Test of: Digi International 2.4 GHz XBee Series S2C TH RF Module

To: Japanese ARIB STD-T66

Test Report Serial No.: DIGI55-J4 Rev A

Test of: Digi International 2.4 GHz XBee Series S2C TH RF Module to

To Japanese ARIB STD-T66

Test Report Serial No.: DIGI55-J4 Rev A

This report supersedes: DIGI49-J2 Rev A

- Manufacturer: Digi International 355 South 520 West, Suite 180 Lindon, Utah 84042 USA
- Product Function: 802.15.4 / ZigBee 2.4 GHz RF Module
 - Copy No: pdf Issue Date: 29th March 2017

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc. 575 Boulder Court Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306

<u>www.micomlabs.com</u>

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

10: Japanese ARID STD-100
Serial #: DIGI55-J4 Rev A
Issue Date: 29th March 2017
Page: 3 of 147

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:4 of 147

TABLE OF CONTENTS

AC	CREDITATION, LISTINGS & RECOGNITION	. 5
	ACCREDITATION - TESTING	5
	RECOGNITION	6
	PRODUCT CERTIFICATION	7
1.	TEST RESULT CERTIFICATE	. 9
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1. Normative References	10
	2.2. Test and Uncertainty Procedures	10
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	11
•-	3.1. Technical Details	11
	3.2. Scope of Test Program	12
	3.3. Equipment Model(s) and Serial Number(s)	14
	3.4. Antenna Details	14
	3.5. Cabling and I/O Ports	14
	3.6. Test Configurations	14
	3.7. Equipment Modifications	14
	3.8. Deviations from the Test Standard	14
4.	TEST SUMMARY	15
5.	TEST EQUIPMENT CONFIGURATION(S)	16
	5.1. Conducted	16
	• • •	
6.	MEASUREMENT AND PRESENTATION OF TEST DATA	18
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA	18 19
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA	18 19 19
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA	18 19 19 19
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 7.1. Device Characteristics 7.1.1. Antenna Power 7.1.2. Frequency Error	18 19 19 19 22
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA	18 19 19 19 22 24
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 7.1. Device Characteristics 7.1.1. Antenna Power 7.1.2. Frequency Error 7.1.3. Occupied and Spreading Bandwidths 7.1.4. Transmitter Spurious Emissions	18 19 19 19 22 24 27
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 7.1. Device Characteristics 7.1.1. Antenna Power. 7.1.2. Frequency Error 7.1.3. Occupied and Spreading Bandwidths 7.1.4. Transmitter Spurious Emissions 7.1.5. Receiver Spurious Emissions	18 19 19 22 24 27 30
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 7.1. Device Characteristics 7.1.1. Antenna Power 7.1.2. Frequency Error 7.1.3. Occupied and Spreading Bandwidths 7.1.4. Transmitter Spurious Emissions 7.1.5. Receiver Spurious Emissions 7.1.6. Interference Protection Function	18 19 19 22 24 27 30 33
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 7.1. Device Characteristics 7.1.1. Antenna Power 7.1.2. Frequency Error 7.1.3. Occupied and Spreading Bandwidths 7.1.4. Transmitter Spurious Emissions 7.1.5. Receiver Spurious Emissions 7.1.6. Interference Protection Function 7.1.7. RF Accessibility	18 19 19 22 24 27 30 33 34
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 7.1. Device Characteristics 7.1.1. Antenna Power 7.1.2. Frequency Error 7.1.3. Occupied and Spreading Bandwidths 7.1.4. Transmitter Spurious Emissions 7.1.5. Receiver Spurious Emissions 7.1.6. Interference Protection Function 7.1.7. RF Accessibility APPENDIX – GRAPHICAL IMAGES	18 19 19 22 24 27 30 33 34 36
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 7.1. Device Characteristics 7.1.1. Antenna Power 7.1.2. Frequency Error 7.1.3. Occupied and Spreading Bandwidths 7.1.4. Transmitter Spurious Emissions 7.1.5. Receiver Spurious Emissions 7.1.6. Interference Protection Function 7.1.7. RF Accessibility APPENDIX – GRAPHICAL IMAGES A.1. Antenna Power Deviation	18 19 19 22 24 27 30 33 34 36 36
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 7.1. Device Characteristics 7.1.1. Antenna Power 7.1.2. Frequency Error 7.1.3. Occupied and Spreading Bandwidths 7.1.4. Transmitter Spurious Emissions 7.1.5. Receiver Spurious Emissions 7.1.6. Interference Protection Function 7.1.7. RF Accessibility APPENDIX – GRAPHICAL IMAGES A.1. Antenna Power Deviation A.2. Occupied Bandwidth	18 19 19 22 24 27 30 33 34 36 36 45
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 7.1. Device Characteristics 7.1.1. Antenna Power. 7.1.2. Frequency Error 7.1.3. Occupied and Spreading Bandwidths. 7.1.4. Transmitter Spurious Emissions 7.1.5. Receiver Spurious Emissions 7.1.6. Interference Protection Function. 7.1.7. RF Accessibility. APPENDIX – GRAPHICAL IMAGES A.1. Antenna Power Deviation. A.2. Occupied Bandwidth. A.3. Spreading Bandwidth.	18 19 19 22 24 27 30 33 34 36 36 45 54
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 7.1. Device Characteristics 7.1.1. Antenna Power. 7.1.2. Frequency Error 7.1.3. Occupied and Spreading Bandwidths. 7.1.4. Transmitter Spurious Emissions 7.1.5. Receiver Spurious Emissions 7.1.6. Interference Protection Function. 7.1.7. RF Accessibility. APPENDIX – GRAPHICAL IMAGES A.1. Antenna Power Deviation. A.2. Occupied Bandwidth A.3. Spreading Bandwidth A.4. Frequency Deviation	18 19 19 224 27 30 33 36 36 45 54 63
6. 7.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 7.1. Device Characteristics 7.1.1. Antenna Power. 7.1.2. Frequency Error 7.1.3. Occupied and Spreading Bandwidths. 7.1.4. Transmitter Spurious Emissions 7.1.5. Receiver Spurious Emissions 7.1.6. Interference Protection Function. 7.1.7. RF Accessibility. APPENDIX – GRAPHICAL IMAGES A.1. Antenna Power Deviation. A.2. Occupied Bandwidth A.3. Spreading Bandwidth A.4. Frequency Deviation. A.5. Transmitter Spurious Emissions.	18 19 19 22 33 34 36 35 45 54 63 72

