Test of Digi International, Inc 2.4 GHz XBee S2C RF Module

To: Japanese ARIB STD-T66

Test Report Serial No.: DIGI55-J2 Rev A

Test of Digi International, Inc

2.4 GHz XBee S2C RF Module to To Japanese ARIB STD-T66

Test Report Serial No.: DIGI55-J2 Rev A

This report supersedes: DIGI09-J1 Rev B

Applicant: Digi International, Inc

355 South 520 West, Suite 180

Lindon

Utah, 84042 USA

Product Function: Data and Control

Copy No: pdf Issue Date: 29th March 2017

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc. 575 Boulder Court Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306

www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 3 of 144

This page has been left intentionally blank

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 4 of 144

TABLE OF CONTENTS

AC	CREDITATION, LISTINGS & RECOGNITION	5
	TESTING ACCREDITATION	5
	RECOGNITION	
	PRODUCT CERTIFICATION	7
1.	TEST RESULT CERTIFICATE	9
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1. Normative References	
	2.2. Test and Uncertainty Procedures	.10
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	
	3.1. Technical Details	
	3.2. Scope of Test Program	.12
	3.3. Equipment Model(s) and Serial Number(s)	
	3.4. Antenna Details	
	3.5. Cabling and I/O Ports	. 14
	3.6. Test Configurations	
	3.7. Equipment Modifications	
	3.8. Deviations from the Test Standard	
4.	TEST SUMMARY	16
5.	TEST RESULTS	17
	5.1. Device Characteristics	.17
	5.1.1. Antenna Power	.17
	5.1.2. Frequency Error	.30
	5.1.3. Occupied and Spreading Bandwidths	
	5.1.4. Transmitter Spurious Emissions	
	5.1.5. Receiver Spurious Emissions	
	5.1.6. Interference Protection Function	
	5.1.7. RF Accessibility1	
6.	PHOTOGRAPHS1	
	6.1. General Measurement Test Set-Up1	42
7	TEST FOLIDMENT DETAILS	12

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 5 of 144

ACCREDITATION, LISTINGS & RECOGNITION

ACCREDITATION - TESTING

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-01.pdf test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 6 of 144

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	TCB	-	US0159 Listing #: 102167
Canada Industry Canada (IC)		FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission		EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

^{**}APEC MRA - Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A - Not Applicable

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

^{**}EU MRA – European Union Mutual Recognition Agreement.

^{**}NB - Notified Body

Serial #: DIGI55-J2 Rev A
Issue Date: 29th March 2017

Page: 7 of 144

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-02.pdf test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-02.pdf

United States of America - Telecommunication Certification Body (TCB)

TCB Identifier - US0159

Industry Canada - Certification Body

CAB Identifier - US0159

Europe - Notified Body

Notified Body Identifier - 2280

Japan - Recognized Certification Body (RCB)

RCB Identifier - 210

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 8 of 144

DOCUMENT HISTORY

		Document History	
Revision	Date	Comments	
Draft	27 th March 27, 2017	Spot Check Verification – firmware update	
		From : XB24CAPIS-001 Firmware (2001)	
		To: 802.15.4 is 2001	
		DigiMesh is 9000	
		ZigBee is now 405F	
Rev A	29 th March 2017	Initial Release	
This report	was originally issued as	s DIGI09-J1 Rev B, 18 th February 2011	
Rev A	28 th December 2010	Initial Release	
Rev B	18 th February 2011	Correction of typographical error	

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 9 of 144

1. TEST RESULT CERTIFICATE

Applicant: Digi International, Inc Tested By: MiCOM Labs, Inc.

355 South 520 West, Suite 180 575 Boulder Court,

Lindon, Pleasanton

Utah, 84042 USA California, 94566, USA

EUT: Data and Control Telephone: +1 925 462 0304

Model No.: XBee S2C Fax: +1 925 462 0306

S/N'(s): N/A

Test Date(s): 17-20th December '10 Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

Japanese ARIB STD-T66

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

ACCREDITED
TESTING CERT #2381,01

Graeme Grieve

Quality Manager MiCOM Labs,

Gordon Hurst

President & CEO MiCOM Labs, Inc.

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 10 of 144

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	ARIB STD-T66	2006	Radio Equipment for Second-generation Low- power Data Communication Systems Radio Stations and Wireless Lan Systems' Equipment
(ii)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(iii)	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(iv)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(v)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(vi)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(vii)	A2LA	9 th June 2010	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 11 of 144

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of Digi International, Inc 2.4 GHz XBee S2C RF
	Module to Japan's ARIB STD-T66 regulations
Applicant:	
Manufacturer:	Digi International, Inc
	355 South 520 West, Suite 180
	Lindon, Utah, 84042 USA
Laboratory performing the tests:	MiCOM Labs, Inc.
	575 Boulder Court
	Pleasanton, California 94566 USA
Test report reference number:	DIGI55-J2 Rev A
Date EUT received:	16 th December 2010
Standard(s) applied:	Japanese ARIB STD-T66
Dates of test (from - to):	17-20th December '10
No of Units Tested:	3
Type of Equipment:	2.4 GHz ZigBee RF Module
Manufacturers Trade Name:	XBee
Model:	XBee S2C
Location for use:	Indoor/Outdoor
Declared Frequency Range(s):	Transmit: 2405 - 2480 MHz: Receive: 2405 - 2480 MHz
Type of Modulation:	O-QPSK (Offset Quadrature Phase Shift Keying) DSSS
Declared Nominal Output Power:	Fixed +5 dBm (Average)
Antenna Gain:	See Section 3.4
Rated Power	4.80 mW/MHz
Antenna Connector(s):	Integral; U.FL or RF Pad
Transmit/Receive Operation:	Time Division Duplex
Number of Channels:	16
Channel Separation:	5 MHz
Rated Input Voltage and Current:	Nominal: 3.3 Vdc 10 mA
	Minimum: 2.2 Vdc
	Maximum: 3.6 Vdc
Operating Temperature Range:	Manufacturers declared range -40 to +85°C
Serial Number	N/A
Hardware version	5
Software Version	802.15.4 is 2001
	DigiMesh is 9000
	ZigBee is now 405F
Frequency Stability (ppm/year):	±20ppm/year
Equipment Dimensions:	0.866 X 1.33 X 0.120 inches
Weight:	7.5 grams
ITU Designator:	2M65G1D
Primary function of equipment:	Zigbee USB 2.4 GHz wireless modem module

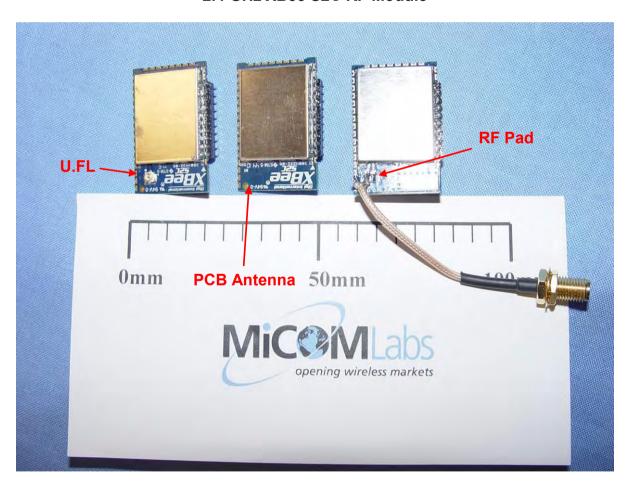
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 12 of 144

3.2. Scope of Test Program

The scope of the test program was to test the Digi International, Inc 2.4 GHz XBee S2C RF Module device in the frequency range 2400 - 2483.5 MHz for compliance against Japan's ARIB STD-T66 regulation.

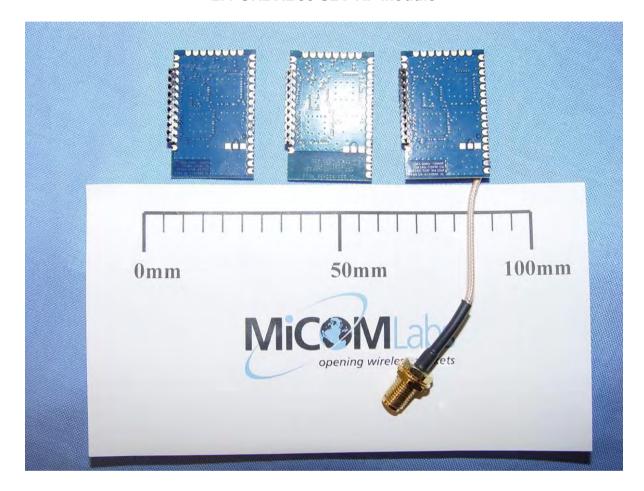

The device comes with several variations:

• U.FL RF Port - RF IO for U.FL Variant

PCB antenna - RF IO for PCB Antenna Variant

• Pin 36 RF Port - RF IO for RF pad Variant

Digi International, Inc 2.4 GHz XBee S2C RF Module



To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 13 of 144

Digi International, Inc 2.4 GHz XBee S2C RF Module

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 14 of 144

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	2.4 GHz wireless module with reverse polarized SMA RF connector (SMA for test purposes only)	Digi International, Inc	XBee S2C	N/A
Support	DC Variable Voltage Supply	Hewlett Packard	HP6574A	US36340203

3.4. Antenna Details

- 1. Integral PCB Antenna: -0.5 dBi
- 2. Dipole bec AN2400-37A19BX, max. gain +2.76 dBi @ 2.4 GHz
- 3. Dipole bec R-AN2400-5701RS-Z, max. gain +3.45 dBi @ 2.4 GHz
- 4. Maxstream whip antenna 1/4 Wave Wire Monopole max. gain +1.8 dBi @ 2.4 GHz
- 5. Nearson S131AH-2450S, ½ wave dipole max. gain +2.0 dBi @ 2.4 GHz
- 6. Dipole Antenna pulse W1030, max. gain +2.0 dBi @ 2.4 GHz
- 7. Dipole Antenna pulse W1049B050, max. gain +2.0 dBi @ 2.4 GHz
- 8. Buffalo WLE-HG-DA Directional max. gain +9 dBi @ 2.4 GHz

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. NONE

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 15 of 144

3.6. Test Configurations

Three individual frequencies were tested covering the entire 2.4 GHz band. These frequencies represent low, mid and high channels (2405, 2440 and 2480 MHz) in the band of operation.

Nominal Voltage: +3.3 Vdc Minimum Voltage: +2.2 Vdc Maximum Voltage: +3.6 Vdc

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 16 of 144

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the **ARIB STD-T66**. All tests were conducted. The integral antenna was replaced by a 6" coaxial cable terminated in an SMA connector.

