDRAM Bank Address
SA0 Out,Lo // SDRAM Memory Address
SA1 Out,Lo // SDRAM Memory Address
SA2 Out,Lo // SDRAM Memory Address
SA3 Out,Lo // SDRAM Memory Address
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA4</td>
<td>Out,Lo // SDRAM Memory Address</td>
</tr>
<tr>
<td>SA5</td>
<td>Out,Lo // SDRAM Memory Address</td>
</tr>
<tr>
<td>SA6</td>
<td>Out,Lo // SDRAM Memory Address</td>
</tr>
<tr>
<td>SA7</td>
<td>Out,Lo // SDRAM Memory Address</td>
</tr>
<tr>
<td>SA8</td>
<td>Out,Lo // SDRAM Memory Address</td>
</tr>
<tr>
<td>SA9</td>
<td>Out,Lo // SDRAM Memory Address</td>
</tr>
<tr>
<td>SA10</td>
<td>Out,Lo // SDRAM Memory Address</td>
</tr>
<tr>
<td>SA11</td>
<td>Out,Lo // SDRAM Memory Address</td>
</tr>
<tr>
<td>SA12</td>
<td>Out,Lo // SDRAM Memory Address</td>
</tr>
</tbody>
</table>

// Group 229: All pins in this group must be set to the same direction
// SDQM0..3 are tristateable, but cannot be read back
// DQ0..31 are bidirectional

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDQM0</td>
<td>Inp // SDRAM Data Mask</td>
</tr>
<tr>
<td>SDQM1</td>
<td>Inp // SDRAM Data Mask</td>
</tr>
<tr>
<td>SDQM2</td>
<td>Inp // SDRAM Data Mask</td>
</tr>
<tr>
<td>SDQM3</td>
<td>Inp // SDRAM Data Mask</td>
</tr>
<tr>
<td>DQ0</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ1</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ2</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ3</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ4</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ5</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ6</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ7</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ8</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ9</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ10</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ11</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ12</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ13</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ14</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ15</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ16</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ17</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ18</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ19</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ20</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ21</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ22</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ23</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ24</td>
<td>Inp // SDRAM Data</td>
</tr>
<tr>
<td>DQ25</td>
<td>Inp // SDRAM Data</td>
</tr>
</tbody>
</table>
DQ26 Inp // SDRAM Data
DQ27 Inp // SDRAM Data
DQ28 Inp // SDRAM Data
DQ29 Inp // SDRAM Data
DQ30 Inp // SDRAM Data
DQ31 Inp // SDRAM Data

// Group 232: All pins in this group must be set to the same direction
// SDQM4..7 are tristateable, but can not be read back
// DQ32..63 are bidirectional
SDQM4 Out,Lo // SDRAM Data Mask
SDQM5 Out,Lo // SDRAM Data Mask
SDQM6 Out,Lo // SDRAM Data Mask
SDQM7 Out,Lo // SDRAM Data Mask
DQ32 Inp // SDRAM Data
DQ33 Inp // SDRAM Data
DQ34 Inp // SDRAM Data
DQ35 Inp // SDRAM Data
DQ36 Inp // SDRAM Data
DQ37 Inp // SDRAM Data
DQ38 Inp // SDRAM Data
DQ39 Inp // SDRAM Data
DQ40 Inp // SDRAM Data
DQ41 Inp // SDRAM Data
DQ42 Inp // SDRAM Data
DQ43 Inp // SDRAM Data
DQ44 Inp // SDRAM Data
DQ45 Inp // SDRAM Data
DQ46 Inp // SDRAM Data
DQ47 Inp // SDRAM Data
DQ48 Inp // SDRAM Data
DQ49 Inp // SDRAM Data
DQ50 Inp // SDRAM Data
DQ51 Inp // SDRAM Data
DQ52 Inp // SDRAM Data
DQ53 Inp // SDRAM Data
DQ54 Inp // SDRAM Data
DQ55 Inp // SDRAM Data
DQ56 Inp // SDRAM Data
DQ57 Inp // SDRAM Data
DQ58 Inp // SDRAM Data
DQ59 Inp // SDRAM Data
DQ60 Inp // SDRAM Data
DQ61 Inp // SDRAM Data
DQ63 Inp // SDRAM Data

// Group 233: All pins in this group must be set to the same direction
// SCB0..7 are bidirectional
// SDQM8 is tristateable, but can not be read back
SCB0 Inp // SDRAM ECC Check
SCB1 Inp // SDRAM ECC Check
SCB2 Inp // SDRAM ECC Check
SCB3 Inp // SDRAM ECC Check
SCB4 Inp // SDRAM ECC Check
SCB5 Inp // SDRAM ECC Check
SCB6 Inp // SDRAM ECC Check
SCB7 Inp // SDRAM ECC Check
SDQM8 Inp // SDRAM Data Mask

// Group 230: All pins in this group must be set to the same direction
// These pins are bidirectional
DQS0 Inp // SDRAM Data Strobe
DQS1 Inp // SDRAM Data Strobe
DQS2 Inp // SDRAM Data Strobe
DQS3 Inp // SDRAM Data Strobe

// Group 231: All pins in this group must be set to the same direction
// These pins are bidirectional
DQS4 Inp // SDRAM Data Strobe
DQS5 Inp // SDRAM Data Strobe
DQS6 Inp // SDRAM Data Strobe
DQS7 Inp // SDRAM Data Strobe

// The following pins are complete bidirectional pins.
// The direction of each pin can be set independent of the other pins.
// Each pin can be used as an input.
NC0 Inp // not connected
NC1 Inp // not connected
NC2 Inp // not connected
GPIO0 Inp // General Purpose Input/Output
GPIO1 Inp // General Purpose Input/Output
GPIO2 Inp // General Purpose Input/Output
GPIO3 Inp // General Purpose Input/Output
GPIO4 Inp // = SDA1
GPIO5 Inp // = SCL1
GPIO6 Inp // = SDA0
JTAG-Booster for Intel XScale

GPIO7 Inp // = SCL0
RDYRCV# Out,Hi // PBI Read/Recover
P_ACK64# Inp // PCI Bus Acknowledge 64 bit Transfer
P_REQ64# Inp // PCI Bus Request 64 bit
P_PAR64 Inp // PCI Bus Upper DWORD Parity
P_SERR# Inp // PCI Bus System Error
P_PERR# Inp // PCI Parity Error
P_PAR Inp // PCI Bus Parity
P_STOP# Inp // PCI Bus Stop
PODEVSEL# Inp // PCI Bus Device Select
P_TRDY# Inp // PCI Bus Target Ready
P_FRAME# Inp // PCI Bus Initiator Ready
DQS8 Inp // SDRAM Data Strobe

// The following pins are tristateable, but can not be read back
TXD Inp // Serial Transmit Data
SFRM Inp // Serial Frame
SSCKO Inp // Serial Port Clock Out
ALE Out,Lo // PBI Address Latch Enable
ADS# Out,Hi // PBI Address Strobe
W/R# Out,Hi // PBI Write/Read
FWE# Out,Hi // PBI Flash Write Enable
DEN# Out,Hi // PBI Data Enable
BLAST# Out,Hi // PBI Burst Last
PB_RST# Out,Hi // PBI Peripheral Bus Reset
HOLDA Out,Lo // PBI Hold Acknowledge
PB_CLK Out,Lo // PBI Peripheral Bus Clock
P_REQ# Inp // PCI Bus Request
P_INTA# Out,Hi // PCI Interrupt Output
P_INTB# Out,Hi // PCI Interrupt Output
P_INTC# Out,Hi // PCI Interrupt Output
P_INTD# Out,Hi // PCI Interrupt Output

