Digi Home Health Hub (HHH)

Michael Erickson

2013-01-18 Fri

Contents
1 Introduction

2 Development System

2.1 BuildaDebianVirtual Box
2.2 Configure the Development System,
2.3 PrepareforITIBInstall i,
24 InstallLTIB . . . oo o
2.5 TETP/NES/ELC. « « o v oot e e e e e e e e e e e e e e

2.5.1 TFTPSErver e e
2.6 DealingWiththeSerial Port.

2.6.1 UsSiNGCU . ..ottt e e e

2.6.2 USINGSCICEILt ottt et e et e e e e

3 Loading the Pre-Built Software from Digi
3.1 NecessaryItems e
3.2 OVErview Of PrOCESS . . . o oottt e e e e e
3.3 Modify the U-Boot Script (h3_flash_init)
3.4 Procedure Detail e e

4 Porting the iDigi Connector
4.1 Download and Extract the Connectorcouuiiueenneennn..
4.2 AdjustthePlatformCode i
4.2.1 Configuration Routines: public/run/platforms/linux/config.c
4.2.2 Sample Configuration public/run/samples/xxx/idigi_config.h
4.2.3 Makefiles public/run/samples/xxx/Makefile.....................
4.2.4 Setup the Cross-Compilation Environment
4.3 Testingthe CONNECIOTo vttt ittt et et et e et et e

5 Demonstration Code
5.1 Active Panic Buttons o i e e

10
10
10
10

11
11
12

12

5.2 Main Loopo e 13

53 SendingData e 13
6 Daemonizing the iDigi Connector 13
7 Starting the iDigi Connector 15

1 Introduction

This document contains a list of instructions and developer notes related to recreating the Digi
Home Health Hub (HHH) Panic Button demonstration.

2 Development System

The demonstration was developed using a 64-bit Debian Linux version 6.0.5 system. Specifically,
the developer worked on a MAC and used VMware Fusion to run Debian inside a virtual box. This
section details the setup and configuration of the Linux development system. It is targeted at
using VMware, but the list of necessary packages and configuration steps will apply to a dedicated
machine as well. I used a 64-bit Debian 6.0.5 image.

2.1 Build a Debian Virtual Box

* Download Debian AMD64 Net installation disk!

¢ Start VMWare Fusion and install Debian from the ISO
¢ Adjust the Processor/Memory to 1024 MiB of memory
* Adjust disk size to 20 GiB

¢ Under Network, tell this virtual machine to make its own connection to the network (so
TFTP will work)

¢ If Debian can’t find the network during the install, switch to hardwired Ethernet, reboot
the MAC, then try again

e Have VMWare Connect Directly To the MAC’s network using autodetect. If you don't do this,
the kit won't be able to find our Linux image.

T have found that you must use the net-install disk.

http://mirror.rit.edu/debian-cd/6.0.5/amd64/iso-cd/debian-6.0.5-amd64-netinst.iso

2.2 Configure the Development System

These instructions will install the minimum number of packages necessary to make a working
development system.

Select base-system and ssh-server for the Debian install

Install

Login to the system as the root-user

Edit /etc/apt/apt. conf to not install recommends and suggests

echo 'APT::Install -Recommends "0";’ >> /etc/apt/apt.conf

echo 'APT::Install -Suggests "0";’ >> /etc/apt/apt.conf
Update the system: apt-get update && apt-get upgrade

Install vim: apt-get install vim

(optional) Install emacs-nox: apt-get install emacs23-nox

(optional) Set emacs as the default editor: update-alternatives --config editor
Install sudo: apt-get install sudo

Use visudo to edit the file /etc/sudoers/ as below

XXX ALL=(ALL) PASSWD: ALL , NOPASSWD: /usr/bin/rpm, /opt/freescale/ltib/usr/bin/rpm

Replace XXX with the name of your user account. The above line should be added as the
last line of the file. This will let you properly run Freescale’s Linux Target Image Builder
(LTTB) tool without constantly entering your password, thus facilitating unattended builds.