Test Items	Description	Test Condition	Result	Test Report Section
Antenna Power	Output power of device	Conducted	Complies	5.1.1
Frequency Error	ncy Error Nominal frequency drift		Complies	5.1.2
Occupied and Spreading Bandwidths	99% and 90% Occupied BW g mode occupied BW only	Conducted	Complies	5.1.3
Transmitter Spurious Emissions	Emissions above and below 1 GHz	Conducted	Complies	5.1.4
Receiver Spurious Emissions	purious below 1 GHz		Complies	5.1.5
Hopping Frequency Dwell Time	Channel Dwell Time DH1, DH3, DH5	Conducted	N/A	N/A
Interference Protection	Identification code verification	Conducted	Complies	5.1.6
RF Accessibility	Inspection of RF Assembly	N/A (Inspection)	Complies	5.1.7

Note 1: Test results reported in this document relate only to the item(s) tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 'Equipment Modifications' highlight the equipment modifications that were required to bring the product into compliance with the above matrix

To: Japanese ARIB STD-T66

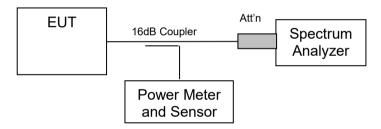
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 17 of 144

5. TEST RESULTS

Ambient Test Conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar


5.1. Device Characteristics

5.1.1. Antenna Power

Test Procedure

Antenna power measurements were measured using a spectrum analyzer. The EUT was connected to the antenna terminal which was terminated in an SMA connector and operating at the appropriate center frequency. The resolution bandwidth filter on the analyzer was set at 1 MHz.

Test Measurement Set up

Measurement set up for Antenna Power

Radio Operational Condition

Output Mode: Modulated
Output Power: Maximum

Duty Cycle: 100%

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 18 of 144

TABLE OF RESULTS -

Channel 2,405 MHz with maximum gain omni-directional antenna 3.45 dBi

Walkers	MODULATED CONDUCTED POWER (mW/MHz)						
Voltage	Spectral Density (mW/MHz)	Spectral Density (dBm/MHz)	Peak EIRP (dBm/MHz)	EIRP LIMIT (dBm/MHZ)			
+3.3 Vdc	2.215	+3.453	+6.903	+12.14			
+2.2 Vdc	2.256	+3.533	+6.983	+12.14			
+3.6 Vdc 2.206		+3.436	+6.886	+12.14			

TABLE OF RESULTS -

Channel 2,440 MHz with maximum gain omni-directional antenna 3.45 dBi

Waltana	MODULATED CONDUCTED POWER (mW/MHz)						
Voltage	Spectral Density (mW/MHz)	Spectral Density (dBm/MHz)	Peak EIRP (dBm/MHz)	EIRP LIMIT (dBm/MHZ)			
+3.3 Vdc	2.293	+3.604	+7.054	+12.14			
+2.2 Vdc	dc 2.335 +3.		+7.132	+12.14			
+3.6 Vdc	2.276	+3.572	+7.022	+12.14			

TABLE OF RESULTS -

Channel 2,480 MHz with maximum gain omni-directional antenna 3.45 dBi

Waltana	MODULATED CONDUCTED POWER (mW/MHz)					
Voltage	Spectral Density (mW/MHz)	Spectral Density (dBm/MHz)	Peak EIRP (dBm/MHz)	EIRP LIMIT (dBm/MHZ)		
+3.3 Vdc	2.220	+3.464	+6.914	+12.14		
+2.2 Vdc	/dc 2.261 +3.543		+6.993	+12.14		
+3.6 Vdc	2.216	+3.456	+6.906	+12.14		

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 19 of 144

Rated Antenna Power

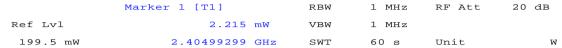
Rated Power = 4.80 mW/MHz

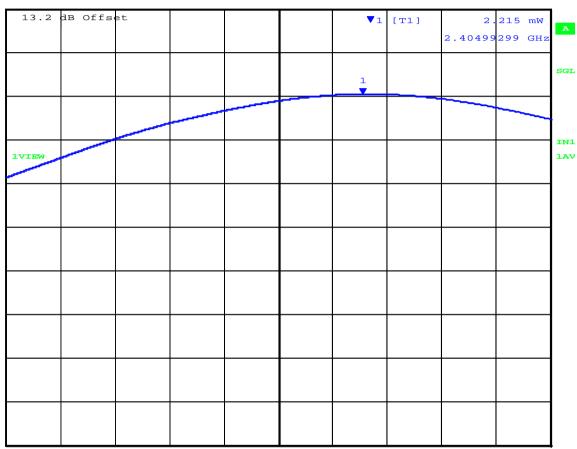
Comparison of measured results to the Rated Power

Center Frequency (MHz)	Measured Power (mW/MHz)	Calculated Range (+20% / -80%) (mW/MHz)	Measured Deviation (%)	
2,405	2.206	0.96 – 5.76	-54.0	
2,440	2.335	0.96 – 5.76	-51.3	

Antenna Validation – the maximum power = 2.335 mW/MHz (+3.682 dBm/MHz)

Antenna	Туре	Antenna Gain (dBi)	Max ^m Pwr (dBm/MHz)	EIRP (dBm/MHz)	EIRP LIMIT (dBm/ MHz)	½ Angle	Half Power Beam- width Limit	Antenna Valid
Integral PCB	Omni	-0.5	+3.682	+3.182	12.14			yes
Dipole bec AN2400- 37A19BX	Omni	+2.76	+3.682	+6.442	12.14		1	yes
Dipole bec R-AN2400- 5701RS-Z	Omni	+3.45	+3.682	+7.132	12.14		1	yes
1/4 Wave Monopole Maxstream	Omni	+1.8	+3.682	+5.482	12.14		-	yes
½ Wave Dipole Nearson S131AH- 2450S	Omni	+2.0	+3.682	+5.682	12.14			yes
Dipole Pulse W1030	Omni	+2.0	+3.682	+5.682	12.14			yes
Dipole Pulse W1049B050	Omni	+2.0	+3.682	+5.682	12.14			yes
Buffalo WLE-HG-DA	Dir 70 Deg	+9.0	+3.682	+12.682	22.14	35°	318.0°	yes




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 20 of 144

Antenna Power Channel 2,405 MHz Nominal Voltage +3.3 Vdc

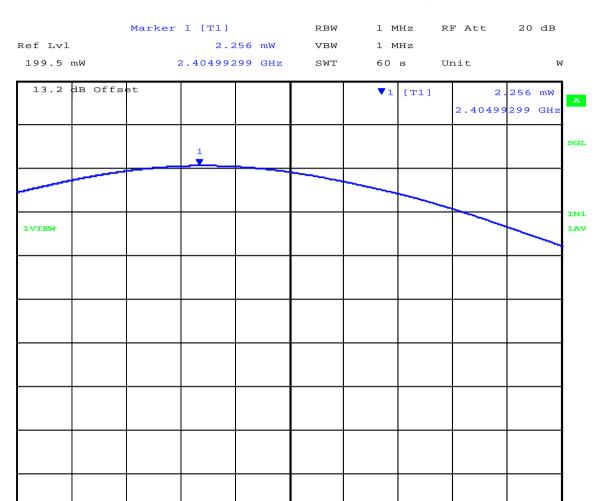
Center 2.404527054 GHz

300 kHz/

Span 3 MHz

Date: 19.DEG

19.DEC.2010 12:17:47



To: Japanese ARIB STD-T66

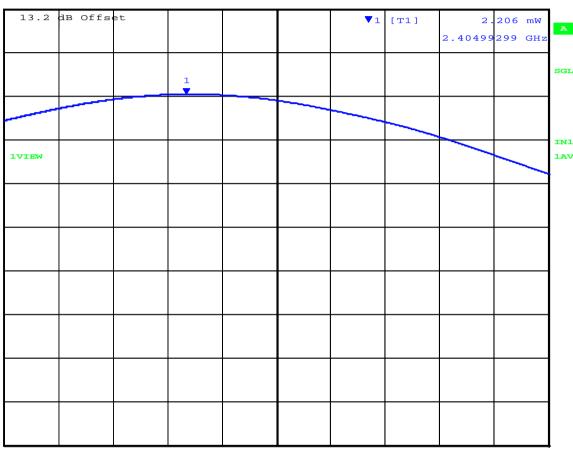
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 21 of 144

Antenna Power Channel 2,405 MHz Minimum Voltage +2.2 Vdc

Center 2.405488978 GHz 300 kHz/ Span 3 MHz

Date: 19.DEC.2010 12:20:32


To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 22 of 144

Antenna Power Channel 2,405 MHz Maximum Voltage +3.6 Vdc

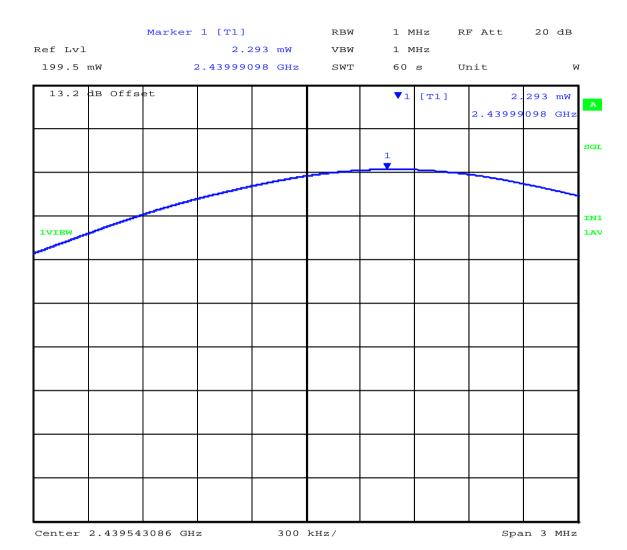
Center 2.405488978 GHz

300 kHz/

Span 3 MHz

Date: 19

19.DEC.2010 12:23:20



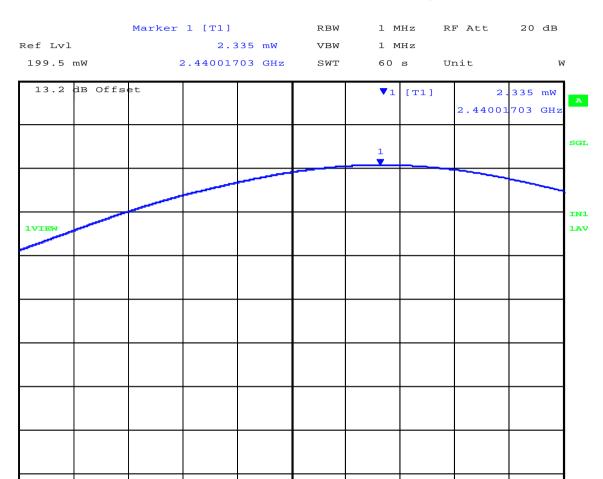
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 23 of 144

Antenna Power Channel 2,440 MHz Nominal Voltage +3.3 Vdc

Date: 19.DEC.2010 13:18:11



To: Japanese ARIB STD-T66

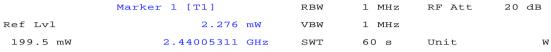
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