// The following pins are input only.
// Setting to output of one of these pins results in an error.
// Declaration of the direction of these pins is optional.
HIP# Inp // High Priority Interrupt
PWRDELAY Inp // Power Fail Delay
RXD Inp // Serial Receive Data
SSCKI Inp // Serial Port Clock In
XINT0# Inp // External Interrupt Request
XINT1# Inp // External Interrupt Request
XINT2# Inp // External Interrupt Request
<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XINT3#</td>
<td>Inp</td>
<td>External Interrupt Request</td>
</tr>
<tr>
<td>HOLD</td>
<td>Inp</td>
<td>PBI HOLD</td>
</tr>
<tr>
<td>P_M66EN</td>
<td>Inp</td>
<td>PCI 66MHz enable</td>
</tr>
<tr>
<td>P_GNT#</td>
<td>Inp</td>
<td>PCI Bus Grant input</td>
</tr>
<tr>
<td>P_RST#</td>
<td>Inp</td>
<td>PCI Reset Input</td>
</tr>
<tr>
<td>P_IDSEL</td>
<td>Inp</td>
<td>PCI Initialization Device Select</td>
</tr>
<tr>
<td>P_CLK</td>
<td>Inp</td>
<td>PCI Clock Input</td>
</tr>
<tr>
<td>RCVENI#</td>
<td>Inp</td>
<td>SDRAM Receive Enable Input</td>
</tr>
</tbody>
</table>
Sample File JTAG425.INI:

// Description file for Intel IXP425
Target: Generic Target
// Adapt this file carefully to your design!!
// All chip select signals are set to output and inactive.
// All signals should be defined. Undefined signals are set to their defaults.
// Pin names are defined in upper case.
// Low active signal are signed with a trailing #.

// The following pins are complete bidirectional pins
// The direction of each pin can be set independent of the other pins
// For Flash Programming these pins must be set to output
EX_ADDR23 Out,Lo // Expansion Bus Address
EX_ADDR22 Out,Lo //
EX_ADDR21 Out,Lo //
EX_ADDR20 Out,Lo //
EX_ADDR19 Out,Lo //
EX_ADDR18 Out,Lo //
EX_ADDR17 Out,Lo //
EX_ADDR16 Out,Lo //
EX_ADDR15 Out,Lo //
EX_ADDR14 Out,Lo //
EX_ADDR13 Out,Lo //
EX_ADDR12 Out,Lo //
EX_ADDR11 Out,Lo //
EX_ADDR10 Out,Lo //
EX_ADDR9 Out,Lo //
EX_ADDR8 Out,Lo //
EX_ADDR7 Out,Lo //
EX_ADDR6 Out,Lo //
EX_ADDR5 Out,Lo //
EX_ADDR4 Out,Lo //
EX_ADDR3 Out,Lo //
EX_ADDR2 Out,Lo //
EX_ADDR1 Out,Lo //
EX_ADDR0 Out,Lo //
The following pins are complete bidirectional pins. These pins are switched between output/active and input/tristate during programming of Flash-EPROMs.

- EX_DATA15 Inp // Expansion Bus Data
- EX_DATA14 Inp //
- EX_DATA13 Inp //
- EX_DATA12 Inp //
- EX_DATA11 Inp //
- EX_DATA10 Inp //
- EX_DATA9 Inp //
- EX_DATA8 Inp //
- EX_DATA7 Inp //
- EX_DATA6 Inp //
- EX_DATA5 Inp //
- EX_DATA4 Inp //
- EX_DATA3 Inp //
- EX_DATA2 Inp //
- EX_DATA1 Inp //
- EX_DATA0 Inp //

The following pins are tristateable, but cannot be read back. These pins are modified during flash programming.

- EX_CS7# Out,Hi // Expansion Bus Chip Select
- EX_CS6# Out,Hi //
- EX_CS5# Out,Hi //
- EX_CS4# Out,Hi //
- EX_CS3# Out,Hi //
- EX_CS2# Out,Hi //
- EX_CS1# Out,Hi //
- EX_CS0# Out,Hi //
- EX_RD# Out,Hi // Expansion Bus Read Strobe
- EX_WR# Out,Hi // Expansion Bus Write Strobe

The following pins are complete bidirectional pins. The direction of each pin can be set independently of the other pins. Each pin can be used as an input.

- HSS_TXFRAME1 Inp // High Speed Serial Transmit Frame 1
- HSS_TXCLK1 Inp // High Speed Serial Transmit Clock 1
- HSS_RXFRAME1 Inp // High Speed Serial Receive Frame 1
- HSS_RXCLK1 Inp // High Speed Serial Receive Clock 1
- HSS_TXFRAME0 Inp // High Speed Serial Transmit Frame 0
- HSS_TXCLK0 Inp // High Speed Serial Transmit Clock 0
- HSS_RXFRAME0 Inp // High Speed Serial Receive Frame 0
<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSS_RXCLK0</td>
<td>High Speed Serial Receive Clock 0</td>
</tr>
<tr>
<td>PCI_GNT0#</td>
<td>PCI Arbitration Grant</td>
</tr>
<tr>
<td>PCI_REQ0#</td>
<td>PCI Arbitration Request</td>
</tr>
<tr>
<td>PCI_SERR#</td>
<td>PCI System Error</td>
</tr>
<tr>
<td>PCI_PERR#</td>
<td>PCI Parity Error</td>
</tr>
<tr>
<td>PCI_DEVSEL#</td>
<td>PCI Device Select</td>
</tr>
<tr>
<td>PCI_STOP#</td>
<td>PCI Stop</td>
</tr>
<tr>
<td>PCI_TRDY#</td>
<td>PCI Target Ready</td>
</tr>
<tr>
<td>PCI_IRDY#</td>
<td>PCI Initiator Ready</td>
</tr>
<tr>
<td>PCI_FRAME#</td>
<td>PCI Cycle Frame</td>
</tr>
<tr>
<td>PCI_PAR</td>
<td>PCI Parity</td>
</tr>
<tr>
<td>PCI_CBE3#</td>
<td>PCI Command/Byte Enable</td>
</tr>
<tr>
<td>PCI_CBE2#</td>
<td></td>
</tr>
<tr>
<td>PCI_CBE1#</td>
<td></td>
</tr>
<tr>
<td>PCI_CBE0#</td>
<td></td>
</tr>
<tr>
<td>PCI_AD31</td>
<td>PCI ADdress/Data</td>
</tr>
<tr>
<td>PCI_AD30</td>
<td></td>
</tr>
<tr>
<td>PCI_AD29</td>
<td></td>
</tr>
<tr>
<td>PCI_AD28</td>
<td></td>
</tr>
<tr>
<td>PCI_AD27</td>
<td></td>
</tr>
<tr>
<td>PCI_AD26</td>
<td></td>
</tr>
<tr>
<td>PCI_AD25</td>
<td></td>
</tr>
<tr>
<td>PCI_AD24</td>
<td></td>
</tr>
<tr>
<td>PCI_AD23</td>
<td></td>
</tr>
<tr>
<td>PCI_AD22</td>
<td></td>
</tr>
<tr>
<td>PCI_AD21</td>
<td></td>
</tr>
<tr>
<td>PCI_AD20</td>
<td></td>
</tr>
<tr>
<td>PCI_AD19</td>
<td></td>
</tr>
<tr>
<td>PCI_AD18</td>
<td></td>
</tr>
<tr>
<td>PCI_AD17</td>
<td></td>
</tr>
<tr>
<td>PCI_AD16</td>
<td></td>
</tr>
<tr>
<td>PCI_AD15</td>
<td></td>
</tr>
<tr>
<td>PCI_AD14</td>
<td></td>
</tr>
<tr>
<td>PCI_AD13</td>
<td></td>
</tr>
<tr>
<td>PCI_AD12</td>
<td></td>
</tr>
<tr>
<td>PCI_AD11</td>
<td></td>
</tr>
<tr>
<td>PCI_AD10</td>
<td></td>
</tr>
<tr>
<td>PCI_AD9</td>
<td></td>
</tr>
<tr>
<td>PCI_AD8</td>
<td></td>
</tr>
<tr>
<td>PCI_AD7</td>
<td></td>
</tr>
<tr>
<td>PCI_AD6</td>
<td></td>
</tr>
<tr>
<td>PCI_AD5</td>
<td></td>
</tr>
<tr>
<td>PCI_AD4</td>
<td></td>
</tr>
</tbody>
</table>
PCI_AD3 Inp //
PCI_AD2 Inp //
PCI_AD1 Inp //
PCI_AD0 Inp //
SDM_DATA31 Inp // SDRAM Data
SDM_DATA30 Inp //
SDM_DATA29 Inp //
SDM_DATA28 Inp //
SDM_DATA27 Inp //
SDM_DATA26 Inp //
SDM_DATA25 Inp //
SDM_DATA24 Inp //
SDM_DATA23 Inp //
SDM_DATA22 Inp //
SDM_DATA21 Inp //
SDM_DATA20 Inp //
SDM_DATA19 Inp //
SDM_DATA18 Inp //
SDM_DATA17 Inp //
SDM_DATA16 Inp //
SDM_DATA15 Inp //
SDM_DATA14 Inp //
SDM_DATA13 Inp //
SDM_DATA12 Inp //
SDM_DATA11 Inp //
SDM_DATA10 Inp //
SDM_DATA9 Inp //
SDM_DATA8 Inp //
SDM_DATA7 Inp //
SDM_DATA6 Inp //
SDM_DATA5 Inp //
SDM_DATA4 Inp //
SDM_DATA3 Inp //
SDM_DATA2 Inp //
SDM_DATA1 Inp //
SDM_DATA0 Inp //
USB_D- Inp //
USB_D+ Inp //
GPIO15 Inp // CLKOUT
GPIO14 Inp //
GPIO13 Inp //
GPIO12 Inp //
GPIO11 Inp //
GPIO10 Inp //
GPIO9 Inp //
GPIO8 Inp //
GPIO7 Inp //
GPIO6 Inp //
GPIO5 Inp //
GPIO4 Inp //
GPIO3 Inp //
GPIO2 Inp //
GPIO1 Inp //
UTP_IP_ADDR4 Inp // Utopia Receive PHY Address
UTP_IP_ADDR3 Inp //
UTP_IP_ADDR2 Inp //
UTP_IP_ADDR1 Inp //
UTP_IP_ADDR0 Inp //
UTP_OP_ADDR4 Inp // Utopia Transmit PHY Address
UTP_OP_ADDR3 Inp //
UTP_OP_ADDR2 Inp //
UTP_OP_ADDR1 Inp //
UTP_OP_ADDR0 Inp //