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:5 of 147

ACCREDITATION, LISTINGS & RECOGNITION

ACCREDITATION - TESTING

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:6 of 147

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI	StatusPhaseIdTCB-LFCBAPEC MRA 2LiffairsCABAPEC MRA 2INBEU MRA 1IIs CABAPEC MRA 1IIs CABCABAPEC MRA 1Is CABCABAPEC MRA 1Is CABCABAPEC MRA 1Is CABCABAPEC MRA 1CABAPEC MRA 1CABAPEC MRA 1CABAPEC MRA 1CABAPEC MRA 1CABAPEC MRA 1CABAPEC 	A-0012	
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:7 of 147

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 4th day of February 2016.

Senior Director of Quality & Communications For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2017

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

<u>United States of America – Telecommunication Certification Body (TCB)</u> TCB Identifier – US0159

Industry Canada – Certification Body CAB Identifier – US0159

<u>Europe – Notified Body</u> Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB) RCB Identifier - 210

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

DOCUMENT HISTORY

	Document History						
Revision	Date	Comments					
Draft	27 th March, 2017	Spot Check Verification – firmware update From : XB24CDMSIT-001 Firmware (9000) To: 802.15.4 is 2001 DigiMesh is 9000 ZigBee is now 405F					
Rev A	29 th March 2017	Initial Release					
This report v	vas originally issued as	DIGI49-J2 Rev A, 12 th November 2015					
Rev A	12 th November 2015	Initial Release					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:9 of 147

1. <u>TEST RESULT CERTIFICATE</u>

Manufacturer:	Digi International	Tested By:	MiCOM Labs, Inc.
	355 South 520 West, Suite 180		575 Boulder Court,
	Lindon, Utah 84042,		Pleasanton
	USA		California, 94566, USA
EUT:	802.15.4 / ZigBee - 2.4 GHz RF Module	Telephone:	+1 925 462 0304
Model No.:	S2CTH	Fax:	+1 925 462 0306
S/N'(s):	30012602-02		
Test Date(s):	5th - 6th November 2015	Website:	www.micomlabs.com

STANDARD(S) Japanese ARIB STD-T66

TEST RESULTS

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

Bordon Hurst President & CEO MiCOM Labs, Inc.

Title: 2.4 GHz XBee Series S2C TH RF Module To: Japanese ARIB STD-T66

f: DIGI55-J4 Rev A

Serial #: [Issue Date: 2

e: 29th March 2017 e: 10 of 147

Page: 10 of 14

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title
(i)	ARIB STD-T66	2006	Radio Equipment for Second-generation Low- power Data Communication Systems Radio Stations and Wireless Lan Systems' Equipment
(ii)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(iii)	CISPR 22/ EN 55022	2008 2010	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(iv)	M 3003	Edition 2 Jan. 2007	Expression of Uncertainty and Confidence in Measurements
(v)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(vi)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(vii)	A2LA	July 2012	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:11 of 147