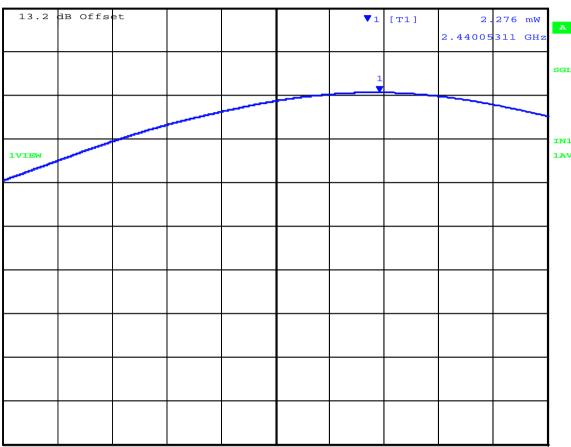
Page: 24 of 144

Antenna Power Channel 2,440 MHz Minimum Voltage +2.2 Vdc

Center 2.439527054 GHz 300 kHz/ Span 3 MHz

Date: 19.DEC.2010 13:20:57




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 25 of 144

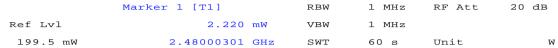
Antenna Power Channel 2,440 MHz Maximum Voltage +3.6 Vdc

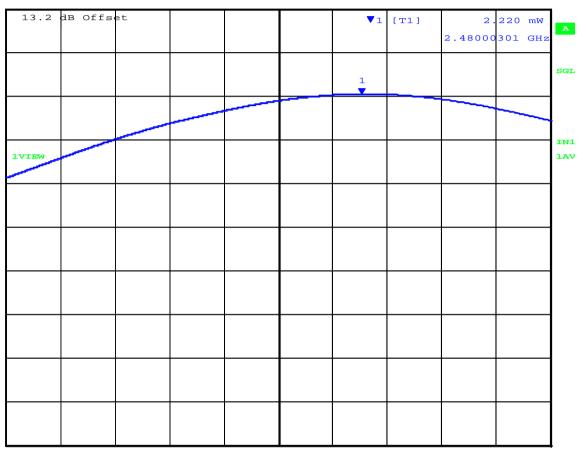
Center 2.439478958 GHz

300 kHz/

Span 3 MHz

Date: 19.DEC.2010 13:23:44




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 26 of 144

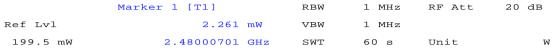
Antenna Power Channel 2,480 MHz Nominal Voltage +3.3 Vdc

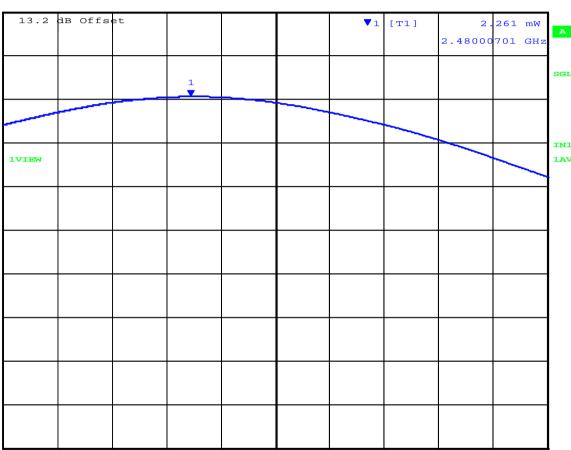
Center 2.479543086 GHz

300 kHz/

Span 3 MHz

Date: 19.DEC.2010 14:13:36




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 27 of 144

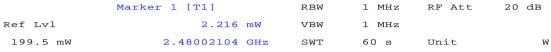
Antenna Power Channel 2,480 MHz Minimum Voltage +2.2 Vdc

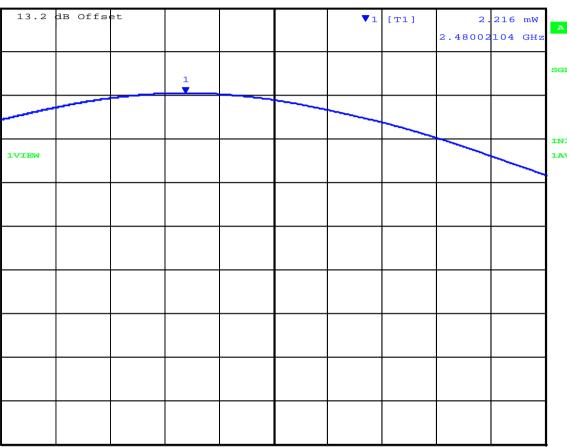
Center 2.480472946 GHz

300 kHz/

Span 3 MHz

Date: 19.DEC.2010 14:16:20




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 28 of 144

Antenna Power Channel 2,480 MHz Maximum Voltage +3.6 Vdc

Center 2.48050501 GHz

300 kHz/

Span 3 MHz

Date: 19.DEC.2010 14:19:09

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 29 of 144

Specification

Power Limit

The limit for Antenna Power is 10 mW/MHz

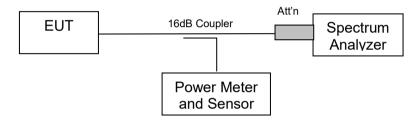
Laboratory Uncertainty for Power Measurement(s)

Measurement uncertainty	±1.33dB
-------------------------	---------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0223, 0116, 0158, 0193, 0312, 0313, 0314

To: Japanese ARIB STD-T66
Serial #: DIGI55-J2 Rev A
Issue Date: 29th March 2017


Page: 30 of 144

5.1.2. Frequency Error

Test Procedure

The Frequency Error was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The EUT could not be put into CW or single tone mode therefore Frequency Error was measured in modulated mode.

Test Measurement Set up

Measurement set up for Frequency Error

Radio Operational Condition

Output Mode: un-Modulated (CW)

Duty Cycle: 100%

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

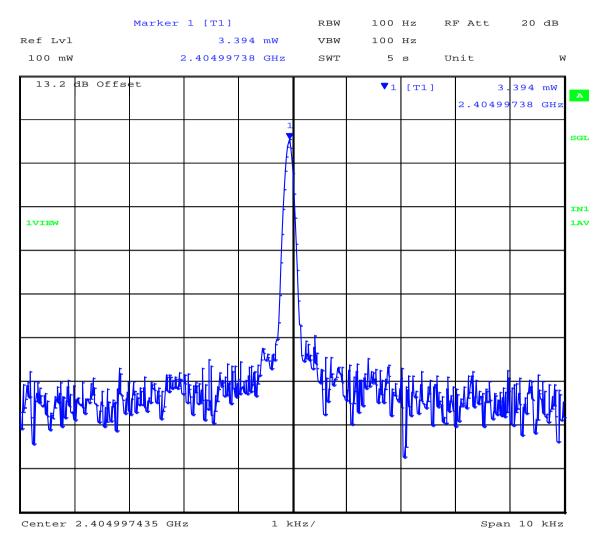
Page: 31 of 144

Measurement Results for Frequency Error

TABLE OF RESULTS

	FREQUENCY ERROR (ppm)			
Voltage	Channel 2,405 MHz			
	Measured Frequency Frequency Error			
	MHz	Δ KHz	ppm	
+3.3 Vdc	2404.99738	-2.620	-1.09	
+2.2 Vdc	2404.99852	-1.480	-0.62	
+3.6 Vdc	2404.99717	-2.830	-1.18	

Frequency Error: The frequency Error shall be ≤50 ppm



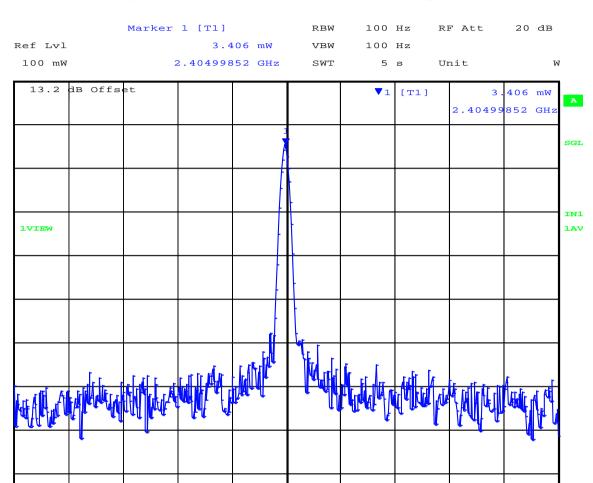
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 32 of 144

Frequency Error Channel 2,405 MHz Nominal Voltage +3.3 Vdc

Date: 19.DEC.2010 11:53:31


Span 10 kHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

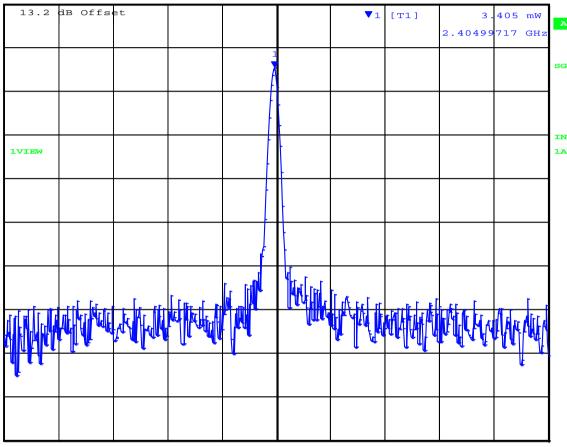
Page: 33 of 144

Frequency Error Channel 2,405 MHz Minimum Voltage +2.2 Vdc

Center 2.404998527 GHz

Date: 19.DEC.2010 11:58:27

1 kHz/


To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 34 of 144

Frequency Error Channel 2,405 MHz Maximum Voltage +3.6 Vdc

Center 2.404997204 GHz

1 kHz/

Span 10 kHz

Date:

19.DEC.2010 12:03:23

To: Japanese ARIB STD-T66

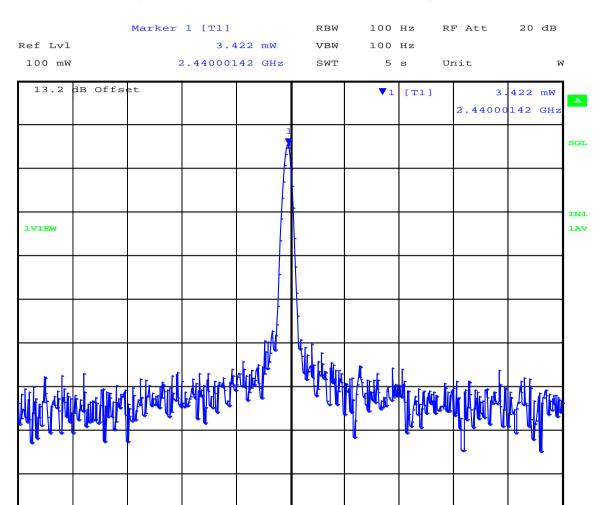
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 35 of 144

TABLE OF RESULTS

Voltage	FREQUENCY ERROR (ppm)			
	Measured Frequency	Channel 2,440 MHz Frequency Error		
	MHz	Δ KHz	ppm	
+3.3 Vdc	2440.00142	1.420	0.58	
+2.2 Vdc	2440.00245	2.450	1.02	
+3.6 Vdc	2440.00110	1.100	0.46	