// The following pins are tristateable, but can not be read back
HSS_TXDATA1 Inp // High Speed Serial Transmit Data
HSS_TXDATA0 Inp //
PCI_INTA# Inp // PCI Interrupt
PCI_GNT3# Inp // PCI Arbitration Grant
PCI_GNT2# Inp //
PCI_GNT1# Inp //
SDM_CLKOUT Out,Lo // SDRAM Clock
SDM_CKE Out,Lo // SDRAM Clock Enable
SDM_WE# Out,Hi // SDRAM Write Enable
SDM_RAS# Out,Hi // SDRAM Row Address Strobe
SDM_CAS# Out,Hi // SDRAM Column Address Strobe
SDM_BA1 Out,Lo // SDRAM BAank Address
SDM_BA0 Out,Lo //
SDM_DQM3 Inp // SDRAM Data Bus Mask
SDM_DQM2 Inp //
SDM_DQM1 Inp //
SDM_DQM0 Inp //
SDM_CS1# Out,Hi // SDRAM Chip Select
SDM_CS0# Out,Hi //
SDM_ADDR12 Out,Lo // SDRAM Address
SDM_ADDR11 Out,Lo //
SDM_ADDR10 Out,Lo //
SDM_ADDR9 Out,Lo //
SDM_ADDR8 Out,Lo //
SDM_ADDR7 Out,Lo //
SDM_ADDR6 Out,Lo //
SDM_ADDR5 Out,Lo //
SDM_ADDR4 Out,Lo //
SDM_ADDR3 Out,Lo //
SDM_ADDR2 Out,Lo //
SDM_ADDR1 Out,Lo //
SDM_ADDR0 Out,Lo //
EX_ALE Out,Lo // Expansion Bus Address Latch Enable
RTS1# Inp //
TXDATA1 Inp //
RTS0# Inp //
TXDATA0 Inp //
UTP_IP_FCO Inp // Utopia Receive Data Flow Control Output
UTP_OP_SOC Inp // Utopia Transmit Start of Cell
UTP_OP_DATA7 Inp // Utopia Transmit Data
UTP_OP_DATA6 Inp //
UTP_OP_DATA5 Inp //
UTP_OP_DATA4 Inp //
UTP_OP_DATA3 Inp //
UTP_OP_DATA2 Inp //
UTP_OP_DATA1 Inp //
UTP_OP_DATA0 Inp //
UTP_OP_FCO Inp // Utopia Transmit Data Flow Control Output
ETH_TXDATA1_3 Inp //
ETH_TXDATA1_2 Inp //
ETH_TXDATA1_1 Inp //
ETH_TXDATA1_0 Inp //
ETH_TXEN1 Inp //
ETH_TXDATA0_3 Inp //
ETH_TXDATA0_2 Inp //
ETH_TXDATA0_1 Inp //
ETH_TXDATA0_0 Inp //
ETH_TXEN0 Inp //

// The following pins are input only.
// Setting to output of one of these pins results in an error.
// Declaration of the direction of these pins is optional.
HSS_RXDATA1 Inp //
HSS_RXDATA0 Inp //
PCI_CLKIN Inp //
PCI_REQ3# Inp //
PCI_REQ2# Inp //
PCI_REQ1# Inp //
PCI_IDSEL Inp //
EX_RDY3# Inp //
EX_RDY2# Inp //
EX_RDY1# Inp //
EX_RDY0# Inp //
EX_CLK Inp //
EX_IOWAIT# Inp //
CTS1# Inp //
RXDATA1 Inp //
CTS0# Inp //
RXDATA0 Inp //
UTP_IP_DATA7 Inp // Utopia Receive Data
UTP_IP_DATA6 Inp //
UTP_IP_DATA5 Inp //
UTP_IP_DATA4 Inp //
UTP_IP_DATA3 Inp //
UTP_IP_DATA2 Inp //
UTP_IP_DATA1 Inp //
UTP_IP_DATA0 Inp //
UTP_IP_SOC Inp // Utopia Receive Start of Cell
UTP_IP_FCI Inp // Utopia Receive Data Flow Control Input
UTP_IP_CLK Inp // Utopia Receive Data Clock Input
UTP_OP_FCI Inp // Utopia Transmit Data Flow Control Input
UTP_OP_CLK Inp // Utopia Transmit Data Clock Input
RESET_IN# Inp //
BYPASS_CLK Inp //
ETH_COL1 Inp //
ETH_CRS1 Inp //
ETH_RXCLK1 Inp //
ETH_RXDATA1_3 Inp //
ETH_RXDATA1_2 Inp //
ETH_RXDATA1_1 Inp //
ETH_RXDATA1_0 Inp //
ETH_RXDV1 Inp //
ETH_TXCLK1 Inp //
ETH_COL0 Inp //
ETH_CRS0 Inp //
ETH_RXCLK0 Inp //
ETH_RXDATA0_3 Inp //
ETH_RXDATA0_2 Inp //
ETH_RXDATA0_1 Inp //
ETH_RXDATA0_0 Inp //
ETH_RXDV0 Inp //
ETH_TXCLK0 Inp //
1.12. Supported flash devices

Type JTAGxxx /LIST [optionlist] to get a online list of all flash types which could be used with the /DEVICE= option.