2.3 Prepare for LTIB Install

Make sure you are not the root user, then run the following commands:

sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo

apt—get install build—essential
apt—get install nfs—kernel—server
apt—get install nfs—common
apt—get install portmap

apt—get install tftpd—hpa

apt—get install tftp

apt—get install rpm

apt—get install wget

apt—get install bison

apt—get install flex

sudo apt—get install ncurses

sudo apt—get install ncurses—dev
sudo apt—get install libncurses5
sudo apt—get install libncurses5—dev
sudo apt—get install tcl

sudo apt—get install tclreadline
sudo apt—get install zliblg

sudo apt—get install zliblg—dev
sudo apt—get install liblzo2 -2
sudo apt—get install liblzo2—dev
sudo apt—get install uuid

sudo apt—get install uuid—dev
sudo apt—get install libuuidl

sudo apt—get install gettext

sudo apt—get install libgtk2.0—dev
sudo apt—get install libdbus—glib—1-dev
sudo apt—get install liborbit2 —dev
sudo apt—get install intltool

sudo apt—get install ccache

sudo apt—get install libtool

sudo apt—get install tcl

Because we are on a 64—bit machine
sudo apt—get install ia32-libs

sudo apt—get install libc6—dev—-i386
sudo apt—get install lib32zl

su # become root

perl —-MCPAN —eshell
install CPAN

reload CPAN

install IWP:: UserAgent
exit # exit Perl

exit # exit su
whoami # should be you, not root

2.4 Install LTIB

Follow the instructions in the i. MX28 Linux BSP User Guide. Once everything is unpacked do:

./ 1tib # this will take awhile

./ 1tib —selectype
choose platform type —> imx28
choose packages profile —> mfg firmware profile
save and exit

Assuming Itib completes, you will now have two new files updater.sb and updater_ivt.sbin
the Itib directory.

2.5 TFTP/NFS/Etc.

You will need the development machine to run some network services so that you can easily
move files back and forth between the host and kit.

2.5.1 TFTP Server

* Run the following commands to create a directory named /tftpboot with global access.
You can dump items here and then download them to the kit.

sudo mkdir /tftpboot
sudo chmod —R 777 /tftpboot
sudo chown nobody /tftpboot

e Edit /etc/default/tftp-hpa to include:
RUN_DAEMON="yes "

¢ Start the service: sudo /etc/init.d/tftpd-hpa start
¢ Test the service:

echo hello > /tftpboot/hello. txt
cd

tftp localhost

get hello. txt

quit

cat hello. txt

2.6 Dealing With the Serial Port

The firmware on the kit reports itself as Freescale USB-to-Serial. Check /dev/ttyx* to figure out
where it is on your machine.

2.6.1 Using Cu

This is an example of using the cu program to communicate with the kit.

sudo chown uucp.uucp /dev/ttyACMO
sudo usermod —a —G uucp mikee

cu —1 /dev/ttyACMO —s 115200

~. # to exit

2.6.2 Using Screen

You can also use the screen program.

screen /dev/ttyACMO 115200
Ctl-A Ctl-\

3 Loading the Pre-Built Software from Digi

These instructions were mostly taken from the README file.

3.1 Necessary Items

We need the following items:
imx28_ivt_uboot_v3.sb This is the bootlet that gets passed to the iMX28.

When the iMX28 is reset, it executes its ROM. There is no alternative, no other code is
permitted to handle the reset exception. The ROM code reads boot mode pins to detect
the boot source (USB, SD/MMC, NAND, etc.) and negotiates with that source to retrieve a
boot stream. A boot stream is an executable collection of bytes in Safe Boot (SB) format.
This file is the boot stream for loading uboot.

Note, the ivt in the filename indicates that the High Assurance Boot (HAB) is operating.
Specifically, that the HAB_DISABLE bit (HW_OCOTP_ROM7:0x8002C210:bit11) on the iMX28
is zero (0).

h3_flash_init This is a uboot initialization script. See the section below on modifying this to
your needs.

ulmage_heg This is the Linux kernel image.

rootfs_XXX.ubi In my case, this was rootfs_3893.ubi. This is a root file system image in
UBIFS (Unsorted Block Image File System) format.

demo.tgz The demonstration software.

3.2 Overview of Process

The overall process is to tell the kit to boot from USB. This is done by setting SW1-2 to the ON
position. When the iMX28 powers up, its ROM code will detect that setting and attempt to retrieve
a boot stream via USB. On the other end of the USB, is a program named sb_loader.exe. This
program is part of Freescale’s iMX Manufacturing Tools bundle, which can be found by starting at
the .MX28 Product Page and then following the link to the . MX Manufacturing Toolkit. There
are a few versions available. These instructions correspond to Mfgtools-Rel-1.6.2.032.zip.

Once the iMX28 has established contact with the sb_loader program over USB, we need to send
the processor a boot stream. We will send it a version of the u-boot bootloader in safe boot format
contained in file imx28_ivt_uboot_v3.sb.