Frequency Error: The frequency Error shall be ≤50 ppm


Span 10 kHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

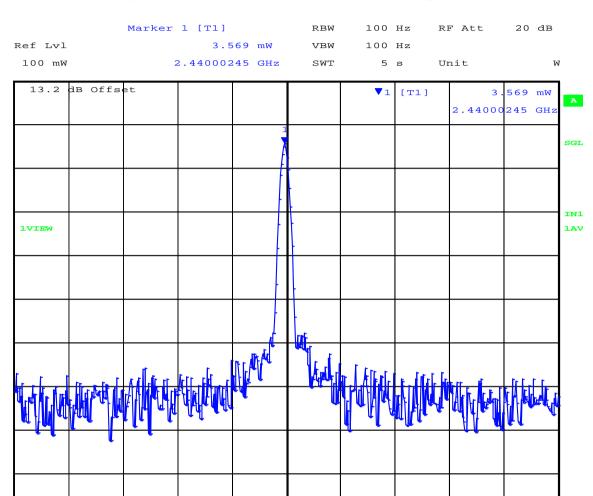
Page: 36 of 144

Frequency Error Channel 2,440 MHz Nominal Voltage +3.3 Vdc

Center 2.440001453 GHz

Date: 19.DEC.2010 12:59:52

1 kHz/


Span 10 kHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

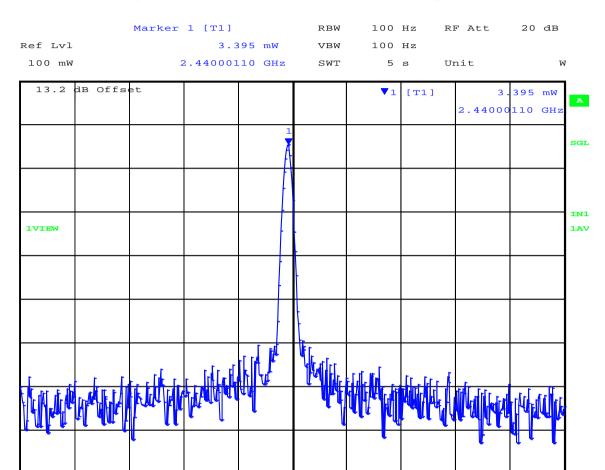
Page: 37 of 144

Frequency Error Channel 2,440 MHz Minimum Voltage +2.2 Vdc

Center 2.440002485 GHz

Date: 19.DEC.2010 13:04:48

1 kHz/


Span 10 kHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 38 of 144

Frequency Error Channel 2,440 MHz Maximum Voltage +3.6 Vdc

Date: 19.DEC.2010 13:09:44

Center 2.440001172 GHz

1 kHz/

To: Japanese ARIB STD-T66

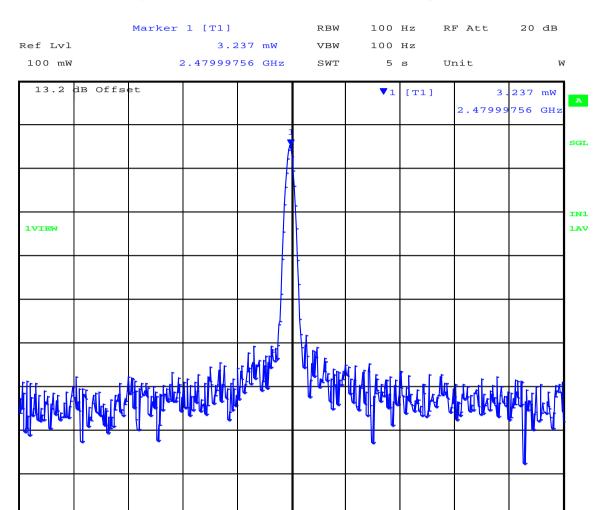
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 39 of 144

TABLE OF RESULTS

Voltage	FREQUENCY ERROR (ppm)			
Voltage	Channel 2,480 MHz			
	Measured Frequency Frequency Error			
	MHz	Δ KHz	ppm	
+3.3 Vdc	2479.99756	-2.440	-0.98	
+2.2 Vdc	2479.99862	-1.380	-0.57	
+3.6 Vdc	2479.99726	-2.740	-1.14	

Frequency Error: The frequency Error shall be ≤50 ppm


Span 10 kHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

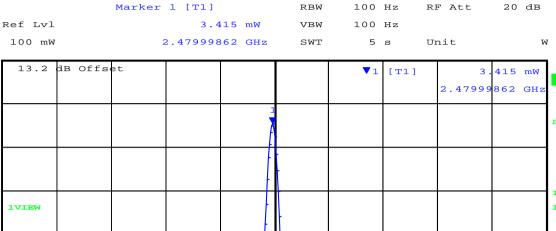
Page: 40 of 144

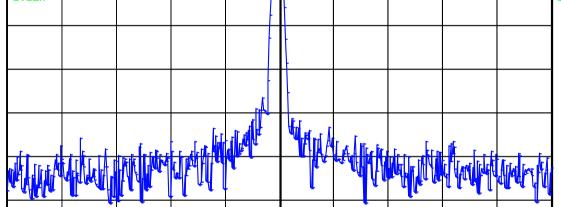
Frequency Error Channel 2,480 MHz Nominal Voltage +3.3 Vdc

Center 2.479997565 GHz

Date: 19.DEC.2010 13:55:10

1 kHz/




To: Japanese ARIB STD-T66

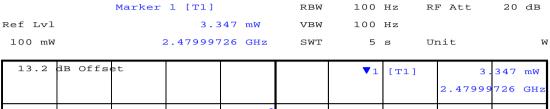
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

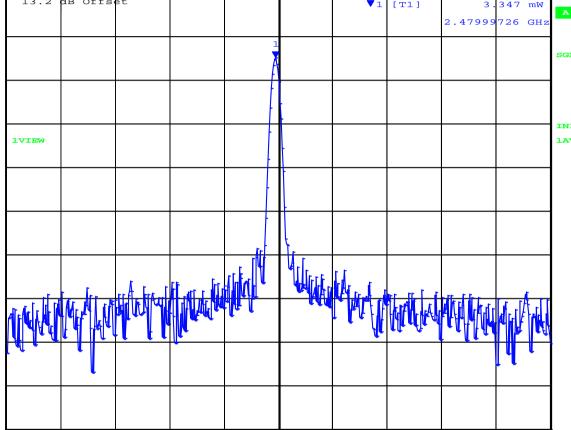
Page: 41 of 144

Frequency Error Channel 2,480 MHz Minimum Voltage +2.2 Vdc

Center 2.479998647 GHz 1 kHz/ Span 10 kHz

Date: 19.DEC.2010 14:00:07




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 42 of 144

Frequency Error Channel 2,480 MHz Maximum Voltage +3.6 Vdc

Center 2.479997315 GHz

1 kHz/

Span 10 kHz

Date: 19.

19.DEC.2010 14:05:02

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 43 of 144

Specification

Limits

Frequency Error: The frequency Error shall be ≤50 ppm

Laboratory Uncertainty for Frequency Measurements

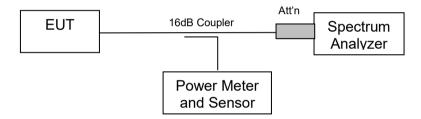
Measurement uncertainty (dB)	±0.86ppm
------------------------------	----------

Traceability

Method	Test Equipment Used	
Measurements were made per work instruction	0223, 0116, 0158, 0193, 0312, 0313,	
WI-02 'Frequency Measurement"	0314	

To: Japanese ARIB STD-T66
Serial #: DIGI55-J2 Rev A

Issue Date: 29th March 2017


Page: 44 of 144

5.1.3. Occupied and Spreading Bandwidths

Test Procedure

The Occupied and Spreading Bandwidth was measured with a spectrum analyzer connected to the antenna terminal which was terminated in an SMA connector. The EUT was operating in the operation mode specified in Section 3.6 'Test Conditions' at the appropriate center frequency. The voltage was varied at the input to the device on the separate channels and measurements were recorded.

Test Measurement Set up

Measurement set up for Occupied and Spreading Bandwidth test

Radio Operational Condition

Output Mode: Modulated Output Power: Maximum

Duty Cycle: 100 %

To: Japanese ARIB STD-T66
Serial #: DIGI55-J2 Rev A

Issue Date: 29th March 2017

Page: 45 of 144

Measurement Results for Occupied Bandwidth (99%) and Spreading Bandwidth (90%)

TABLE OF RESULTS - Channel 2,405 MHz

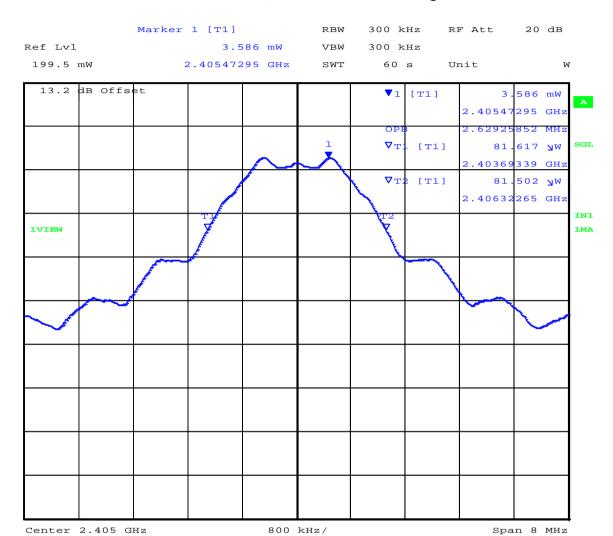
Voltage	Occupied Bandwidth - Channel 2,405 MHz				
	99% Bandwidth (MHz)	Spreading Bandwidth (90%) (MHz)	Spreading Factor		
+3.3 Vdc	2.629	1.635	26.371		
+2.2 Vdc	2.629	1.635	26.371		
+3.6 Vdc	2.645	1.635	26.371		

Spreading Factor = Spreading Bandwidth / 0.062

Occupied Bandwidth: The maximum 99% bandwidth is 26 MHz

Spreading Bandwidth: The minimum Spreading Bandwidth shall be 0.5 MHz

Spreading Factor: The minimum spreading factor shall be 5



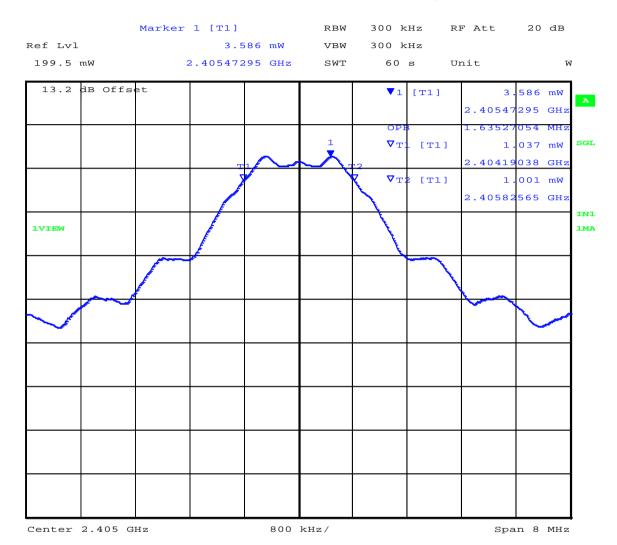
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 46 of 144