See separate file JTAG_V4xx_FLASHES.pdf to get a complete list of supported flash types.
2. JTAGxxx Parameter Description

When you start JTAGxxx.EXE without any parameters the following help screen with all possible functions and options is displayed:

JTAGxxx --- JTAG utility for Intel XScale
Copyright © FS FORTH-SYSTEME GmbH, Breisach
Version 4.xx of mm/dd/yyyy

Programming of Flash-EPROMs and hardware tests on targets with the Intel XScale.

The JTAG-Booster is needed to connect the parallel port of the PC to the JTAG port of the Intel XScale.

Usage: JTAGxxx /function [filename] [/option_1] ... [/option_n]

Supported functions:
/P : Program a Flash Device
/R : Read a Flash Device to file
/V : Verify a Flash Device with file
/DUMP : Make a target dump
/PI2C : Program an I2C Device with file
/RI2C : Read an I2C Device to file
/VI2C : Verify an I2C Device with file
/DUMPI2C : Make a dump of an I2C Device
/BLINK : Toggle a CPU pin
/PIN? : Test a CPU pin
/SAMPLE : Test a CPU pin while the CPU is running
/SNAP : Test all CPU pins while CPU is running
/LIST : Print a list of supported Flash devices
Supported Options:

/CS0 /CS1 /CS2 /CS3 /CS4
/CS5 /NOCS /NOWRSETUP /TOP /BYTE-MODE
/BM /PAUSE /P /NODUMP /NOERASE
/LATTICE /ERASEALL /LPT1 /LPT2 /LPT3
/LPT-BASE= /32BIT /16BIT /8BIT /NOMAN
/LENGTH= L= /FILE-OFFSET= /FO= /OFFSET=
/O= /DELAY= /DEVICE-BASE= /DB= /DRIVER=
/DATA-MASK= /DM= /ROFFS= /CPUPOS= /DEVICE=
/PIN= /I2CCLK= /I2CDAT= /I2CDATI= /I2CDATO=
/I2CBIG /WATCH= /OUT= /INI= /REP

The following options are valid for most functions:

/DRIVER=x with x = 1,2,3,4
A driver for the interface to the JTAG-BOOSTER on the parallel port may be specified. /DRIVER=1 selects the fastest available driver, /DRIVER=4 selects the slowest one. Use a slower driver if there are problems with JTAG-BOOSTER.
Default: /DRIVER=3

/INI=file
An initialization file may be specified. By default the current directory is searched for the file JTAGxxx.INI. If this file is not found and no initialization file is specified in the command line, default initialization values are used (see also chapter 1.11 “Initialization file JTAGxxx.INI”).
Note: The initialization file is not loaded for the functions /SAMPLE (chapter 2.11) and /SNAP (chapter 2.12).
Default: /INI=JTAGxxx.INI

/LATTICE /WIGGLER /PLS /TRITON
Besides the standard JTAG-BOOSTER interface there are several simple "Parallel-Port-JTAG" interfaces supported. With this interfaces the programming performance, of course, is reduced.
/LPT1 /LPT2 /LPT3
A printer port may be specified where the JTAG-Booster resides. If you are
using this program with WinNT, Win2000 or WinXP you must specify /LPT2 or
/LPT-BASE=378 to get access to the standard printer port.
Default: /LPT1

/LPT-BASE
The physical I/O-Address of printer port may be specified instead of the logical
printer name. Useful option, if you work with WinNT, Win2000 or WindowsXP,
because the standard printer port is mapped as LPT2 here. Use the option
/LPT-BASE=378 to get a command line which works independent of the
operation system.

/OUT=file_or_device
All screen outputs are redirected to the specified file or device. Note that you
can't redirect to the same parallel port where the JTAG-Booster resides.
Default: /OUT=CON

/PAUSE
With the option /PAUSE you can force the program to stop after each screen.
Please do not use this option if you redirect the output to a file.
Abbreviation: /P

/WATCH=
With the option /WATCH= a pin can be specified, which is toggled twice per
second, while the program is active. This pin may be the trigger of a watchdog.
This pin must be specified as output in the initialization file.

/IROFFS=
Specifies the position of the Intel XScale instruction register within the JTAG
chain. In most cases this option is not needed.
Default: /IROFFS=0

/CPUPOS=
Specifies the position of the Intel XScale within the JTAG chain.
Default: /CPUPOS=0
2.1. **Program a Flash Device**

Usage:
JTAG*xxx /P filename [optionlist]

The specified file is programmed into the flash memory. The flash status is polled after programming of each cell (cell=8, 16 or 32 bit, depending on current data bus width). In case of a programming error, the contents of the flash memory is written to a file with the extension DMP.

If you want a complete verify after programming, please use an additional command line with the verify function. See chapter 2.3 “Verify a Flash Device with file”. In most cases this additional verify step is not needed.

The type of the flash device is normally detected by the software. When autodetection fails you should use the /DEVICE= option together with /8BIT or /16BIT or /32BIT to set the right flash device and configuration. The known flash devices are shown in chapter 1.12 “Supported flash devices”.

Options:

/DEVICE=devicename
The flash device is detected automatically by switching to autoselect mode. In case of trouble you should select the flash device by using this parameter to avoid autodetection. Combine this option with one of the following options which specify the data bus width and the option /BYTE-MODE if applicable.

/8BIT /16BIT /32BIT
Specifies the data bus width to the target flash device. You can speed up autodetection, if you specify the correct data bus size. You need this option together with the option /DEVICE= to explicit specify a specific flash configuration.

/BYTE-MODE
If there is a flash device connected to the CPU which does have a byte mode pin (8 bit and 16/32 bit bus mode), you can force it to be used as 8 bit mode with the option /BYTE-MODE. In most cases this option will not be needed.
/NOMAN
If you use a flash device which is identical to one of the supported parts, but is
from a different manufacturer, with this option you can suppress the comparison
of the manufacturer identification code. We recommend to use this option
together with the /DEVICE= option to avoid failures in autodetection.

/DEVICE-BASE=hhhhhh
Here you can specify a flash device starting address. In most cases, where the
flash device is selected with one of the CPUs chip select pins, this parameter is
not needed. But if there is any decoding logic in your hardware, this option will
be needed. Especially, if there are several flash banks connected to one chip
select and a sub decoding logic generates chip selects for these flash banks,
this option can be used to select a specific flash bank.
Default: /DEVICE-BASE=0
Abbreviation: /DB=

/OFFSET=hhhhhh
The programming starts at an offset of hhhhhh relative to the start address of
the flash device. If the offset is negative, the offset specifies an address relative
to the end of the flash device. See also option /TOP
Default: /OFFSET=0
Abbreviation: /O=

/TOP
If the option /TOP is used the option /OFFSET= specifies the address where the
programming ends (plus one) instead of the starting address. This option is very
important for Intel CPU architectures, because target execution always starts at
the top of the address space.

/FILE-OFFSET=hhhhhh
If FILE-OFFSET is specified, the first hhhhhh bytes of the file are skipped and
not programmed to target.
Default: /FILE-OFFSET=0
Abbreviation: /FO=

\[hhhhhh\text{=number base is hex}\]
/LENGTH=hhhhhh
The number of programmed bytes may be limited to LENGTH. If no LENGTH is specified the whole file is programmed.
Default: /LENGTH=4000000 (64 MByte)
Abbreviation: /L=

/NODUMP
In case of a verify error the contents of the flash memory is written to a file with the extension .DMP. With /NODUMP you can suppress this feature.

