

PCI Arbiter Workarounds for the NS9750

www.netsilicon.com

2

Table of Contents

Overview ... 3

Description of errata .. 3

Software workaround... 4

Hardware workaround... 4
Description...4
Sample implementation..5

www.netsilicon.com

3

PCI Arbiter Workarounds for the NS9750

Overview

This application note describes:

 NS9750 PCI arbiter errata

 Software workaround for the errata

 Hardware workaround for the errata

Description of errata

When a PCI master negates its REQ# and IRDY# on the same clock cycle, as
shown in Figure 1, and no other PCI master is requesting the bus, the PCI arbiter
determines that this master is still requesting the bus and grants the bus to it.

Because the master does not take ownership of the bus within 16 PCI clocks, it is
considered "broken" by the arbiter and taken out of service. As a result, the
PCIBRK_Mx bit in the PCI Arbiter Interrupt Status register is set, indicating a
"broken" master, and all further bus requests are ignored from this master until
the PCIEN_Mx bit in the PCI Arbiter Configuration register is toggled from low
to high by software.

CLK

FRAME#

IRDY#

REQ#

Figure 1: REQ# and IRDY# negated on same clock edge

www.netsilicon.com

4

Software workaround

Some PCI devices have a bit that controls when REQ# is negated. If this bit exists,
this is the preferred workaround.

Otherwise, enable the PCIBRK_Mx interrupts for all masters present in the
system by setting the associated EN_PCIBRK_Mx bits in the PCI Arbiter Interrupt
Enable register. When a "broken" master interrupt is received, the master can be
re-enabled by toggling the PCIEN_Mx bit for the broken master from low to high
in the PCI Arbiter Configuration register.

Hardware workaround

Description

The workaround negates the REQ# signal when the master takes control of the
bus so that the NS9750 does not see REQ# active when IRDY# is negated at the
end of the cycle. This does not affect the master’s ability to be granted the bus
again at the end of the current PCI cycle because:

• The only way the current master can be granted the next bus cycle is if no
other masters are requesting the bus.

• If no other masters are requesting the bus, the PCI arbiter parks ownership
on the last master.

The hardware workaround is implemented as a 1-bit state machine that
generates a gating signal that enables and disables the PCI REQ# from the
master to the associated input of the NS9750. Figure 2 provides a state diagram.

When the state machine is in the GATE_ON state, the REQ# from the master is sent
to the PCI arbiter in the NS9750. The state machine will not exit the GATE_ON
state until this master has taken ownership of the PCI bus. Ownership of the bus
is detected on the first clock cycle that this master drives FRAME#.

When the bus takes ownership, there is no reason to keep the REQ# from this
master asserted with the bus-parking arbitration scheme described above, and it
is forced inactive to the NS9750 when the state machine transitions to the
GATE_OFF state. The state machine remains in the GATE_OFF state until the PCI
bus goes idle, when it is safe to enable the REQ# again.

www.netsilicon.com

5

GATE_ON

REQ_GATE#= L

GATE_OFF

REQ_GATE#= H

PCI bus idle
(FRAME#=H & IRDY#=H)

This master starts PCI cycle
(FRAME# H->L edge & GNT#=L)

PCI bus active

This master not
 PCI bus owner

PCI_RST# active

Figure 2: Hardware workaround state diagram

Sample implementation

Figure 3 shows a sample implementation. This implementation uses only 2-input
logic gates. Implementations that use gates with more inputs would result in
fewer levels of logic. Also, all the combinatorial logic could be implemented
using spare resources in an already existing PLD or FPGA in the target
application. Timing must be met in whatever implementation is chosen.

A sample timing analysis for this implementation using ALVC and LVC logic
families is provided in the next tables to illustrate the timing parameters that
must be considered in any implementation. In all these tables, the maximum
PCI clock of 33Mhz is assumed.

Table 1 shows the worst-case setup timing path to the D-input of U1B.

Table 2 and Table 3 show the worst-case setup timing through both paths of U2D
to any of the REQx# inputs of the NS9750.