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of Digi International 2.4 GHz XBee Series S2C TH
	RF Module to Japan's ARIB STD-T66 regulations
Applicant:	As Manufacturer
Manufacturer:	Digi International
	355 South 520 West, Suite 180
	Lindon, Utah 84042, USA
Laboratory performing the tests:	MiCOM Labs, Inc.
	575 Boulder Court
	Pleasanton, California 94566 USA
Test report reference number:	DIGI55-J4 Rev A
Date EUT received:	29 th October 2015
Standard(s) applied:	Japanese ARIB STD-T66
Dates of test (from - to):	5th - 6th November 2015
No of Units Tested:	1
Type of Equipment:	2.4 GHz RF 802.15.4 /ZigBee Module, single RF port
Manufacturers Trade Name:	XBee Series 2C
Model:	S2CTH
Location for use:	Indoor and Outdoor
Declared Frequency Range(s):	Transmit: 2405 - 2480 MHz: Receive: 2405 - 2480 MHz
Type of Modulation:	O-QPSK (Offset Quadrature Phase Shift Keying)
Declared Nominal Output Power:	Fixed +8 dBm (Average)
Antenna Gain:	Integral antenna -0.5 dBi
Transmit/Receive Operation:	Time Division Duplex
Number of Channels:	16
Channel Separation:	5 MHz
Rated Input Voltage and Current:	Nominal: 3.3 Vdc
	Minimum: 2.2 Vdc
	Maximum: 3.6 Vdc
Operating Temperature Range:	Manufacturers declared range -40 to +85°C
Rated Power	4.80 mW/MHz
Serial Number	802.15.4 is 2001
	DigiMesh is 9000
	ZigBee is now 405F
Hardware version	2E43
Equipment Dimensions:	0.960" x 1.087" (2.438 cm X 2.761 cm)
Weight:	3 grams
ITU Designator:	2M61G1D
Primary function of equipment:	Control and monitoring

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:12 of 147

3.2. Scope of Test Program

The scope of the test program was to test the Digi International 2.4 GHz XBee Series S2C TH RF Module device in the frequency range 2400 - 2483.5 MHz for compliance against Japan's ARIB STD-T66 regulation.

Digi International 2.4 GHz XBee Series S2C TH RF Module

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: 2.4 GHz XBee Series S2C TH RF Module To: Japanese ARIB STD-T66

Serial #: DIGI55-J4 Rev A

Issue Date: 29th March 2017

Page: 13 of 147

Digi International 2.4 GHz XBee Series S2C TH RF Module

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:14 of 147

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	2.4 GHz wireless module with reverse polarized SMA RF connector	Digi International	S2CTH	30012602-02
Support	Cable assembly with dc input	Digi International	N/A	N/A

3.4. Antenna Details

1. Integral Antenna, wire whip 1.5 dBi

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. RP-SMA RF connector – U.FL

3.6. Test Configurations

Three individual frequencies were tested covering the entire 2.4 GHz band. These frequencies represent low, mid and high channels (2405, 2440 and 2480 MHz) in the band of operation. Each test performed was completed at three voltage levels;

Nominal Voltage: +3.3 Vdc Minimum Voltage: +2.2 Vdc Maximum Voltage: +3.6 Vdc

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the **ARIB STD-T66**. All tests were conducted. The integral antenna was replaced by a 6" coaxial cable terminated in an SMA connector.

Test Items	Description	Test Condition	Result	Test Report Section
Antenna Power	Output power of device	Conducted	Complies	5.1.1
Frequency Error	Nominal frequency drift	Conducted	Complies	5.1.2
Occupied and Spreading Bandwidths	99% and 90% Occupied BW g mode occupied BW only	Conducted	Complies	5.1.3
Transmitter Spurious Emissions	Emissions above and below 1 GHz	Conducted	Complies	5.1.4
Receiver Spurious Emissions	Emissions above and below 1 GHz	Conducted	Complies	5.1.5
Hopping Frequency Dwell Time	Channel Dwell Time DH1, DH3, DH5	Conducted	N/A	N/A
Interference Protection	Identification code verification	Conducted	Complies	5.1.6
RF Accessibility	Inspection of RF Assembly	N/A (Inspection)	Complies	5.1.7

Note 1: Test results reported in this document relate only to the item(s) tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 'Equipment Modifications' highlight the equipment modifications that were required to bring the product into compliance with the above matrix

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:16 of 147

5. <u>TEST EQUIPMENT CONFIGURATION(S)</u>

5.1. Conducted

Conducted RF Emission Test Set-up(s).

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Antenna Power Deviation
- 2. Frequency Error
- 3. Occupied and Spreading Bandwidth
- 4. Transmitter Spurious Emissions
- 5. Receiver Spurious Emissions

Conducted Test Measurement Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:17 of 147

Asset#	Description	Manufactur er	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
461	Agilent 5 Hz-26.5 GHz Spectrum Analyzer	Agilent	E4440A	MY46185537	13 Aug 2017
381	4x4 RF Switch Box	MiCOM Labs	MiTest RF Switch Box	MIC002	20 Dec 2015
390	Agilent USB Average Power Sensor	Agilent	U2002A MY50000103		17 Oct 2016
419	Laptop with Labview Software	Lenova	W520	TS02	Not Required
420	USB to GPIB Interface	National Instruments	GPIB-USB HS	1346738	Not Required
435	USB Wideband Power Sensor	Boonton	55006	8730	31 Jul 2016
RF#2 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#2 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	20 Dec 2015
RF#2 SMA#SA	Mitest box to SA	Flexco	SMA Cable SA	None	20 Dec 2015
RF#2 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required
405	DC Variable Voltage Supply	Agilent	6654A	MY40001826	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:18 of 147

6. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7. TEST RESULTS

Ambient Test Conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

7.1. Device Characteristics

7.1.1. Antenna Power

Test Procedure

Antenna power measurements were measured using a spectrum analyzer. The EUT was connected to the antenna terminal which was terminated in an SMA connector and operating at the appropriate center frequency.