/ERASEALL
Erase the whole flash device. If this option isn't set, only those blocks are erased where new data should be written to.

/NOERASE
This option prevents the flash device from being erased.

/CS0 /CS1 /CS2 /CS3 /CS4 /CS5
This options may be used to specify one or more chip select signals to the flash memory. The used chip selects must be defined as output and inactive in the initialization file. (See chapter 1.11 “Initialization file JTAGxxx.INI”.)
Default: /CS0

/NOCX
Use this option to switch off all chip select signals. This may be necessary if the device's chip select is generated via a normal decoder instead of using the Intel XScale chip select unit.

/NOWRSETUP
By default write cycles to the Flash EPROM are realized with three steps: 1. set address/data 2. write strobe active 3. write strobe inactive. In most cases it is possible to set the write strobe coincident with setting of address and data by specifying the option /NOWRSETUP. This increases the programming speed by 50%.
Examples:

JTAGxxx /P ROMDOS.ROM /L=20000 /TOP
This example programs up to 128 Kbytes of the file ROMDOS.ROM (with i.e. 512 Kbytes) to the top of the boot flash memory.

JTAGxxx /P CE.ROM /32BIT /CS1
This example programs the file CE.ROM to the 32 Bit Flash-EPROM connected to CS1#.
2.2. Read a Flash Device to file

Usage: JTAGxxx /R filename [optionlist]

The contents of a flash device is read and written to a file.

The type of the flash device is normally detected by the software. When autodetection fails you should use the /DEVICE= option together with /8BIT or /16BIT or /32BIT to set the right flash device and configuration. The known devices are shown in chapter 1.12 “Supported flash devices”.

Options:

/DEVICE=devicename
See function /P (Chapter 2.1)

/8BIT /16BIT /32BIT
See function /P (Chapter 2.1)

/BYTE-MODE
See function /P (Chapter 2.1)

/NOMAN
See function /P (Chapter 2.1)

/DEVICE-BASE=hhhhhh\(^2\)
See function /P (Chapter 2.1)

/OFFSET=hhhhhh
Reading of the flash memory starts at an offset of hhhhhh relative to the start address of the flash device. If the offset is negative, the offset specifies an address relative to the end of the flash device.
See also option /TOP.
Default: /OFFSET=0
Abbreviation: /O=

\(^2\)hhhhhh=number base is hex
/TOP
If the option /TOP is used the option /OFFSET= specifies the address where reading ends (plus one) instead of the starting address.

/LENGTH=hhhhhh
The number of read bytes may be limited to LENGTH. If no LENGTH is specified the whole flash device is read (if no offset is specified).

/CS0 /CS1 /CS2 /CS3 /CS4 /CS5
See function /P (Chapter 2.1)

/NOWRSETUP
See function /P (Chapter 2.1)
Please note: In the function /R write cycles are needed to detect the type of the flash memory.

Example:

JTAGxxx /R BIOS.ABS /L=10000 /TOP
This example may be used to read the upper most 64 Kbyte of the flash memory to the file BIOS.ABS.
2.3. Verify a Flash Device with file

Usage: JTAGxxx /V filename [optionlist]

The contents of a flash device is compared with the specified file. If there are differences the memory is dumped to a file with the extension DMP.

The type of flash device is normally detected by the software. When autodetect fails you should use the /DEVICE= option together with /8BIT or /16BIT or /32BIT to set the right flash device and configuration. The known devices are shown in chapter 1.12 “Supported flash devices”.

Options:

/DEVICE=devicename
See function /P (Chapter 2.1)

/8BIT /16BIT /32BIT
See function /P (Chapter 2.1)

/BYTE-MODE
See function /P (Chapter 2.1)

/NOMAN
See function /P (Chapter 2.1)

/DEVICE-BASE=hhhhhh
See function /P (Chapter 2.1)

/OFFSET=hhhhhh
See function /P (Chapter 2.1)

/TOP
See function /P (Chapter 2.1)

/FILE-OFFSET=hhhhhh
See function /P (Chapter 2.1)
/LENGTH=hhhhhh
See function /P (Chapter 2.1)

/NODUMP
See function /P (Chapter 2.1)

/CS0 /CS1 /CS2 /CS3 /CS4 /CS5
See function /P (Chapter 2.1)

/NOWRSETUP
See function /P (Chapter 2.1)
Please note: In the function /V write cycles are needed to detect the type of the flash memory.

Example:

JTAGxxx /V ROMDOS.ROM /L=20000 /TOP
This example may be used to verify the upper most 128 Kbytes of the flash memory with the file ROMDOS.ROM (with i.e. 512 Kbytes).
2.4. Dump target memory

Usage: JTAGxxx /DUMP [optionlist]

A Hex-Dump of the target memory is printed on the screen, if not redirected to file or device.

Options:

/8BIT /16BIT /32BIT
Default: /32BIT

/OFFSET=hhhhhh
The memory dump starts at an offset of hhhhh plus the device start address (see option /DEVICE-BASE=).
Default: /OFFSET=0
Abbreviation: /O=

/DEVICE-BASE=hhhhhh
The device start address is used as an additional offset. This gives the function /DUMP the same behavior as function /P /V and /R.
Default: /DEVICE-BASE=0
Abbreviation: /DB=

/TOP
If the option /TOP is used the option /OFFSET= specifies the address where the dump ends (plus one) instead of the starting address.

/LENGTH=hhhhhh
Default: /LENGTH=100
Abbreviation: /L=

/CS0 /CS1 /CS2 /CS3 /CS4 /CS5
See function /P (Chapter 2.1)
Default: /CS0

3hhhhhh=number base is hex
Example:

JTAGxxx /DUMP
This example makes a memory dump of the first 256 bytes of the Boot-EPROM.
2.5. Program an I²C-Device

Usage:

JTAGxxx /PI2C filename [/I2CBIG] [optionlist]

The specified file is programmed to an I²C-Device (i.e. a serial EEPROM) connected to pins of the CPU. Finally a complete verify is done. If the verify fails, the contents of the I²C-Device is written to a file with the extension DMP.

Two methods to connect the I²C-Device to the CPU are supported. The first method is to use two CPU pins, one pin for clock output (I2CCLK) and one pin for serial data input and output (I2CDAT). The second method is to use one pin for clock output (I2CCLK), one for serial data input (I2CDATI) and one for serial data output (I2CDATO).

Options:

/I2CBIG
Specify this option if there is a device which needs a three byte address instead of a two byte address.

This option must be the first option after the filename.

/DEVICE-BASE=hhhhhh
This option specifies an I²C device starting address. The default values are chosen to access an serial EEPROM.

Default: /DEVICE-BASE=500000 (if option /I2CBIG specified)
Default: /DEVICE-BASE=5000 (if option /I2CBIG omitted)

/OFFSET=hhhhhh
The programming starts at an offset of hhhhhh relative to the start address of the I²C-Device.

Default: /OFFSET=0
Abbreviation: /O=

/FILE-OFFSET=hhhhhh
If FILE-OFFSET is specified, the first hhhhhh bytes of the file are skipped and not programmed to target.

Default: /FILE-OFFSET=0
Abbreviation: /FO=
/LENGTH=hhhhhh
The number of programmed bytes may be limited to LENGTH. If no LENGTH is specified the whole file is programmed.
Abbreviation: /L=

/NODUMP
In case of a verify error the contents of the I²C-Device is written to a file with the extension .DMP. With option /NODUMP you can suppress this feature.

/I²CCLK=pin_name
Specifies the CPU pin used for serial clock output.