99% Bandwidth Channel 2,405 MHz Nominal Voltage +3.3 Vdc

Date: 19.DEC.2010 12:09:00



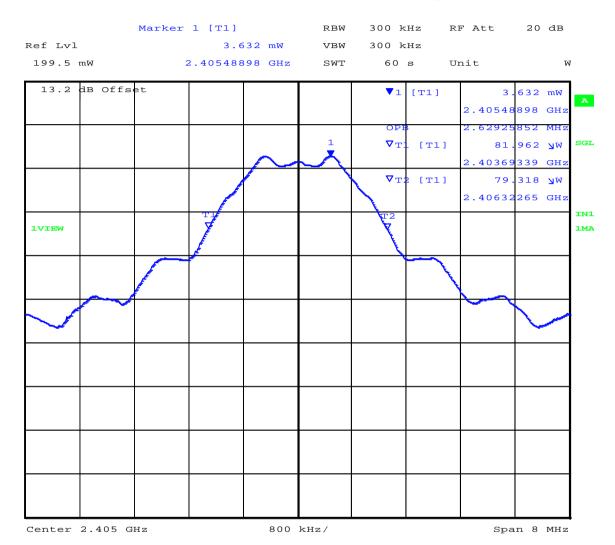
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 47 of 144

90% Bandwidth Channel 2,405 MHz Nominal Voltage +3.3 Vdc

Date: 19.DEC.2010 12:09:07



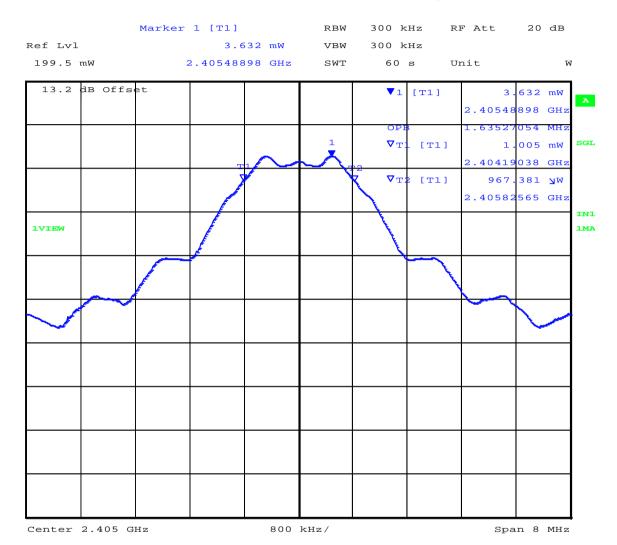
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 48 of 144

99% Bandwidth Channel 2,405 MHz Minimum Voltage +2.2 Vdc

Date: 19.DEC.2010 12:11:50



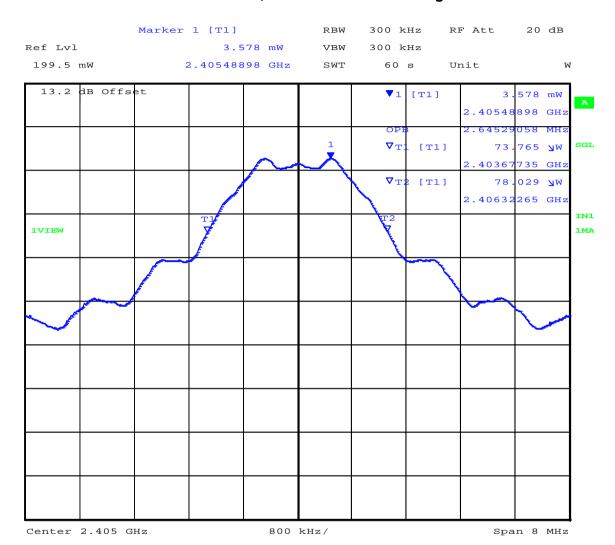
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 49 of 144

90% Bandwidth Channel 2,405 MHz Minimum Voltage +2.2 Vdc

Date: 19.DEC.2010 12:11:57



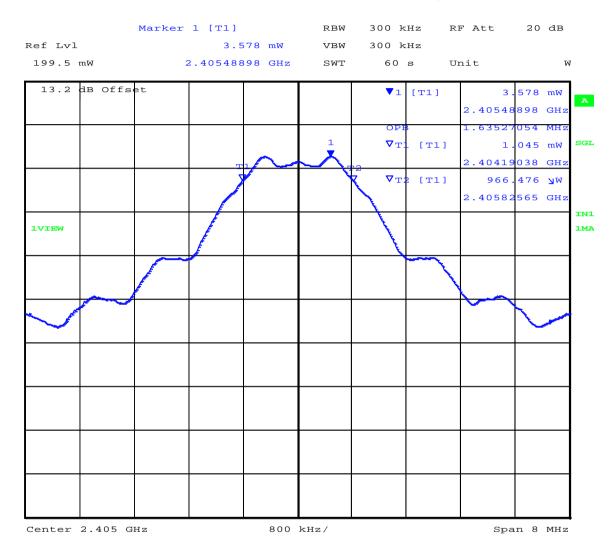
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 50 of 144

99% Bandwidth Channel 2,405 MHz Maximum Voltage +3.6 Vdc

Date: 19.DEC.2010 12:14:40



To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 51 of 144

90% Bandwidth Channel 2,405 MHz Maximum Voltage +3.6 Vdc

Date: 19.DEC.2010 12:14:47

To: Japanese ARIB STD-T66
Serial #: DIGI55-J2 Rev A

Issue Date: 29th March 2017

Page: 52 of 144

TABLE OF RESULTS - Channel 2,440 MHz

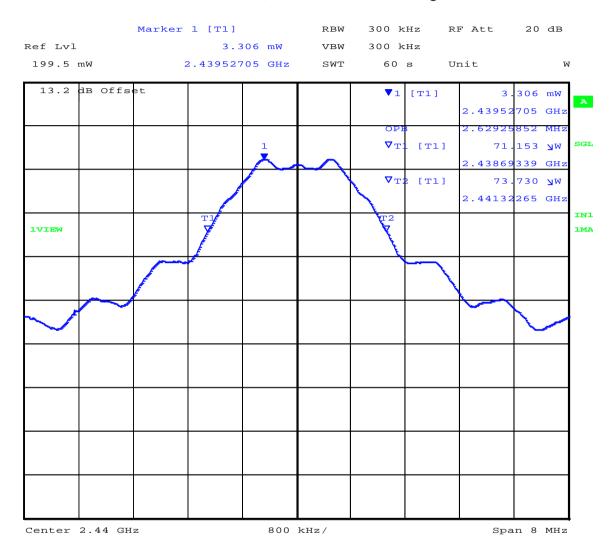
Voltage	Occupied Bandwidth - Channel 2,440 MHz				
	99% Bandwidth (MHz)	Spreading Bandwidth (90%) (MHz)	Spreading Factor		
+3.3 Vdc	2.629	1.635	26.371		
+2.2 Vdc	2.597	1.603	25.855		
+3.6 Vdc	2.597	1.619	26.113		

Spreading Factor = Spreading Bandwidth / 0.062

Occupied Bandwidth: The maximum 99% bandwidth is 26 MHz

Spreading Bandwidth: The minimum Spreading Bandwidth shall be 0.5 MHz

Spreading Factor: The minimum spreading factor shall be 5



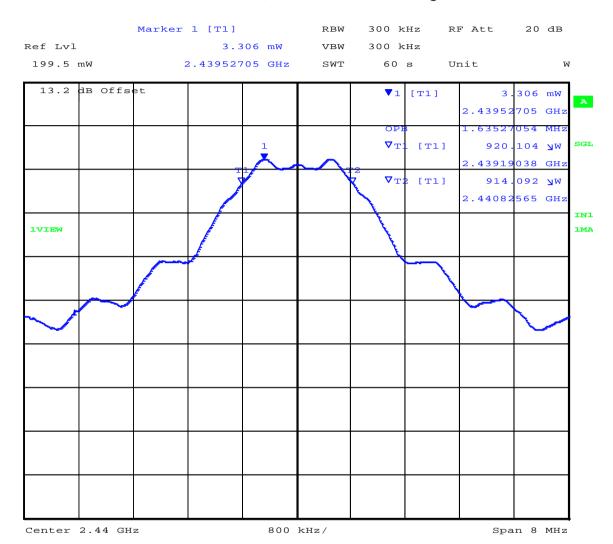
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 53 of 144

99% Bandwidth Channel 2,440 MHz Nominal Voltage +3.3 Vdc

Date: 20.DEC.2010 09:16:14



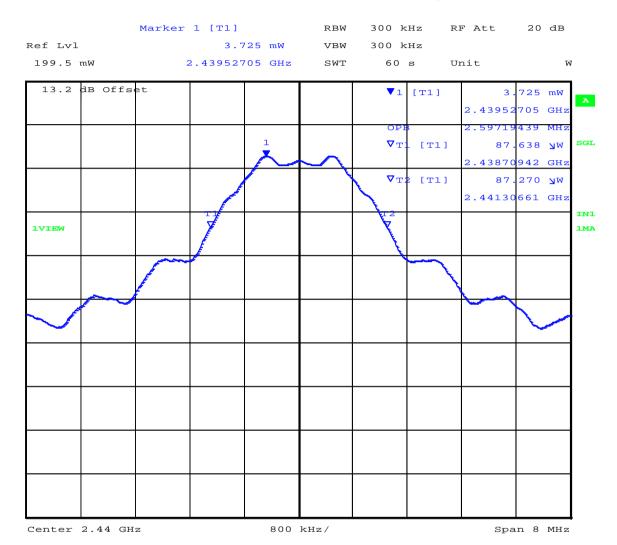
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 54 of 144

90% Bandwidth Channel 2,440 MHz Nominal Voltage +3.3 Vdc

Date: 20.DEC.2010 09:16:21



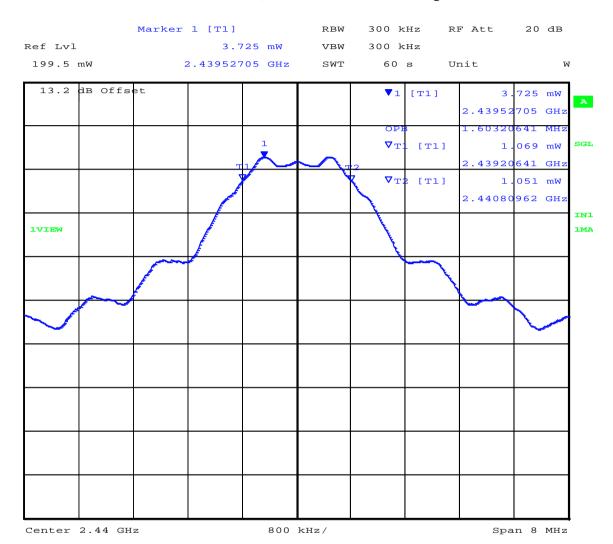
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 55 of 144