The Spectrum Analyzer was set to make an initial scan of the transmitter mask to identify the frequency where the peak power was present. The Analyzer was then set to measure the peak power density levels utilizing an average detector in a 3 MHz bandwidth.

RBW = 1 MHz; VBW = 1 MHz

Radio Operational Condition

Output Mode: Modulated Output Power: Maximum Duty Cycle: 100%

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:20 of 147

Equipment Configuration for Antenna Power Deviation							
Variant: 802.15.4 Duty Cycle (%): 99							
Data Rate:	250 kBit/s	Antenna Gain (dBi):	-0.50				
Modulation:	O-QPSK	Beam Forming Gain (Y)(dB):	Not Applicable				
TPC:	Not Applicable	Tested By:	JK				
Engineering Test Notes:							

Test Measurement Results								
Test	Меа	Measured Output Power (mW/MHz) Total Pow	Total Power	Limit	Margin			
Frequency	Port(s)			Σ Port(s)	Linin	Margin	EUT Power Setting	
MHz	а	b	с	d	mW/MHz	mW/MHz	dB	ootting
Nominal: 3.30	Vdc							
2405.0	<u>4.74</u>				4.74	10.00	-3.24	Max
2440.0	<u>4.23</u>				4.23	10.00	-3.74	Max
2480.0	<u>4.28</u>				4.28	10.00	-3.69	Max
Low: 2.20 Vd	;							
2405.0	<u>4.82</u>				4.82	10.00	-3.17	Max
2440.0	<u>4.27</u>				4.27	10.00	-3.70	Max
2480.0	<u>4.33</u>				4.33	10.00	-3.64	Max
High: 3.60 Vd	c							
2405.0	<u>4.75</u>				4.75	10.00	-3.23	Max
2440.0	4.22				4.22	10.00	-3.75	Max
2480.0	<u>4.28</u>				4.28	10.00	-3.69	Max

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Rated Power

Rated Power = 4.80 mW/MHz

Comparison of measured results to the Rated Power

2.4 GHz (WW)Technology	Center Frequency (MHz)	Measured Power (mW/MHz)	Calculated Range (+20% / -80%) (mW/MHz)	Measured Deviation (%)
802.15.4	2,405	4.74	0.96 – 5.76	-1.25
	2,440	4.82	0.96 – 5.76	+0.42
	2,480	4.75	0.96 – 5.76	-1.04

Antenna Validation for 802.15.4 mode

maximum power = 4.82 mW/MHz (+ 6.83 dBm/MHz)

Antenna	Туре	Antenna Gain	Max ^m Pwr (dBm/MHz)	EIRP (dBm/ MHz)	EIRP LIMIT (dBm/ MHz)	½ Power Angle	Half Power Beam- width Limit	Antenna Valid
Integral	Omni	1.5	6.83	8.33	12.14		360	Yes

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.2. Frequency Error

Test Procedure

The Frequency Error was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. Low point of modulated signal at the center frequency was used to determine Frequency Error. Sample plot provided.

Radio Operational Condition

Output Mode: Modulated Duty Cycle: 100%

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:23 of 147

Equipment Configuration for Frequency Deviation

Variant:	802.15.4	Duty Cycle (%):	99
Data Rate:	250 kbit/s	Antenna Gain (dBi):	-0.50
Modulation:	O-QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results									
		Char	nnel Frequer	ncy: 2405.0 M	ЛНz	Chan	nel Frequer	ncy: 2440.0 M	/IHz
Voltage	Limit ppm	Measured Frequency MHz	Δ KHz	Δ ppm	Margin ppm	Measured Frequency MHz	ΔKHz	Δ ppm	Margin ppm
3.30 Vdc	-50 to 50	2405.002798	2.798	1.163	-48.84	2440.006845	6.845	2.805	-47.19
2.20 Vdc	-50 to 50	2405.003032	3.032	1.261	-48.74	2440.007096	7.096	2.908	-47.09
3.60 Vdc	-50 to 50	2405.002807	2.807	1.167	-48.83	2440.006871	6.871	2.816	-47.18
		Char	nnel Frequer	ncy: 2480.0 M	ЛНz				
3.30 Vdc	-50 to 50	2480.004528	4.528	1.826	-48.17				
2.20 Vdc	-50 to 50	2480.004729	4.729	1.907	-48.09				
3.60 Vdc	-50 to 50	<u>2480.004554</u>	4.554	1.836	-48.16				

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-02 MEASURING FREQUENCY
Measurement Uncertainty:	±0.86 ppm

Note: click the links in the above matrix to view the graphical image (plot).