Once the iMX28 is running u-boot, we want to prepare the board for hosting Linux. This is the
job of the h3_flash_init script. This script will setup a proper u-boot environment, load the
Linux kernel, and flash the root file system.

Once the Linux kernel is running, program the boot stream (imx28_ivt_uboot_v3.sb) into NAND
flash. That way, when the kit is booted with SW1-2 in the OFF position, the iMX28 will find a boot
stream.

3.3 Modify the U-Boot Script (h3_flash_init)

Here we want to modify the environment that will be programmed into u-boot. The script just
automates the creation of the environment, we could enter its contents by hand if we needed to.

¢ Install necessary tools: sudo apt-get install uboot-mkimage
¢ Unpack the u-boot source code
tar xzf u—boot—-2011.09.tgz
cd u—boot—2011.09/
e Modify h3_flash_init.txt. I changed bootargs_net to derive NFS options from envi-
ronment variables as in:
nfsroot=${serverip }:${nfsroot}

* Rebuild the boot script (this just puts a header on the contents so u-boot knows how to
parse it).

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX28_SW
https://www.freescale.com/webapp/Download?colCode=IMX_MFG_TOOL&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search&Parent_nodeId=1285099003907707430022&Parent_pageType=product

mkimage —T script —C none —n ’'Uboot Init Script’ \
—d u-boot—2011.09/h3_flash_init.txt /tftboot/h3_flash_init

3.4 Procedure Detail

This is the detailed procedure for booting the kit.

1.
2.

10.

11.
12.
13.

Ensure that your TFTP server is properly setup. Ours is at /tftpboot/.

Copy the u-boot script, kernel, root filesystem, and demonstration software into the TFTP
server root.

cp h3_flash_init /tftpboot

cp ulmage_heg /tftpboot
cp rootfs_3893.ubi /tftpboot
cp demo.tgz /tftpboot

. On a Windows machine, install the Freescale iMX Manufacturing Tools.

On the Windows machine, in the same directory where the program sb_loader.exe, was
installed, copy the u-boot safe boot-formatted boot stream file (imx28_ivt_uboot_v3.sb).

. On the Windows machine, open a command prompt and change to the directory where

sb_loader.exe was installed.

. On the hardware, set SW1-1 to OFF and SW1-2 to ON. This will tell the iMX28 to boot from

USB.

. Connect two USB cables to the kit. One to J5 for debug message and one to J7 for the

iMX28 boot stream.

. Connect the USB cables to the Windows box. Using the Device Manager, determine which

COM port the debug messages will be connected to. Open a terminal emulator on that
COM port.

. Power on the kit.

Execute the u-boot boot stream by entering the command below into the Windows com-
mand prompt.

sb_loader.exe /f imx28_ivt_uboot_v3.sb

Verify that debug messages are appearing in the terminal emulator.
Interrupt u-boot by pressing any key before the 3-second timeout.

Adjust the u-boot environment to reflect your network settings:

14.

15.
16.

17.

18.
19.

printenv # note current settings

setenv ethaddr 00:04:9F:01:03:29 # adjust to your network
setenv serverip 10.160.42.128 # adjust to your network
setenv bootfile h3_flash_init

setenv tftp_kernel wulmage_heg

setenv tftp_rootfs_ubifs rootfs_3893.ubi

setenv tftp_prefix # you may or may not need this

saveenv

Note the tftp_prefix environment variable. Depending on your setup, you may or may not

need this. We did not.

Execute the boot script

dhcp
source

You will see a lot of messages come by the debug terminal. If all goes well, you will see the

kernel and the root file system being downloaded and burned into flash.

Login as root with password root

Flash the bootloader
cd /boot
kobs—ng init imx28_ivt_uboot_v3.sb

sync

Flash the demonstration software

cd /heg
dhclient ethO
tftp —g —r demo.tgz <your dev server ip>

At this point you might want to check the file integrity
using the mdbsum command on the TFTP server and the device

tar xzf demo. tgz

rm demo. tgz

sync

Properly shutdown the board: poweroff

Power off the board

20. Set SW1-2 to OFF so that the next time the iMX28 boots, it will look for a boot stream in
NAND flash rather than on USB.

After this point, you should be able to leave the Windows box and connect to the kit’s debug serial
port using the cu program:

cu —1 /dev/ttyACMO —s 115200
~. # to exit

Assuming the kit is setup to configure a network interface and launch dropbear, you can also just

SSH into it.