/I²CDAT=pin_name
Specifies the CPU pin used for serial data input and output. Pin_name must specify a bidirectional pin otherwise an error message occurs. Instead of one bidirectional pin one pin for serial data input and one for serial data output may be used. See option /I²CDATO= and /I²CDATI=.

/I²CDATO=pin_name
Specifies the CPU pin used for serial data output. Pin_name must specify a output pin otherwise an error message occurs.

/I²CDATI=pin_name
Specifies the CPU pin used for serial data input. Pin_name must specify a input pin otherwise an error message occurs.

Example:

JTAGxxx /PI2C EEPROM.CFG /I²CCLK=FLAG0 /I²CDAT=FLAG1
This example loads the file EEPROM.CFG to a serial EEPROM connected to the pins FLAG0 and FLAG1 of the Intel XScale
2.6. Read an I²C-Device to file

Usage: JTAGxxx /RI2C filename [/I2CBIG] /L=hhhhhh [optionlist]

The contents of an I²C-Device (i.e. a serial EEPROM) is read and written to a file. The option /LENGTH= must be specified.

Options:

/I2CBIG
This option must be the first option after the filename.
See function /PI2C (Chapter 2.5)

/DEVICE-BASE=hhhhhh
See function /PI2C (Chapter 2.5)

/OFFSET=hhhhhh
Reading of the I²C-Device starts at an offset of hhhhhh relative to the start address of the I²C-Device.
Default: /OFFSET=0
Abbreviation: /O=

/LENGTH=hhhhhh
The number of read bytes must be specified otherwise an error message occurs.
Abbreviation: /L=

/I2CCLK=pin_name
See function /PI2C (Chapter 2.5)

/I2CDAT=pin_name
See function /PI2C (Chapter 2.5)

/I2CDATO=pin_name
See function /PI2C (Chapter 2.5)

/I2CDATI=pin_name
See function /PI2C (Chapter 2.5)
Example:

JTAGxxx /RI2C EEPROM.CFG /I2CCLK=GP26 /I2CDAT=GP27 /L=100
This example reads 256 bytes from a serial EEPROM to the file EEPROM.CFG. The serial EEPROM is connected to the pins CP26 and GP27 of the Intel XScale.
2.7. Verify an I²C-Device with file

Usage: JTAGxxx /VI2C filename [/I2CBIG] [optionlist]

The contents of an I²C-Device (i.e. a serial EEPROM) is compared with the specified file. If there are differences the contents of the I²C -Device is written to a file with the extension DMP.

Options:

/I2CBIG
This option must be the first option after the filename.
See function /PI2C (Chapter 2.5)

/DEVICE-BASE=hhhhhh
See function /PI2C (Chapter 2.5)

/OFFSET=hhhhhh
See function /PI2C (Chapter 2.5)

/FILE-OFFSET=hhhhhh
See function /PI2C (Chapter 2.5)

/LENGTH=hhhhhh
See function /PI2C (Chapter 2.5)

/NODUMP
See function /PI2C (Chapter 2.5)

/I2CCLK=pin_name
See function /PI2C (Chapter 2.5)

/I2CDAT=pin_name
See function /PI2C (Chapter 2.5)

/I2CDATO=pin_name
See function /PI2C (Chapter 2.5)
/I2CDATI=pin_name
See function /PI2C (Chapter 2.5)

Example:

JTAGxxx /VI2C EEPROM.CFG /I2CCLK=GP26 /I2CDAT=GP27
This example verifies 256 bytes from a serial EEPROM with the file EEPROM.CFG. The serial EEPROM is connected to the pins CP26 and GP27 of the Intel XScale.
2.8. Dump an I²C-Device

Usage: JTAGxxx /DUMPI2C [/I2CBIG] [optionlist]

A Hex-Dump of an I²C-Device is printed on the screen, if not redirected to file or device.

Options:

/I2CBIG
This option must be the first option.
See function /PI2C (Chapter 2.5)

/DEVICE-BASE=hhhhhh
See function /PI2C (Chapter 2.5)

/OFFSET=hhhhhh*
The memory dump starts at an offset of hhhhh.
Default: /OFFSET=0
Abbreviation: /O=

/LENGTH=hhhhhh
Default: /LENGTH=100
Abbreviation: /L=

/I2CCLK=pin_name
Specifies the CPU pin used for serial clock output.

/I2CDAT=pin_name
Specifies the CPU pin used for serial data input and output. Pin_name must specify a bidirectional pin otherwise an error message occurs. Instead of one bidirectional pin one pin for serial data input and one for serial data output may be used. See option /I2CDATO= and /I2CDATI=.

/I2CDATO=pin_name
Specifies the CPU pin used for serial data output. Pin_name must specify a output pin otherwise an error message occurs.

__hiihhhh=number base is hex
/I2CDATI=pin_name
Specifies the CPU pin used for serial data input. Pin_name must specify a input pin otherwise an error message occurs.

Example:

JTAGxxx /DUMPI2C /I2CCLK=FLAG0 /I2CDAT=FLAG1
This example makes a memory dump of the first 100h bytes of a serial EEPROM connected to the CPU.
2.9. **Toggle CPU pins**

Usage:

```
JTAGxxx /BLINK /PIN=pinname [optionlist]
```

This command allows to test the hardware by blinking with LEDs or toggling CPU signals. Faster signals can be generated by setting the delay option to zero. This can be a very helpful feature to watch signals on an oscilloscope.

The signal on the defined pin has a duty cycle of 1/2: The level is 67% high and 33% low.

Please Note: Not every pin of the Intel XScale may be specified as an output pin.

Options:

```
/PIN=pin_name
```

CPU pin to toggle. If the option `/PIN=` is not specified an error message occurs. Most pins of the list in chapter 1.11 “Initialization file JTAGxxx.INI” can be used. If you type `/PIN=` without any pin declaration a list of the CPU pins is displayed.

```
/DELAY=dddddd
```

Time to wait to next change of signal. This option can be adjusted to get optimum signals for measures with the oscilloscope.

Default: `/DELAY=10000`

Example:

```
JTAGxxx /BLINK /PIN=FLAG3 /DELAY=0
```

This example toggles the FLAG3 pin very fast which can be followed by the use of an oscilloscope.

5 *dddddd=number base is decimal*
2.10. Polling CPU pins

Usage: JTAGxxx /PIN? /PIN=pinname [optionlist]

This command allows to test the hardware by polling CPU signals.

Please Note: Not every pin of the Intel XScale may be specified as an input pin.

Options:

/\PIN=pin_name

CPU pin to poll. If the option /PIN= is not specified an error message occurs. Most pins of the list in chapter 1.11 “Initialization file JTAGxxx.INI” can be used. If you type /PIN= without any pin declaration a list of the CPU pins is displayed.

Example:

JTAGxxx /PIN? /PIN=RESET#

This example samples the reset pin of the Intel XScale.
2.11. Polling CPU pins while the CPU is running

Usage: JTAGxxx /SAMPLE /PIN=pinname [optionlist]

This command is similar to the function /PIN?. But with this function any pin can be observed, independent of the pin direction. Furthermore the CPU remains in normal operation.

Options:

/PIN=pin_name
CPU pin to poll. If the option /PIN= is not specified an error message occurs. All pins of the list in chapter 1.11 “Initialization file JTAGxxx.INI” can be used. If you type /PIN= without any pin declaration a list of the CPU pins is displayed.

Example:

JTAGxxx /SAMPLE /PIN=FLAG3
This example samples the state of the port pin FLAG3 while the Intel XScale is running.
2.12. Show status of all CPU pins while the CPU is running

Usage: JTAGxxx /SNAP [optionlist]

This function is similar to the function /SAMPLE, but displays the status of all CPU pins on the screen. The CPU remains in normal operation.