7.1.3. Occupied and Spreading Bandwidths

Test Procedure

The Occupied and Spreading Bandwidth was measured with a spectrum analyzer connected to the antenna terminal which was terminated in an SMA connector. The EUT was operating in the operation mode specified in Section 3.6 'Test Configurations' at the appropriate center frequency. The voltage was varied at the input to the device on the separate channels and measurements were recorded.

Spreading Factor for an 802.15.4 is: 0.062

Radio Operational Condition

Output Mode: Modulated

Output Power: Maximum

Operational Mode: Low, middle and high frequencies

Measurement Results for Occupied Bandwidth (99%) and Spreading Bandwidth (90%)

Fauinment Con	figuration fo	r Occunied	Bandwidth
Equipment oon	ngaradon io	i occupica	Bunamath

Variant:	802.15.4	Duty Cycle (%):	99
Data Rate:	250 kBit/s	Antenna Gain (dBi):	-0.50
Modulation:	O-QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results								
			99% Band	width (MHz)				
Voltage	Limit (MHz)	Channel Frequency: 2405.0 MHz		Channel Frequency: 2440.0 MHz		Channel Frequency: 2480.0 MHz		
		99% Bandwidth	Margin	99% Bandwidth	Margin	99% Bandwidth	Margin	
3.30 Vdc	26.0	<u>2.612</u>	-23.39	<u>2.612</u>	-23.39	<u>2.596</u>	-23.40	
2.20 Vdc	26.0	2.586	-23.41	<u>2.615</u>	-23.39	2.587	-23.41	
3.60 Vdc	26.0	2.586	-23.41	2.620	-23.38	2.590	-23.41	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:26 of 147

Equipment Configuration for Spreading Factor					
	-		-		
Variant:	802.15.4	Duty Cycle (%):	99		
Data Rate:	250 kBit/s	Antenna Gain (dBi):	-0.50		
Modulation:	O-QPSK	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	JK		
Engineering Test Notes:					

Test Measurement Results										
	Spreading Factor (MHz)									
Channel Frequency: 2405.0 MHz				Channel Fr	equency: 2	440.0 MHz	Channel Frequency: 2480.0 MHz			
Voltage	Limit	Sprea	Spreading		Sprea	ding	Morain	Spreading		Morain
		Bandwidth	Factor	margin	Bandwidth	Factor	Margin	Bandwidth	Factor	wargin
3.30 Vdc	5.0	<u>1.592</u>	25.68	-20.68	<u>1.600</u>	25.81	-20.80	<u>1.584</u>	25.56	-20.55
2.20 Vdc	5.0	<u>1.584</u>	25.55	-20.55	<u>1.595</u>	25.72	-20.72	<u>1.582</u>	25.51	-20.51
3.60 Vdc	5.0	<u>1.589</u>	25.62	-20.62	<u>1.614</u>	26.03	-21.03	<u>1.597</u>	25.76	-20.76

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Note: click the links in the above matrix to view the graphical image (plot).

7.1.4. Transmitter Spurious Emissions

Test Procedure

Transmitter Spurious Emissions were measured conductively per the test set up below. The EUT was set on the channel of interest and the spectrum was investigated from 10 - 16,000 MHz.

Radio Operational Condition

Output Mode: Modulated Output Power: Maximum Duty Cycle: 100%

Title: 2.4 GHz XBee Series S2C TH RF Module To: Japanese ARIB STD-T66

Japanese ARIB STD-T66DIGI55-J4 Rev A

Serial #:

Issue Date: 29th March 2017

Page: 28 of 147

Equipment Configuration for Transmitter Spurious Emissions							
Variant:	802.15.4	Duty Cycle (%):	99				
Data Rate:	250 kBit/s	Antenna Gain (dBi):	-0.50				
Modulation:	O-QPSK	Beam Forming Gain (Y)(dB):	Not Applicable				
TPC:	Not Applicable	Tested By:	JK				
Engineering Test Notes:							

