
 
 
How to use the select() function call in an environment that contains 
Low Memory Network Heap conditions 
 
Introduction 
 
The select() function is useful for single-threaded concurrent clients and servers.  
This function: 
• Allows a client or server to gain visibility into the activity on more than one socket at 

a time 
• Prevents unnecessary calls to the sockets API 
• Eliminates potential unintended thread blocking. 
 
Low memory network heap conditions occur either when the amount of TCP/IP network 
heap allocation is inadequate or the level of activity on the network is unusual - 
specifically, when a burst of short-lived TCP connections are established and closed.  
With TCP, a closed socket requires memory that was associated with its state prior to 
closing for as much as several minutes after the program closes it .  As a result, as short-
lived connections begin to accumulate, the network heap diminishes and eventually 
results in a low memory network heap condition. 
 
When client-server software executes in a low memory condition, the sockets API 
functions have potential to fail because they can’t complete their processing if the 
network heap is not able to allocate memory. 
 
How does a Low Memory Network Heap condition affect select() ? 
 
Some client-server applications never consider the case in which select()fails.  
Furthermore, if they do consider select() failing, it’s usually related to invalid 
sockets being passed into read, write, or exception set arguments.  Error handling for 
these types of failures can include closing the socket, or even worse, causing the client-
server to terminate execution. 
 
Netsilicon recommendation 
 
Here is a guideline to writing proper single-threaded concurrent client-servers: 
 

When you use select(), if the function returns an error, check the system 
errno.  If the errno equals ENOMEM,NetSilicon recommends a 
tx_thread_sleep(0) or a tx_thread_relinquish, followed by 
another iteration through the select() call. 

 



Note that if the client-server application thread was running at a higher priority than the 
other system or application threads, you would call tx_thread_sleep(1) instead of 
the tx_thread_relinquish()or tx_thread_sleep(0) calls.  This is because 
the iteration will loop continuously until memory is freed.  Relinquishing (or sleeping 0 
ticks) allows other threads to run. If, however this thread is high priority, other threads 
will not run, making a 1 tick sleep  necessary. 
 
Sample source code fragment 
 
The source code fragment shown next demonstrates how to call  select()in the case 
of the application thread running at a higher priority: 
 

do{
FD_ZERO(&fdSet);
FD_SET(fd, & fdSet);

timeout.tv_sec = 10;
timeout.tv_usec = 0;

hits = select (fd + 1, &fdSet, NULL, NULL, &timeout);
if (hits < 0){

if (getErrno()== ENOMEM){
/* sleep -- otherwise this will spin furiously */
tx_thread_sleep (1);

}
}

} while (hits < 0);

 
 
This source code fragment demonstrates the case of all application threads running at the 
same priority: 
 
 

do{
FD_ZERO(&fdSet);
FD_SET(fd, & fdSet);

timeout.tv_sec = 10;
timeout.tv_usec = 0;

hits = select (fd + 1, &fdSet, NULL, NULL, &timeout);
if (hits < 0){

if (getErrno()== ENOMEM){
/* go back to the ready to run state */
tx_thread_sleep (0);

}
}

} while (hits < 0);