99% Bandwidth Channel 2,440 MHz Minimum Voltage +2.2 Vdc

Date: 19.DEC.2010 13:12:15



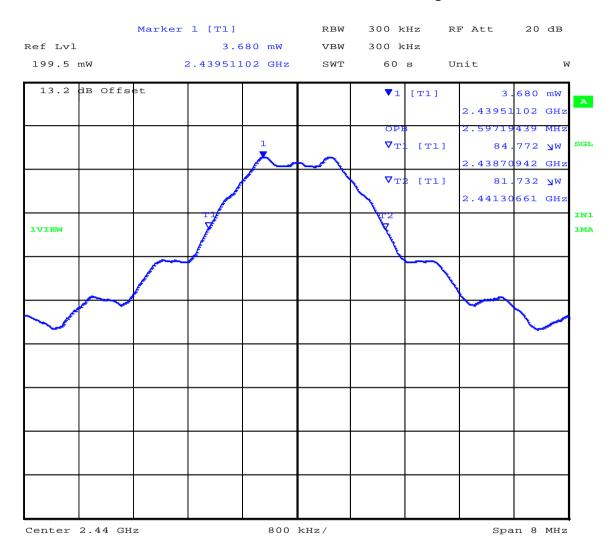
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 56 of 144

90% Bandwidth Channel 2,440 MHz Minimum Voltage +2.2 Vdc

Date: 19.DEC.2010 13:12:22



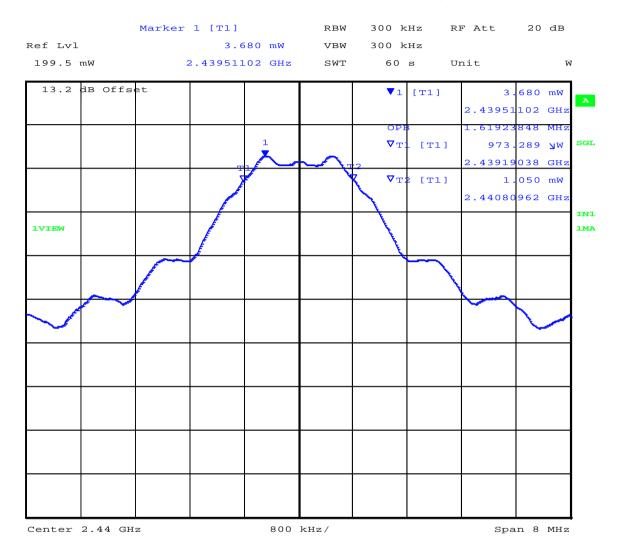
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 57 of 144

99% Bandwidth Channel 2,440 MHz Maximum Voltage +3.6 Vdc

Date: 19.DEC.2010 13:15:04



To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 58 of 144

90% Bandwidth Channel 2,440 MHz Maximum Voltage +3.6 Vdc

Date: 19.DEC.2010 13:15:11

Title: 2.4 GHz XBee S2C RF Module **To:** Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 59 of 144

TABLE OF RESULTS - Channel 2,480 MHz

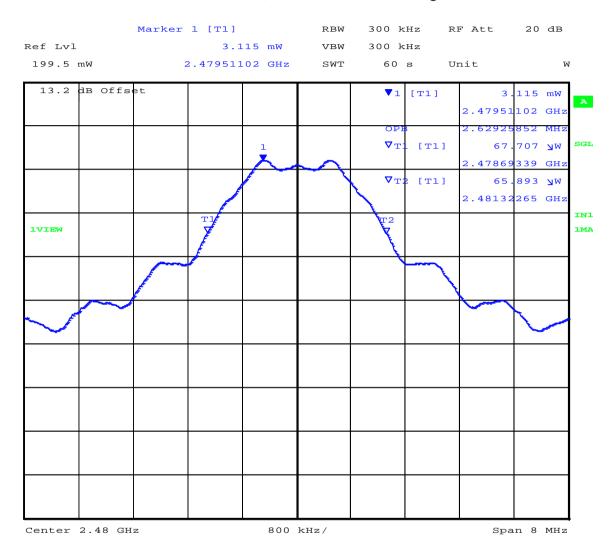
Voltage	Occupied Bandwidth - Channel 2,480 MHz				
	99% Bandwidth (MHz)	Spreading Bandwidth (90%) (MHz)	Spreading Factor		
+3.3 Vdc	2.629	1.635	26.371		
+2.2 Vdc	2.597	1.619	26.113		
+3.6 Vdc	2.613	1.619	26.113		

Spreading Factor = Spreading Bandwidth / 0.062

Occupied Bandwidth: The maximum 99% bandwidth is 26 MHz

Spreading Bandwidth: The minimum Spreading Bandwidth shall be 0.5 MHz

Spreading Factor: The minimum spreading factor shall be 5



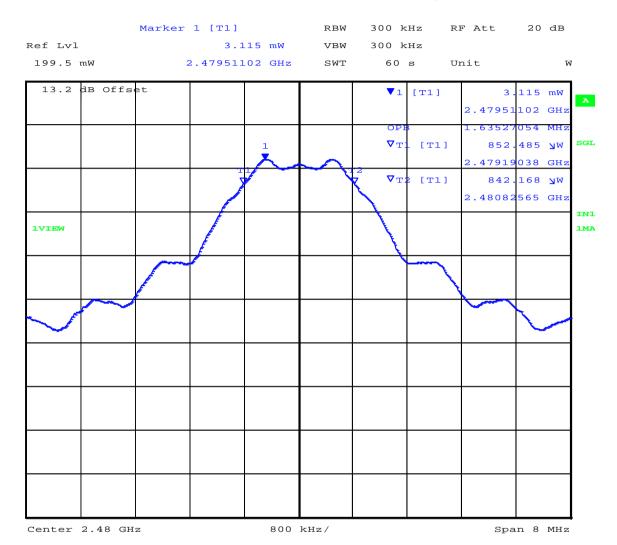
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 60 of 144

99% Bandwidth Channel 2,480 MHz Nominal Voltage +3.3 Vdc

Date: 20.DEC.2010 09:21:59



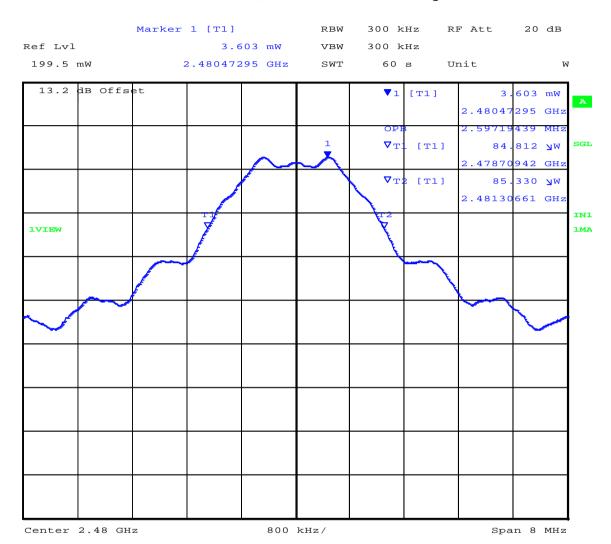
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 61 of 144

90% Bandwidth Channel 2,480 MHz Nominal Voltage +3.3 Vdc

Date: 20.DEC.2010 09:22:05



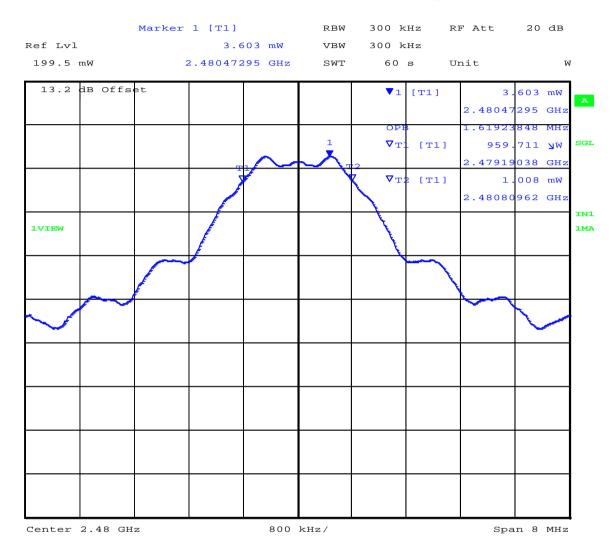
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 62 of 144

99% Bandwidth Channel 2,480 MHz Minimum Voltage +2.2 Vdc

Date: 19.DEC.2010 14:07:39



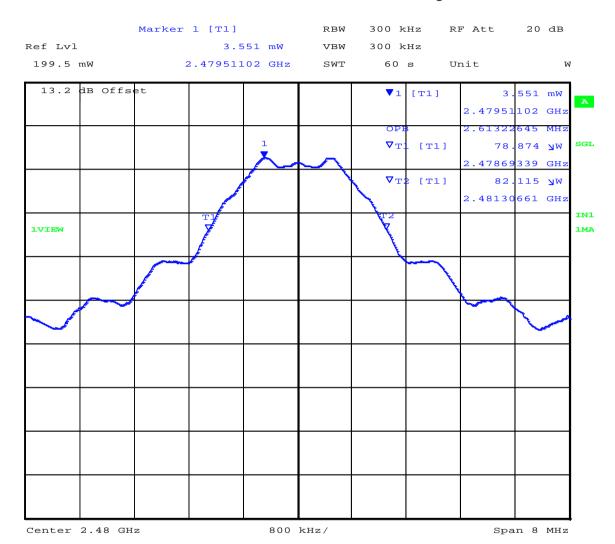
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 63 of 144

90% Bandwidth Channel 2,480 MHz Minimum Voltage +2.2 Vdc

Date: 19.DEC.2010 14:07:46



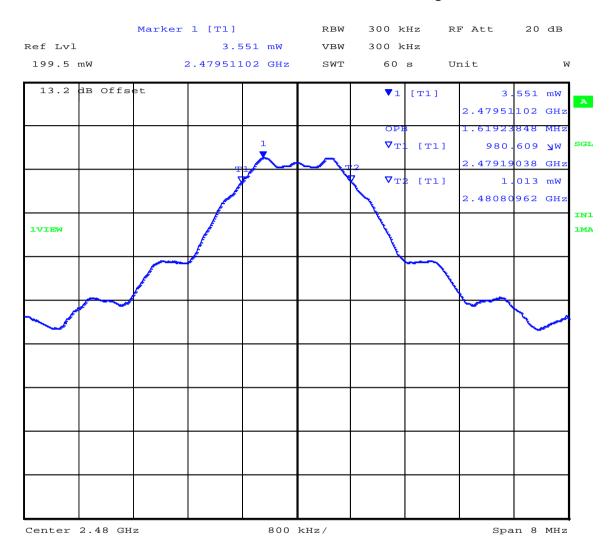
To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 64 of 144