Test Measurement Results											
F	1 inst	Channel Fre	equency: 24	05.0MHz	Channel Fr	Channel Frequency: 2440.0MHz			Channel Frequency: 2480.0MHz		
Frequency Range MHz	LIMIT	Mar	ker	Margin	Mar	ker	Margin	Mar	ker	Margin	
range miz	p	Amp μW/MHz	Freq MHz	dB	Amp µW/MHz	Freq MHz	dB	Amp µW/MHz	Freq MHz	dB	
Nominal Voltage: 3.30 Vdc											
10.0-1000.0	2.5	<u>0.001</u>	600.700	-33.98	<u>0.000</u>	600.700	-43.98	<u>0.000</u>	216.250	-43.98	
1000.0-2387.0	2.5	<u>0.007</u>	2387.000	-25.53	<u>0.003</u>	1309.800	-29.21	<u>0.003</u>	2382.400	-29.21	
2387.0-2400.0	25.0	<u>0.539</u>	2400.000	-16.66	<u>0.004</u>	2397.508	-37.96	<u>0.004</u>	2396.512	-37.96	
2483.5-2496.5	25.0	<u>0.003</u>	2489.372	-39.21	<u>0.004</u>	2483.933	-37.96	<u>5.072</u>	2483.522	-6.93	
2496.5-16000.0	2.5	<u>0.025</u>	7223.000	-20.00	<u>0.030</u>	7313.000	-19.21	<u>0.733</u>	2496.000	<u>-5.33</u>	
Low Voltage: 2.2	0 Vdc										
10.0-1000.0	2.5	<u>0.001</u>	600.700	-33.98	<u>0.001</u>	600.700	-33.98	<u>0.000</u>	711.250	-43.98	
1000.0-2387.0	2.5	<u>0.012</u>	2387.000	-23.19	<u>0.004</u>	2363.900	-27.96	<u>0.003</u>	1952.400	-29.21	
2387.0-2400.0	25.0	<u>1.000</u>	2400.000	-13.98	0.004	2394.453	-37.96	<u>0.003</u>	2395.103	-39.21	
2483.5-2496.5	25.0	<u>0.004</u>	2495.330	-37.96	<u>0.004</u>	2490.498	-37.96	<u>5.369</u>	2483.543	-6.68	
2496.5-16000.0	2.5	<u>0.027</u>	7223.000	-19.67	<u>0.028</u>	7313.000	-19.51	<u>0.760</u>	2496.000	<u>-5.17</u>	
High Voltage: 3.6	60 Vdc										
10.0-1000.0	2.5	<u>0.001</u>	600.700	-33.98	<u>0.000</u>	983.500	-43.98	<u>0.001</u>	216.250	-33.98	
1000.0-2387.0	2.5	<u>0.011</u>	2387.000	-23.57	<u>0.003</u>	1076.300	-29.21	<u>0.003</u>	2384.700	-29.21	
2387.0-2400.0	25.0	<u>0.987</u>	2400.000	-14.04	0.004	2396.100	-37.96	0.003	2397.227	-39.21	
2483.5-2496.5	25.0	0.004	2488.895	-37.96	0.004	2487.530	-37.96	<u>5.113</u>	2483.522	-6.89	
2496.5-16000.0	2.5	0.026	7223.000	-19.83	0.031	7313.000	-19.07	0.734	2496.000	<u>-5.32</u>	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:29 of 147

Emissions found within < 6 dB of the limit line and \geq to the limit line are evaluated in more detail in order to prove compliance. The following Evaluation Table identifies emissions that fall within this criteria.

Channel	Frequency				Ma	rker	Limit	
Frequency MHz	Range MHz	Temp °C	Voltage Vdc	Chain	Amp μW/MHz	Frequency MHz	μW/MHz	Margin dB
2405.00	1000.0 - 2387.0	20.0	3.60	Chain a	<u>0.002</u>	1693.50	2.50	-31.01
2440.00	2496.5 - 16000.0	20.0	3.30	Chain a	<u>0.004</u>	9248.30	2.50	-28.09
2480.00	2483.5 - 2496.5	20.0	2.20	Chain a	<u>0.100</u>	2490.00	25.00	-23.98
2480.00	2496.5 - 16000.0	20.0	2.20	Chain a	<u>0.020</u>	2496.00	2.50	-20.97
2480.00	2496.5 - 16000.0	20.0	3.30	Chain a	<u>0.004</u>	9248.30	2.50	-27.68
2480.00	2496.5 - 16000.0	20.0	3.60	Chain a	<u>0.020</u>	2496.00	2.50	-20.97

After further investigation the above emissions were found to be compliant with the limits declared in the standard.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.5. <u>Receiver Spurious Emissions</u>

Test Procedure

Receiver Spurious Emissions were measured conductively per the test set up below. The EUT was set on the channel of interest and the spectrum was investigated from 10 - 16,000 MHz. As the receiver operates in a continuous receive mode covering all channels only one set of results were taken for all channels.

Radio Operational Condition

Operational Mode: Receive mode only Operational Mode: Low, mid and high channels

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: 2.4 GHz XBee Series S2C TH RF Module To: Japanese ARIB STD-T66

Japanese ARIB STD-T66DIGI55-J4 Rev A

Serial #: [Issue Date: 2

te: 29th March 2017

Page: 31 of 147

Equipment Configuration for Receiver Spurious Emissions							
Variant: 802.15.4 Duty Cycle (%): Not Applicable							
Data Rate:AllAntenna Gain (dBi):-0.50							
Modulation:	Not Applicable						
TPC: Not Applicable Tested By: JK							
Engineering Test Notes:							