Table 4 shows the worst-case hold timing path to any of the REQx# inputs of the
NS9750 through U2D. Only the REQ_GATE# path is shown because the REQ#
path meets the 0ns hold requirement by default because all PCI signals have a
hold time of 2ns, per the PCI specification, and that compensates for the 2ns of
allowable PCI clock skew. For the same reason, no table is provided for the hold
time analysis for the D-input of UU1B using any of the PCI signals.

www.netsilicon.com

6

Another path exists from U1A-Qn, but this is not a concern because the
PCI_CLOCK skew between U1A and U1B is insignificant. Also the feedback path
from U1B-Q is not a concern because it would satisfy the 0ns hold requirement of
the 74LVC74 without any gate delays.

D Q

Qn

S

C

D Q

Qn

S

C

FRAME#

PCI_CLK

PCI_RST#

FRAME#
GNT#

IRDY#
FRAME# PCI_CLK

PCI_RST#

3.3V

3.3V

REQ#

REQ_GATE#

U1A

U1B

U2A
U2B

U2C

U2D

U3A

U3B

U3C
GATED_REQ#

(To NS9775)
REQx# input)

Notes:

U1A, U2A, and U3A are common to additional gating circuits.
FRAME_EDGE# detects the H->L edge of FRAME#.
U2 is a quad-OR gate; U3 is a quad-NAND gate.
PCI_CLK for U1A and U1B is from the same driver.

IDLE#

FRAME_EDGE#

Figure 3: Hardware workaround sample implementation

This table describes the timing parameters:

Timing parameter Time (ns) Notes

PCI clock period 30 33Mhz max PCI clock

PCI_CLOCK valid to FRAME#
valid (max)

(11) PCI specification

Delay through U2A (max) (2.8) 74ALVC32

Delay through U2B (max) (2.8) 74ALVC32

Delay through U2C (max) (2.8) 74ALVC32

Delay through U3C (max) (3.0) 74ALVC00

U1B setup (max) (2.0) 74LVC74 (ALVC not used because it is
sole-sourced)

PCI clock skew (max) (2.0) PCI specification

Trace delay (max) (2.0) Very conservative estimate

Margin to U1B 1.6

Table 1: Worst-case setup timing path to D-input of U1B

www.netsilicon.com

7

Timing parameter Time (ns) Notes

PCI clock period 30 33Mhz max PCI clock

PCI_CLK valid to REQ_GATE#
(max)

(5.4) 74LVC74 (ALVC not used because it
is sole-sourced)

Delay through U2D (max) (2.8) 74ALVC32

REQx# setup requirement to
NS9750 (max)

(5) NS9750 timing specifications

PCI clock skew (max) (2.0) PCI spec

Trace delay (max) (2.0) Conservative estimate

Margin to NS9750 12.8

Table 2: Worst-case setup timing to REQx# input of NS9750 using REQ_GATE#

Timing parameter Time (ns) Notes

PCI clock period 30 33Mhz max PCI clock

PCI_CLK valid to REQ# valid
(max)

(12) PCI specification

Delay through U2D (max) (2.8) 74ALVC32

REQ# setup requirement to
NS9750 (max)

(5) NS9750 timing specifications

PCI clock skew (max) (2.0) PCI specification

Trace delay (max) (2.0) Conservative estimate

Margin to NS9750 6.2

Table 3: Worst-case setup timing to REQx# input of NS9750 using REQ#

Timing parameter Time (ns) Notes

PCI_CLK valid to
REQ_GATE#(min)

1.0 74LVC74 (ALVC not used because it
is sole-sourced)

Delay through U2D (min) 1.0 74ALVC32

REQx# hold requirement to
NS9750

0 NS9750 timing specifications

PCI clock skew (max) (2.0) PCI specification

Trace delay (min) 0 Conservative estimate

Margin to NS9750 0

Table 4: Worst- case hold timing to REQx# input of NS9750 using REQ_GATE#