99% Bandwidth Channel 2,480 MHz Maximum Voltage +3.6 Vdc

Date: 19.DEC.2010 14:10:29



To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 65 of 144

90% Bandwidth Channel 2,480 MHz Maximum Voltage +3.6 Vdc

Date: 19.DEC.2010 14:10:36

Title: 2.4 GHz XBee S2C RF Module **To:** Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 66 of 144

Specification

Limits

Occupied Bandwidth: The maximum 99% bandwidth is 26 MHz

Spreading Bandwidth: The minimum Spreading Bandwidth shall be 0.5 MHz

Spreading Factor: The minimum Spreading Factor shall be 5

Laboratory Measurement Uncertainty for Spectrum Measurement

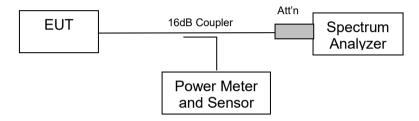
Measurement uncertainty ±2.81 dB

Traceability

Method	Test Equipment Used	
Measurements were made per work	0223, 0116, 0158, 0193, 0312, 0313, 0314	
instruction WI-03 'Measurement of RF		
Spectrum Mask'		

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017


Page: 67 of 144

5.1.4. <u>Transmitter Spurious Emissions</u>

Test Procedure

Transmitter Spurious Emissions were measured conductively per the test set up below. The EUT was set on the channel of interest and the spectrum was investigated fro 10 - 16,000 MHz.

Test Measurement Set up

Measurement set up for Transmitter Spurious Emissions

Radio Operational Condition

Output Mode: Modulated Output Power: Maximum

Duty Cycle: 100 %

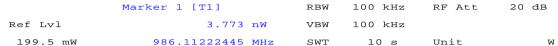
Title: 2.4 GHz XBee S2C RF Module **To:** Japanese ARIB STD-T66

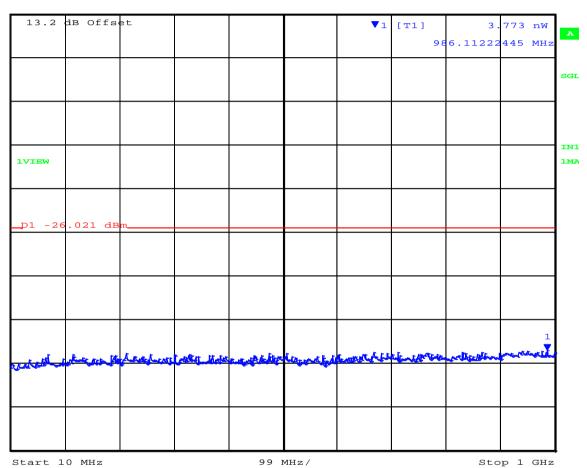
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 68 of 144

TABLE OF RESULTS - Channel 2,405 MHz

Voltage	Start Frequency (MHz)	Stop Frequency (MHz)	Highest Emission (µW/MHz)	Limit (μW/MHz)	Margin (dB)
	10.00	1,000.00	0.0038	2.5	-28.21
	1,000.00	2,387.00	0.0359	2.5	-18.43
+3.3 Vdc	2,387.00	2,400.00	0.6040	25	-16.17
	2,483.50	2,496.50	0.0357	25	-28.45
	2,496.50	16,000.00	0.8993	2.5	-4.44
	10.00	1,000.00	0.0043	2.5	-27.65
+2.2 Vdc	1,000.00	2,387.00	0.0315	2.5	-18.99
	2,387.00	2,400.00	0.6154	25	-16.09
	2,483.50	2,496.50	0.0347	25	-28.58
	2,496.50	16,000.00	0.0901	2.5	-14.43
+3.6 Vdc	10.00	1,000.00	0.0042	2.5	-27.78
	1,000.00	2,387.00	0.0359	2.5	-18.43
	2,387.00	2,400.00	0.6040	25	-16.17
	2,483.50	2,496.50	0.0305	25	-29.14
	2,496.50	16,000.00	0.0900	2.5	-14.44



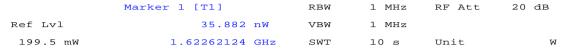

To: Japanese ARIB STD-T66

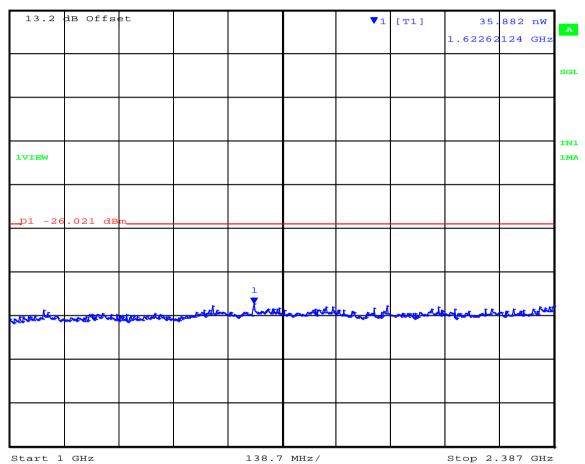
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 69 of 144

Channel 2,405 MHz Transmitter Spurious Emissions 10.00 – 1000.00 MHz +3.3 Vdc

Date: 19.DEC.2010 12:25:02



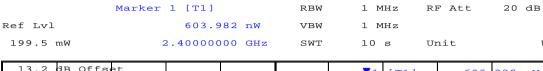

To: Japanese ARIB STD-T66

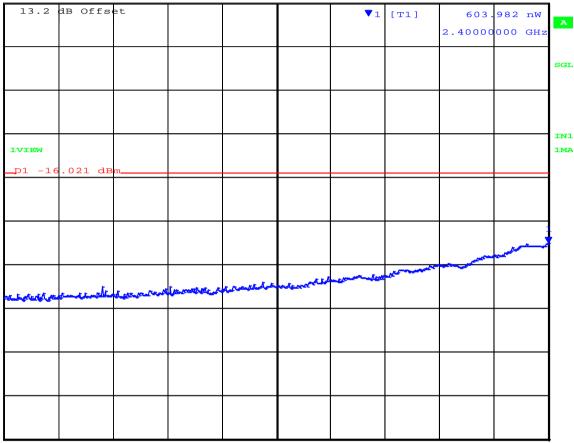
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 70 of 144

Channel 2,405 MHz Transmitter Spurious Emissions 1000.00 – 2387.00 MHz +3.3 Vdc

Date: 19.DEC.2010 12:36:42




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 71 of 144

Channel 2,405 MHz Transmitter Spurious Emissions 2387.00 – 2,400.00 MHz +3.3 Vdc

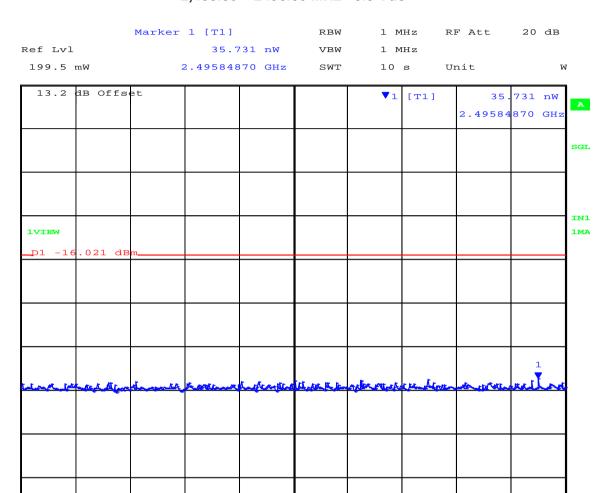
Start 2.387 GHz

1.3 MHz/

Stop 2.4 GHz

Date:

19.DEC.2010 12:26:53


Stop 2.4965 GHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

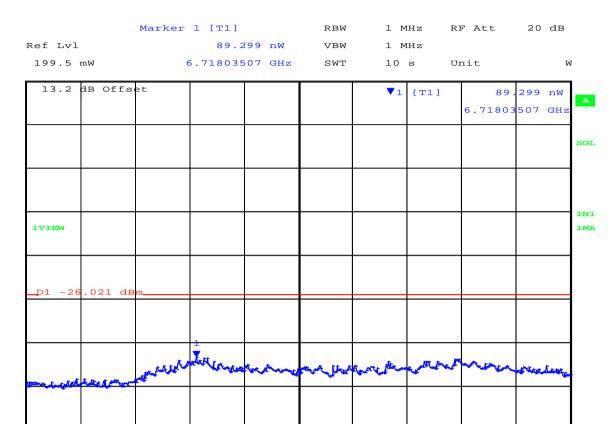
Page: 72 of 144

Channel 2,405 MHz Transmitter Spurious Emissions 2,483.50 – 2496.50 MHz +3.3 Vdc

Date: 19.DEC.2010 12:27:46

Start 2.4835 GHz

1.3 MHz/



To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 73 of 144

Channel 2,405 MHz Transmitter Spurious Emissions 2496.50 – 16,000.00 MHz +3.3 Vdc

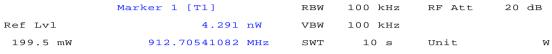
Start 2.4965 GHz

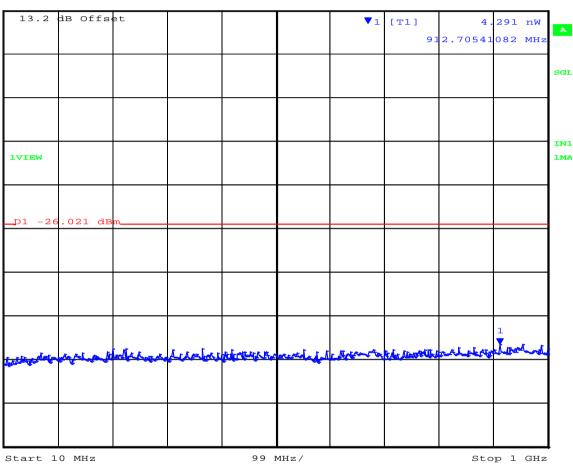
1.35035 GHz/

Stop 16 GHz

Date:

19.DEC.2010 12:28:39



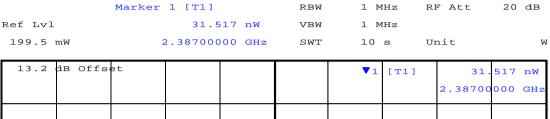

To: Japanese ARIB STD-T66

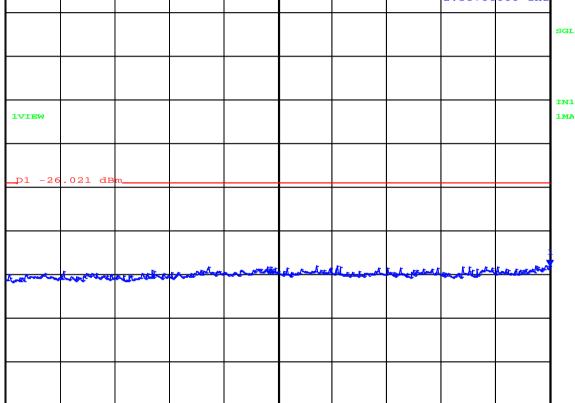
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 74 of 144