Test Measurement Results										
		Channel Frequency: 2405.0MHz			Channel F	requency: 2	440.0MHz	Channel Frequency: 2480.0MHz		
Frequency	Limit	Ma	rker	Margin	Ма	rker	Margin	Ма	rker	Margin
Range MHZ		Amp nW/MHz	Freq MHz	dB	Amp nW/MHz	Freq MHz	dB	Amp nW/MHz	Freq MHz	dB
Nominal Volt	age: 3.30 \	Vdc								
10-1000	4.0	<u>1.136</u>	600.700	<u>-5.47</u>	<u>0.465</u>	600.700	-9.35	<u>0.360</u>	191.500	-10.46
1000-16000	20.0	<u>0.942</u>	1000.000	-13.27	<u>0.755</u>	13825.000	-14.23	<u>0.675</u>	1050.000	-14.72
Low Voltage:	2.20 Vdc									
10-1000	4.0	<u>1.045</u>	600.700	<u>-5.83</u>	<u>0.460</u>	600.700	-9.39	<u>0.369</u>	191.500	-10.35
1000-16000	20.0	<u>1.141</u>	1000.000	-12.44	<u>0.694</u>	14925.000	-14.60	<u>0.729</u>	13575.000	-14.38
High Voltage: 3.60 Vdc										
10-1000	4.0	<u>1.126</u>	600.700	-5.51	<u>0.520</u>	600.700	-8.86	0.377	191.500	-10.26
1000-16000	20.0	<u>1.055</u>	1000.000	-12.78	<u>0.737</u>	13625.000	-14.34	<u>0.742</u>	15450.000	-14.31

Traceability to Industry Recognized Test Methodologies	5
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS

Measurement Uncertainty: <=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:32 of 147

Emissions found within < 6 dB of the limit line and \geq to the limit line are evaluated in more detail in order to prove compliance. The following Evaluation Table identifies emissions that fall within this criteria.

Channel	Frequency				Ma	rker	Limit	
Frequency MHz	Range MHz	Temp °C	Voltage Vdc	Chain	Amp μW/MHz	Frequency MHz	μW/MHz	Margin dB
2405.00	10.0 - 1000.0	20.0	2.20	Chain a	<u>0.0001</u>	600.70	4.00	-57.01
2405.00	10.0 - 1000.0	20.0	3.30	Chain a	<u>0.0001</u>	600.70	4.00	-57.06
2405.00	10.0 - 1000.0	20.0	3.60	Chain a	<u>0.0001</u>	600.70	4.00	-56.70
2440.00	10.0 - 1000.0	20.0	3.30	Chain a	<u>0.0001</u>	600.70	4.00	-56.81
2480.00	10.0 - 1000.0	20.0	3.30	Chain a	<u>0.0001</u>	600.70	4.00	-57.14
2480.00	1000.0 - 16000.0	20.0	2.20	Chain a	<u>0.0001</u>	8500.00	20.00	-59.27

After further investigation the above emissions were found to be compliant with the limits declared in the standard.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.6. Interference Protection Function

Test Procedure

The received signal should be demodulated and the data investigated to verify the receipt of the transmitted identification code.

Result

Identification code was verified to be correctly received

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:34 of 147

7.1.7. RF Accessibility

The RF module enclosure for the XBee device has no exposed RF components as they are contained within the metal enclosure as seen in the images below:

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:35 of 147

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:36 of 147

A. <u>APPENDIX – GRAPHICAL IMAGES</u>

A.1. Antenna Power Deviation

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 Marker Amplitude: 4.82 mW/MHz M1 Marker Frequency: 2405.00 MHz	Antenna Power: 4.82 mW/MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:37 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:38 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:39 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:40 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:41 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:42 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:43 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:44 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:45 of 147

A.2. Occupied Bandwidth

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	Marker Frequency: 2404.60 MHz	Channel Frequency: 2405.0 MHz
Sweep Count = 0	Marker Amplitude: 7.35 mW	99% Bandwidth: 2.586 MHz
RF Atten (dB) = 10		Limit: 26.0 MHz
Trace Mode = MAXH		Margin:-23.41 MHz
		-

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:46 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:47 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:48 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:49 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:50 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:51 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:52 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:53 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:54 of 147

A.3. Spreading Bandwidth

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = MAXH	Marker Frequency: 2404.60 MHz Marker Amplitude: 7.36 mW	Channel Frequency: 2405.0 MHz Spreading Bandwidth: 1.584 MHz Spreading Factor: 1.15 Limit: 5.0 MHz Margin:3.85 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:55 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:56 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:57 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:58 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:59 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:60 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:61 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:62 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:63 of 147

A.4. Frequency Deviation

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = +1 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 2405.003 MHz : 7.25 mW	Channel Frequency: 2405.0 MHz Δ KHz: 3.032 Δ ppm: 1.261 Limit: -50 to 50 ppm Margin: -48.74 ppm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:64 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:65 of 147

Analyser Setup	warker:Frequency:Amplitude	lest Results
Detector = AVER	M1 : 2405.003 MHz : 7.27 mW	Channel Frequency: 2405.0 MHz
Sweep Count = +1		Δ KHz: 2.807
RF Atten (dB) = 30		Δ ppm: 1.167
Trace Mode = VIEW		Limit: -50 to 50 ppm
		Margin: -48.83 ppm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:66 of 147

Analyser Setup	Marker:Frequency:Amplitude	lest Results
Detector = AVER	M1 : 2440.007 MHz : 6.52 mW	Channel Frequency: 2440.0 MHz
Sweep Count = +1		Δ KHz: 7.096
RF Atten (dB) = 30		Δ ppm: 2.908
Trace Mode = VIEW		Limit: -50 to 50 ppm
		Margin: -47.09 ppm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:67 of 147