The behavior of the function /SNAP depends on the option /REP: With this option specified, the JTAG-Booster samples and displays the state of the CPU pins repetitive. Without this option the status of the pins is displayed only once.

Options:

/Pause
Use this option to stop the output after each displayed screen. Don't use this option together with the option /REP or if the output is redirected to a file.

Abbreviation /P

/REP
If this option is specified the status of the pins is sampled and displayed repetitive. In case of many signals the display is separated into several screens. Therefor we recommend to use a video mode with 43 or 50 lines. Use the '+' and the '-' key to switch between different screens. Any other key terminates the program.
Sample output:

This is a sample output for an Intel PXA210/250

<table>
<thead>
<tr>
<th>0 GPIO0</th>
<th>1 GPIO1</th>
<th>1 GPIO2</th>
<th>1 GPIO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GPIO4</td>
<td>1 GPIO5</td>
<td>1 GPIO6</td>
<td>1 GPIO7</td>
</tr>
<tr>
<td>1 GPIO8</td>
<td>1 GPIO9</td>
<td>1 GPIO10</td>
<td>0 GPIO11</td>
</tr>
<tr>
<td>1 GPIO12</td>
<td>1 GPIO13</td>
<td>1 GPIO14</td>
<td>1 GPIO15</td>
</tr>
<tr>
<td>1 GPIO16</td>
<td>1 GPIO17</td>
<td>1 GPIO18</td>
<td>1 GPIO19</td>
</tr>
<tr>
<td>1 GPIO20</td>
<td>1 GPIO21</td>
<td>0 GPIO22</td>
<td>1 GPIO23</td>
</tr>
<tr>
<td>0 GPIO24</td>
<td>1 GPIO25</td>
<td>1 GPIO26</td>
<td>1 GPIO27</td>
</tr>
<tr>
<td>1 GPIO28</td>
<td>1 GPIO29</td>
<td>1 GPIO30</td>
<td>1 GPIO31</td>
</tr>
<tr>
<td>1 GPIO32</td>
<td>1 GPIO33</td>
<td>1 GPIO34</td>
<td>1 GPIO35</td>
</tr>
<tr>
<td>1 GPIO36</td>
<td>1 GPIO37</td>
<td>1 GPIO38</td>
<td>1 GPIO39</td>
</tr>
<tr>
<td>1 GPIO40</td>
<td>1 GPIO41</td>
<td>1 GPIO42</td>
<td>1 GPIO43</td>
</tr>
<tr>
<td>1 GPIO44</td>
<td>1 GPIO45</td>
<td>1 GPIO46</td>
<td>1 GPIO47</td>
</tr>
<tr>
<td>1 GPIO48</td>
<td>1 GPIO49</td>
<td>1 GPIO50</td>
<td>1 GPIO51</td>
</tr>
<tr>
<td>1 GPIO52</td>
<td>1 GPIO53</td>
<td>0 GPIO54</td>
<td>1 GPIO55</td>
</tr>
<tr>
<td>1 GPIO56</td>
<td>0 GPIO57</td>
<td>0 GPIO58</td>
<td>0 GPIO59</td>
</tr>
<tr>
<td>1 GPIO60</td>
<td>1 GPIO61</td>
<td>1 GPIO62</td>
<td>1 GPIO63</td>
</tr>
<tr>
<td>1 GPIO64</td>
<td>1 GPIO65</td>
<td>1 GPIO66</td>
<td>1 GPIO67</td>
</tr>
<tr>
<td>1 GPIO68</td>
<td>1 GPIO69</td>
<td>1 GPIO70</td>
<td>1 GPIO71</td>
</tr>
<tr>
<td>1 GPIO72</td>
<td>1 GPIO73</td>
<td>1 GPIO74</td>
<td>1 GPIO75</td>
</tr>
<tr>
<td>1 GPIO76</td>
<td>1 GPIO77</td>
<td>1 GPIO78</td>
<td>1 GPIO79</td>
</tr>
<tr>
<td>1 GPIO80</td>
<td>1 SCL</td>
<td>1 SDA</td>
<td>0 USB_P</td>
</tr>
<tr>
<td>0 USB_P</td>
<td>1 MMDAT</td>
<td>1 MMCMD</td>
<td>0 MD0</td>
</tr>
<tr>
<td>0 MD1</td>
<td>0 MD2</td>
<td>0 MD3</td>
<td>1 MD4</td>
</tr>
<tr>
<td>1 MD5</td>
<td>0 MD6</td>
<td>0 MD7</td>
<td>1 MD8</td>
</tr>
<tr>
<td>1 MD9</td>
<td>0 MD10</td>
<td>0 MD11</td>
<td>1 MD12</td>
</tr>
<tr>
<td>1 MD13</td>
<td>0 MD14</td>
<td>0 MD15</td>
<td>0 MD16</td>
</tr>
<tr>
<td>0 MD17</td>
<td>0 MD18</td>
<td>0 MD19</td>
<td>0 MD20</td>
</tr>
<tr>
<td>0 MD21</td>
<td>0 MD22</td>
<td>0 MD23</td>
<td>0 MD24</td>
</tr>
<tr>
<td>0 MD25</td>
<td>0 MD26</td>
<td>0 MD27</td>
<td>0 MD28</td>
</tr>
<tr>
<td>0 MD29</td>
<td>0 MD30</td>
<td>0 MD31</td>
<td>1 PWR_EN</td>
</tr>
<tr>
<td>1 RESET_OUT #</td>
<td>0 ACRESET #</td>
<td>1 RD/WR #</td>
<td>0 SDCLK0</td>
</tr>
<tr>
<td>1 SDCLK1</td>
<td>0 SDCLK2</td>
<td>0 SDCKE0</td>
<td>1 SDCKE1</td>
</tr>
<tr>
<td>1 SDCS0 #</td>
<td>1 SDCS1 #</td>
<td>1 SDCS2 #</td>
<td>1 SDCS3 #</td>
</tr>
<tr>
<td>0 DQM0</td>
<td>0 DQM1</td>
<td>0 DQM2</td>
<td>0 DQM3</td>
</tr>
<tr>
<td>1 SDCAS #</td>
<td>1 SDRAS #</td>
<td>1 WE #</td>
<td>1 OE #</td>
</tr>
<tr>
<td>1 CS0 #</td>
<td>0 MA0</td>
<td>0 MA1</td>
<td>0 MA2</td>
</tr>
<tr>
<td>0 MA3</td>
<td>0 MA4</td>
<td>0 MA5</td>
<td>0 MA6</td>
</tr>
<tr>
<td>0 MA7</td>
<td>0 MA8</td>
<td>0 MA9</td>
<td>0 MA10</td>
</tr>
<tr>
<td>0 MA11</td>
<td>0 MA12</td>
<td>0 MA13</td>
<td>1 MA14</td>
</tr>
<tr>
<td>1 MA15</td>
<td>0 MA16</td>
<td>1 MA17</td>
<td>1 MA18</td>
</tr>
<tr>
<td>0 MA19</td>
<td>1 MA20</td>
<td>0 MA21</td>
<td>0 MA22</td>
</tr>
<tr>
<td>0 MA23</td>
<td>0 MA24</td>
<td>0 MA25</td>
<td>0 TEST</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0 TESTCLK</td>
<td>1 VDD_FAULT#</td>
<td>1 BATT_FAULT#</td>
<td>0 BOOT_SEL0</td>
</tr>
<tr>
<td>0 BOOT_SEL1</td>
<td>0 BOOT_SEL2</td>
<td>0 RESET#</td>
<td></td>
</tr>
</tbody>
</table>
3. Implementation Information

This chapter summarizes some information about the implementation of the JTAG-Booster and describes some restrictions.