4 Porting the iDigi Connector

4.1 Download and Extract the Connector

curl —o idigi—connector.tgz \
http://ftpl.digi.com/support/sampleapplications/40003007_E. tgz

md5sum idigi—connector. tgz
07916d03dfa8a8647e1475e3a189d002 idigi—connector.tgz

tar xzf idigi—connector.tgz
4.2 Adjust the Platform Code
4.2.1 Configuration Routines: public/run/platforms/linux/config.c

Edit the file:
e Comment out (or remove) all #error ... preprocessor directives

¢ hard-code the MAC Address in the function app_get_mac_addr

4.2.2 Sample Configuration public/run/samples/xxx/idigi_config.h

Edit the file:
e Add ENABLE_COMPILE_TIME_DATA_PASSING 1

* Hardcode the Vendor ID to match your organization #define IDIGI_VENDOR_ID 0x0....

10

4.2.3 Makefiles public/run/samples/xxx/Makefile

Edit the file:
¢ Remove CC = gcc at the top of the file (we will override this in our environment)
¢ Remove the following CFLAGS as they will cause errors
- -Werror

¢ Add the following CFLAGS (at the end of the CFLAGS definition) to keep them from clutter-
ing up our warnings

— -Wno-padded

— -Wno-cast-align

4.2.4 Setup the Cross-Compilation Environment

You need to make sure that building the iDigi connector uses the cross compilers provided by
LTIB. To keep things simple and repeatable, we recommend using a shell script to do this. Ours is
named setenv.sh and kept in the home directory. When begining work, we open up a terminal
and then source ~/setenv.sh to create the proper environment. This file is repeated below:

#!/bin/sh
You need to ‘source’ this script
echo "Setup _cross _environment"

TOOL_PATH=/opt/freescale /usr/local/gcc—4.4.4—glibc —2.11.1 —multilib —1.0/arm—fs] —linux—g;
export CROSS_COMPILE=arm—linux—

export HOST=arm

export CC=${TOOL_PATH}/${CROSS_COMPILE}gcc

export CXX=${TOOL_PATH}/${CROSS_COMPILE} g++

export CPP=${TOOIL_PATH}/${CROSS_COMPILE}cpp

export AS=${TOOL_PATH}/${CROSS_COMPILE} as

export ID=${TOOL_PATH}/${CROSS_COMPILE}1d

export AR=${TOOL_PATH}/${CROSS_COMPILE} ar

export RANLIB=${TOOIL_PATH}/${CROSS_COMPILE}ranlib
export NVE$ {TOOL PATH}/$ { CROSS_COMPILE }nm

export OBJCOPY=${TOOL _PATH}/${CROSS_COMPILE}objcopy
export STRIP=${TOOL PATH}/${CROSS_COMPILE} strip

export LTIB_BASE=${HOME}/linux—source/lItib
export ROOTFS=${LTIB_BASE}/rootfs

11

export CFLAGS="-1${ROOTFS}/usr/include"
export LDFLAGS="-L${ROOTFS}/usr/lib_—L${ROOTFS}/1ib"

4.3 Testing the Connector

You should do the steps above for the following project in idigi/public/run/samples/. Note,
you should test these in the order listed, consulting the iDigi connector documentation as
necessary.

e compile_and_link
e connect_to_idigi
* send_data

If the above sample projects work, then your development environment should be properly
configured.

5 Demonstration Code

We use some code in idigi/public/run/samples/hh_data_stream as the application to con-
nect to iDigi. This contains logic to count the number of active panic buttons during the last
30-second period.

You may find this application in the file hhh_data_stream. tar.gz. To use it, perform the follow-
ing steps:

» Extract the archive into the idigi/public/run/samples/ directory

* Ensure your organization’s iDigi Vendor ID is inserted into idigi_config.h

Setup the proper cross-compilation environment as discussed above
* make clean
* make

The demonstration attempts to report the number of active panic buttons during 30-second
intervals. You should consult the source code for complete information. The main sections are
highlighted below.

12

5.1 Active Panic Buttons

The number of active panic buttons is computed by the active_buttons() function inside
pb_status.c. By going through the PB Manager code in zorglub you can determine that perform-
ing the IOCTL IOCTL_ISM_GET_STAT on the file /dev/ism will give you some idea of the number
of panic buttons currently associated with the HHH and the state that they are in.

icarm_fd = open("/dev/ism", O_RDONLY)) < 0);
ioctl (icarm_fd, IOCTL_ISM_GET STAT, stat_table);

/ For items in stat_table, if bit—1 is set, the button is active. /

5.2 Main Loop

The program’s main loop occurs in the function application_run() inside application.c. This
repeatedly calls app_send_put_request () and then sleeps.