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2440.007 MHz : 6.43 mW	Channel Frequency: 2440.0 MHz
Sweep Count = +1		Δ KHz: 6.845
RF Atten (dB) = 30		Δ ppm: 2.805
Trace Mode = VIEW		Limit: -50 to 50 ppm
		Margin: -47.19 ppm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:68 of 147

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = +1	M1 : 2440.007 MHz : 6.43 mW	Channel Frequency: 2440.0 MHz Δ KHz: 6.871
RF Atten (dB) = 30 Trace Mode = VIEW		Δ ppm: 2.816 Limit: -50 to 50 ppm Margin: -47.18 ppm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:69 of 147

Margin: -48.09 ppm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:70 of 147

Margin: -48.17 ppm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:71 of 147

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2480.005 MHz : 6.62 mW	Channel Frequency: 2480.0 MHz
Sweep Count = +1		Δ KHz: 4.554
RF Atten (dB) = 30		Δ ppm: 1.836
Trace Mode = VIEW		Limit: -50 to 50 ppm
		Margin: -48.16 ppm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:72 of 147

A.5. Transmitter Spurious Emissions

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = POS	M1 Marker Amplitude: 0.001 µW	Channel Frequency: 2405 MHz
Sweep Count = 0	M1 Marker Frequency: 600.700 MHz	Limit: 2.5 µW
RF Atten (dB) = 10		Margin: -33.98 dB
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:73 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:74 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:75 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:76 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:77 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:78 of 147

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = SAMP	M1(1693.50 MHz) : 0.001 s : 198.11 pW	Channel Frequency: 2405.00 MHz
Sweep Count = +100		
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:79 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:80 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:81 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:82 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:83 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:84 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:85 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:86 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:87 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:88 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:89 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:90 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:91 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:92 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:93 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:94 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:95 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:96 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:97 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:98 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:99 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:100 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:101 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:102 of 147

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = SAMP	M1(9248.25 MHz) : 0.002 s : 388.51 pW	Channel Frequency: 2440.00 MHz
Sweep Count = +100		
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:103 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:104 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:105 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:106 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:107 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:108 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:109 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:110 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:111 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:112 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:113 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:114 of 147

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = SAMP Sweep Count = +100	M1(2490.00 MHz) : 0.004 s : 10.03 nW	Channel Frequency: 2480.00 MHz
RF Atten (dB) = 10 Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:115 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:116 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:117 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:118 of 147

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = SAMP	M1(2496.00 MHz) : 0.005 s : 1.71 nW	Channel Frequency: 2480.00 MHz
Sweep Count = +100		
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:119 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:120 of 147

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = SAMP	M1(9248.25 MHz) : 0.005 s : 427.76 pW	Channel Frequency: 2480.00 MHz
Sweep Count = +100		
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:121 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:122 of 147

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = SAMP	M1(2496.00 MHz) : 0.004 s : 1.71 nW	Channel Frequency: 2480.00 MHz
Sweep Count = +100		
RF Atten (dB) = 10		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:123 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

A.6. Receiver Spurious Emissions

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = SAMP Sweep Count = +100 RF Atten (dB) = 0 Trace Mode = VIEW	M1(600.70 MHz) : 0.002 s : 7.79 pW	Channel Frequency: 2405.00 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:125 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:126 of 147

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = SAMP Sweep Count = +100	M1(600.70 MHz) : 0.003 s : 7.88 pW	Channel Frequency: 2405.00 MHz
RF Atten (dB) = 0 Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:127 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:128 of 147

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = SAMP Sweep Count = +100	M1(600.70 MHz) : 0.001 s : 8.56 pW	Channel Frequency: 2405.00 MHz
RF Atten (dB) = 0 Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:129 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:130 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:131 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:132 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:133 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:134 of 147

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = SAMP Sweep Count = +100	M1(600.70 MHz) : 0.002 s : 8.33 pW	Channel Frequency: 2440.00 MHz
RF Atten (dB) = 0 Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:135 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:136 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:137 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:138 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:139 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:140 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:141 of 147

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = SAMP Sweep Count = +100	M1(600.70 MHz) : 0.002 s : 7.72 pW	Channel Frequency: 2480.00 MHz
RF Atten (dB) = 0 Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:142 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:143 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:144 of 147

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = SAMP	M1(8500.00 MHz) : 0.001 s : 23.66 pW	Channel Frequency: 2480.00 MHz
Sweep Count = +100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:145 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: 925.462.0304, Fax: 925.462.0306, www.micomlabs.com

Title:2.4 GHz XBee Series S2C TH RF ModuleTo:Japanese ARIB STD-T66Serial #:DIGI55-J4 Rev AIssue Date:29th March 2017Page:146 of 147

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: 925.462.0304, Fax: 925.462.0306, www.micomlabs.

575 Boulder Court Pleasanton, California 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com