- The JTAG-Booster currently uses Boundary Scan to perform Flash programming. The XScale Onchip debugger is not used.
- The software assumes the following scheme for connecting the Flash-EPROM to the Intel XScale. Please contact us, if you have used a different method.

<table>
<thead>
<tr>
<th>PXA210/250, PXA255/26x signal</th>
<th>8 Bit Flash</th>
<th>16 Bit Flash</th>
<th>32 Bit Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS0#</td>
<td>CS#</td>
<td>CS#</td>
<td>CS#</td>
</tr>
<tr>
<td>GPIO15/CS1#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO78/CS2#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO79/CS3#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO80/CS4#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO33/CS5#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OE#</td>
<td>OE#</td>
<td>OE#</td>
<td>OE#</td>
</tr>
<tr>
<td>WE#</td>
<td>WE#</td>
<td>WE#</td>
<td>WE#</td>
</tr>
<tr>
<td>MA0</td>
<td>A0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MA1</td>
<td>A1</td>
<td>A1</td>
<td>-</td>
</tr>
<tr>
<td>MA2..25</td>
<td>A2..25</td>
<td>A2..25</td>
<td>A2..25</td>
</tr>
<tr>
<td>MD0..7</td>
<td>D0..7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MD0..15</td>
<td>-</td>
<td>D0..15</td>
<td>-</td>
</tr>
<tr>
<td>MD0..31</td>
<td>-</td>
<td>-</td>
<td>D0..31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IOP321 signal</th>
<th>8 Bit Flash</th>
<th>16 Bit Flash</th>
<th>32 Bit Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCE0#</td>
<td>CS#</td>
<td>CS#</td>
<td>CS#</td>
</tr>
<tr>
<td>PCE1#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCE2#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCE3#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCE4#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCE5#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WE#</td>
<td>OE#</td>
<td>OE#</td>
<td>OE#</td>
</tr>
<tr>
<td>FWE#</td>
<td>WE#</td>
<td>WE#</td>
<td>WE#</td>
</tr>
<tr>
<td>BE0#</td>
<td>A0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BE1#</td>
<td>A1</td>
<td>A1</td>
<td>-</td>
</tr>
<tr>
<td>A2, A3, AD4..25</td>
<td>A2..25</td>
<td>A2..25</td>
<td>A2..25</td>
</tr>
<tr>
<td>AD0..7</td>
<td>D0..7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AD0..15</td>
<td>-</td>
<td>D0..15</td>
<td>-</td>
</tr>
<tr>
<td>AD0..31</td>
<td>-</td>
<td>-</td>
<td>D0..31</td>
</tr>
</tbody>
</table>
IXP425 signal

<table>
<thead>
<tr>
<th>IXP425 signal</th>
<th>8 Bit Flash</th>
<th>16 Bit Flash</th>
<th>32 Bit Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX_CS0#..EX_CS1#</td>
<td>CS#</td>
<td>CS#</td>
<td>CS#</td>
</tr>
<tr>
<td>EX_CS2#..EX_CS3#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX_CS4#..EX_CS5#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX_CS6#..EX_CS7#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX_RD#</td>
<td>OE#</td>
<td>OE#</td>
<td>OE#</td>
</tr>
<tr>
<td>EX_WR#</td>
<td>WE#</td>
<td>WE#</td>
<td>WE#</td>
</tr>
<tr>
<td>EX_ADDR0</td>
<td>A0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EX_ADDR1</td>
<td>A1</td>
<td>A1</td>
<td>-</td>
</tr>
<tr>
<td>EX_ADDR2..23</td>
<td>A2..23</td>
<td>A2..23</td>
<td>A2..23</td>
</tr>
<tr>
<td>EX_DATA0..7</td>
<td>D0..7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EX_DATA0..15</td>
<td>-</td>
<td>D0..15</td>
<td>-</td>
</tr>
<tr>
<td>EX_DATA0..31</td>
<td>-</td>
<td>-</td>
<td>D0..31</td>
</tr>
</tbody>
</table>

1.) All other signals are hold static during flash programming. The state of these signals is defined in the Initialization file.
4. Converter Program HEX2BIN.EXE

Since the JTAG-Booster software is not able to handle Intel-HEX or Motorola S-Record files, an separate converter tool is delivered with this product package.

Five types of HEX formats can be converted to BIN file:

- **I**: INTEL HEX format (BYTE oriented)
- **D**: Digital Research
- **M**: MOTOROLA S HEX format (BYTE oriented)
- **T**: TEKTRONICS HEX format (BYTE oriented)
- **H**: Intel HEX-32

Maximum conversion size is 256 kBytes. A 4th parameter for starting address can be specified to skip out the leading garbage and you will maintain a small size of output binary file.

If you start the HEX2BIN without any additional parameter all necessary parameters will be asked for in a prompt mode:

```
HEX2BIN
Input HEX file name: MYAPP.H86
Output BIN file name[MYAPP.BIN]:
HEX file format
Input CODE segment start address[0000000]: 10000
Input CODE segment end address[FFFFFFF]:
Unused bytes will be <1>00 <2>FF [1] : 2
```

Instead of using the prompt mode, you can directly specify all necessary parameters in the command line. This is essential for making batch files:

```
HEX2BIN MYAPP.H86 MYAPP.BIN H 0010000 FFFFFFFF 2
```

It is very important to fill unused bytes with 0xFF, because this are simply skipped by the JTAG-Boosters software and so it speeds up the programming performance.
Please Note: "CODE segment start address" is interpreted as a Intel x86 architecture segment address: You have to specify a start address of 10000 to start the conversion at 1 MByte.

This converter is a relatively old DOS tool and therefore it has problems with non DOS compliant file and directory names. Avoid names with spaces, limit names to eight characters. Otherwise the converter does not convert the input file, without any error message!!
5. Support for Windows NT, Windows 2000 and Windows XP

A configured run time version of the "Kithara DOS Enabler, Version 6.x" is used to give support for some of our DOS based tools (like the JTAG-Booster) for Windows NT, Windows 2000 and Windows XP. After installation of the "DOS Enabler" the accesses to the LPT ports are allowed for the all programs listed in file Readme_WinNT.txt

Note: Accesses to the ports are only allowed for the programs listed in file Readme_WinNT.txt. If you rename one of our tools, the DOS Enabler does not work.

Important: You need administrator rights to install or de-install this program.

5.1. Installation on a clean system

If you have a clean system without having installed a previous version of the "Kithara Tool Center", this tool is really simple to install. Extract the ZIP file to a new folder and start KSETUP.EXE. Everything is done within a few seconds. No additional input is needed. Now reboot your PC.

5.2. Installation with already installed version 5.x/6.x of Kithara

If you have already installed an older WinNT support (Kithara Version 5.x or 6.x), you have to de-install it 1st as described in chapter 5.4.

After rebooting your PC you can install the Kithara 6.x as described above.

5.3. Installation with already installed version 4.x of Kithara

Important!! If you have already installed an older WinNT support, you have to deinstall it completely!!!

- Start kcenter
- Select Register "Einstellungen" (=Settings) and deactivate "VDD benutzen" and "speziellen seriellen Treiber benutzen".
- Stop Kernel
• exit the kcenter program
• Now you can deinstall the Kithara Package with:
 Settings - Control Panel.
 All unused parts must be removed.
• Reboot your PC
• Now you can install the Kithara 6.x as described above.

5.4. De-Installation version 5.x/6.x:

For deinstallation of the runtime version of the "Kithara DOS-Enabler Version 5.x/6.x":

• use: Settings - Control-Panel - Add/Remove Programs
 and remove the
 "FS FORTH-SYSTEME WinNT Support"
 and/or
 "WinNT Support for JTAG-Booster and FLASH166"
• Reboot your PC