5.3 Sending Data

The function app_send_put_request () calls active_buttons () and includes its return value in
the data streamed to iDigi. This function also sends some sample, made-up data such as; pulse,
breaths, systolic, and diastolic to make the demonstration more interesting.

6 Daemonizing the iDigi Connector

You may want to run the iDigi connector as a system daemon. This can be easily done. In the file
idigi/public/run/platforms/linux/main.c, add a function named daemonize() as shown
below:

#define RUNNING DIR " /tmp"
#define LOCK_FILE "idigi.lock"
#define LOG_FILE "idigi.log"

void daemonize (void)

{
int pid, i, Ilfp;
char str[10];
if (1 = getppid())
return; / already a daemon [/

13

pid = fork ();
if (pid <0)
exit(1); / fork error [/
if (0 != pid)
exit (0); / parent exits [/
/ child (daemon) continues /
setsid (); / become a session leader [/

signal (SIGHUP, SIG_IGN);
if (0 != (pid = fork()))
exit (0); / first child terminates /

/ second child continues /
chdir (RUNNING DIR); / change working directory /
umask (0); / clear file mode creation mask /

/ close any potentially open files [/
for (i = getdtablesize (); i >= 0; —i)
close (i);

/ open /dev/null and give it to STDIN/STDOUT/STDERR /
i = open("/dev/null", ORDWR); / stdin /

dup(i); / stdout [/

dup(i); / stderr [/

Ifp = open(LOCK_FILE, O RDWR|O_CREAT, 0640);
if (1fp <0)

exit (1); / could not open lock—file [/
if (lockf(lfp, F_TLOCK, 0) < 0)

exit (0); / can not lock /

/ record PID in the lock file [/
sprintf(str, "%d\n", getpid ());
write (Ifp, str, strlen(str));

/ ignore several signals [/
signal (SIGCHLD, SIG_IGN);
signal (SIGTSTP, SIG_IGN);
signal (SIGTTOU, SIG_IGN);
signal (SIGTTIN, SIG_IGN);

/ catch hangup and kill signals:

14

}

You may define another function named signal_handler to
respond to SIGHUP and SIGTERM if you like. [/

/ signal (SIGHUP, signal_handler); /

/ signal (SIGTERM, signal_handler); /

Then rename the existing iDigi main () function to old_main() and make a new definition as
below:

int main(void)

{

APP_DEBUG ("PREPARING,_TO_DAEMONIZE\n") ;
daemonize () ;

old_main ();

APP_DEBUG ("DAEMON_END\n") ;

return 0;

7 Starting the iDigi Connector

To start the iDigi Connector, insert it into the boot order after the panic button manager starts.
The boot order is listed below.

/etc/rc.d/rcScalls /etc/rc.d/rc. local if it exists
/etc/rc.d/rc.local calls /heg/demo/local/etc/rc. heg if it exists

Towards the bottom of /heg/demo/local/etc/rc. heg, the script figures out what it should
do based on the value of the environment variable HEG_DEMO_MODE - which is set in
/etc/rc.d/rc.conf toH3

H3-mode causes the script to launch; postgres, ui, bt, panic-button manager, and others

Start the iDigi connector after the panic-button manager (pbmg) so that the sample appli-
cation can open /dev/ismand perform IOCTLs on it

15

	Introduction
	Development System
	Build a Debian Virtual Box
	Configure the Development System
	Prepare for LTIB Install
	Install LTIB
	TFTP/NFS/Etc.
	TFTP Server

	Dealing With the Serial Port
	Using Cu
	Using Screen

	Loading the Pre-Built Software from Digi
	Necessary Items
	Overview of Process
	Modify the U-Boot Script (h3_flash_init)
	Procedure Detail

	Porting the iDigi Connector
	Download and Extract the Connector
	Adjust the Platform Code
	Configuration Routines: public/run/platforms/linux/config.c
	Sample Configuration public/run/samples/xxx/idigi_config.h
	Makefiles public/run/samples/xxx/Makefile
	Setup the Cross-Compilation Environment

	Testing the Connector

	Demonstration Code
	Active Panic Buttons
	Main Loop
	Sending Data

	Daemonizing the iDigi Connector
	Starting the iDigi Connector