Channel 2,405 MHz Transmitter Spurious Emissions 10.00 – 1000.00 MHz +2.2 Vdc

Date: 19.DEC.2010 12:30:24




To: Japanese ARIB STD-T66

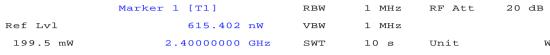
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

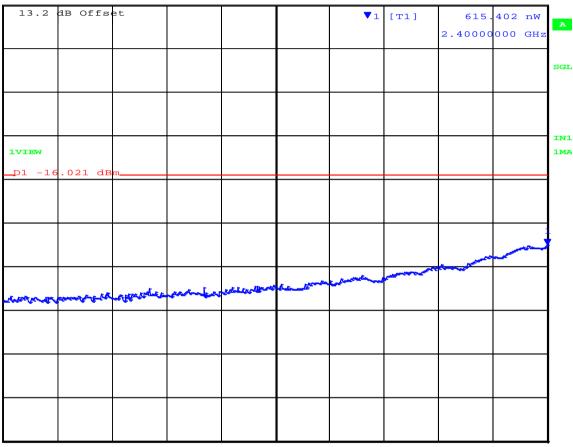
Page: 75 of 144

Channel 2,405 MHz Transmitter Spurious Emissions 1000.00 – 2387.00 MHz +2.2 Vdc

Start 1 GHz 138.7 MHz/ Stop 2.387 GHz

Date: 19.DEC.2010 12:31:23




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 76 of 144

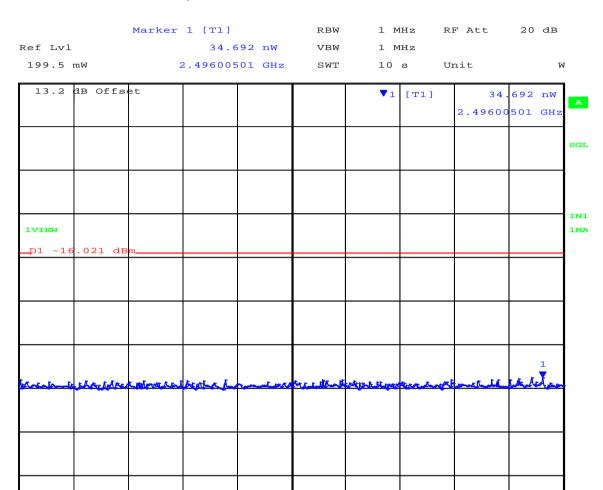
Channel 2,405 MHz Transmitter Spurious Emissions 2387.00 – 2,400.00 MHz +2.2 Vdc

Start 2.387 GHz

1.3 MHz/

Stop 2.4 GHz

Date: 19.DEC.2010 12:32:15



To: Japanese ARIB STD-T66

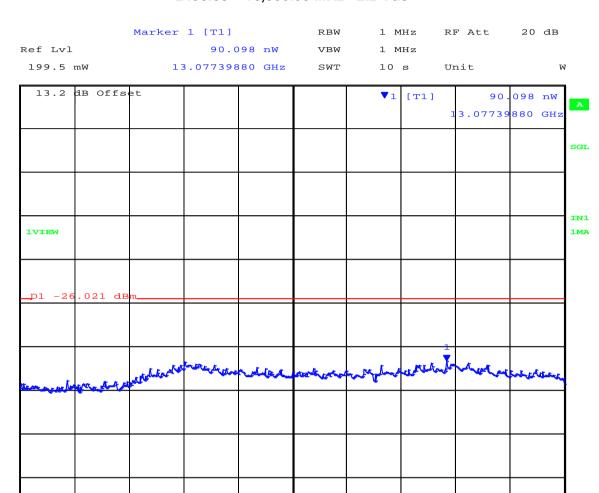
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 77 of 144

Channel 2,405 MHz Transmitter Spurious Emissions 2,483.50 – 2496.50 MHz +2.2 Vdc

Start 2.4835 GHz 1.3 MHz/ Stop 2.4965 GHz

19.DEC.2010 12:33:08


Stop 16 GHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

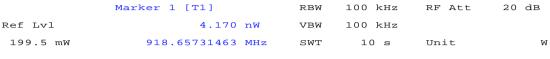
Page: 78 of 144

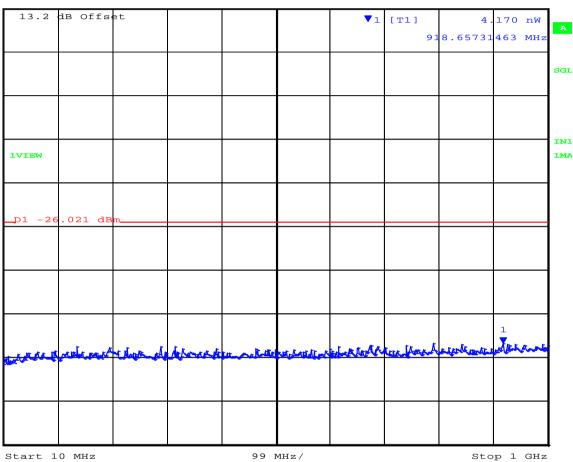
Channel 2,405 MHz Transmitter Spurious Emissions 2496.50 – 16,000.00 MHz +2.2 Vdc

Date: 19.DEC.2010 12:34:01

Start 2.4965 GHz

1.35035 GHz/



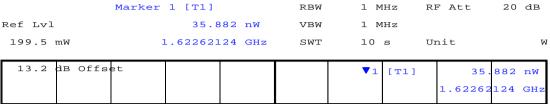

To: Japanese ARIB STD-T66

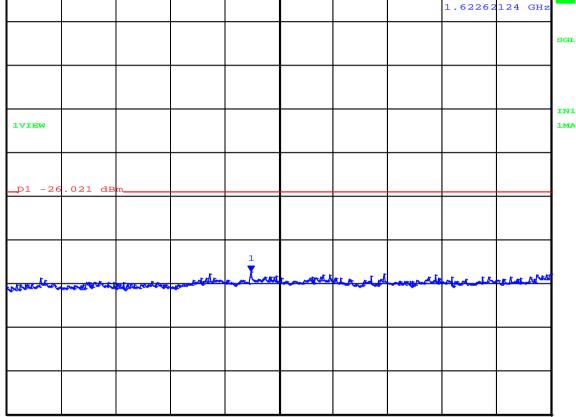
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 79 of 144

Channel 2,405 MHz Transmitter Spurious Emissions 10.00 – 1000.00 MHz +3.6 Vdc

Date: 19.DEC.2010 12:35:43




To: Japanese ARIB STD-T66

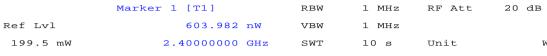
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

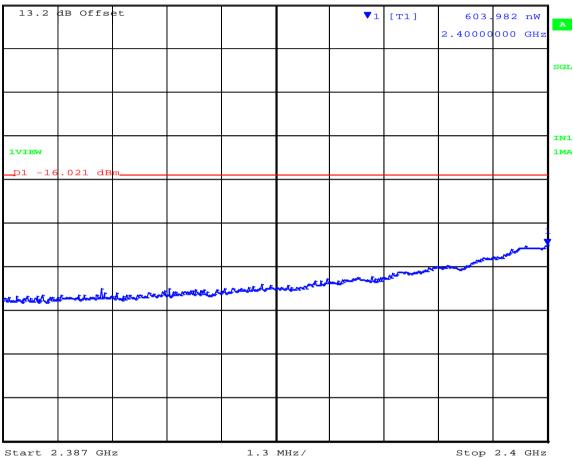
Page: 80 of 144

Channel 2,405 MHz Transmitter Spurious Emissions 1000.00 – 2387.00 MHz +3.6 Vdc

Start 1 GHz 138.7 MHz/ Stop 2.387 GHz

Date: 19.DEC.2010 12:36:42



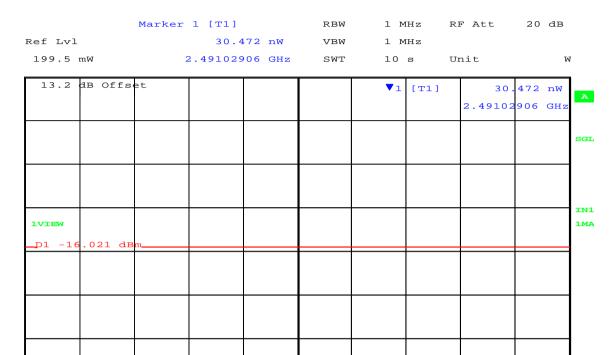

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 81 of 144

Channel 2,405 MHz Transmitter Spurious Emissions 2387.00 – 2,400.00 MHz +3.6 Vdc

19.DEC.2010 12:26:53


Stop 2.4965 GHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 82 of 144

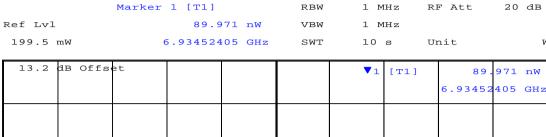
Channel 2,405 MHz Transmitter Spurious Emissions 2,483.50 – 2496.50 MHz +3.6 Vdc

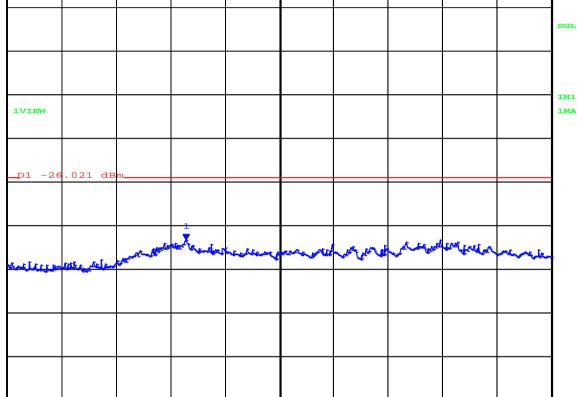
postara de la compatica de la constitución de la co

1.3 MHz/

Start 2.4835 GHz

19.DEC.2010 12:38:27




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 83 of 144

Channel 2,405 MHz Transmitter Spurious Emissions 2496.50 – 16,000.00 MHz +3.6 Vdc

Start 2.4965 GHz

1.35035 GHz/

Stop 16 GHz

Date:

19.DEC.2010 12:39:20

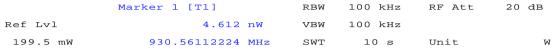
Title: 2.4 GHz XBee S2C RF Module **To:** Japanese ARIB STD-T66

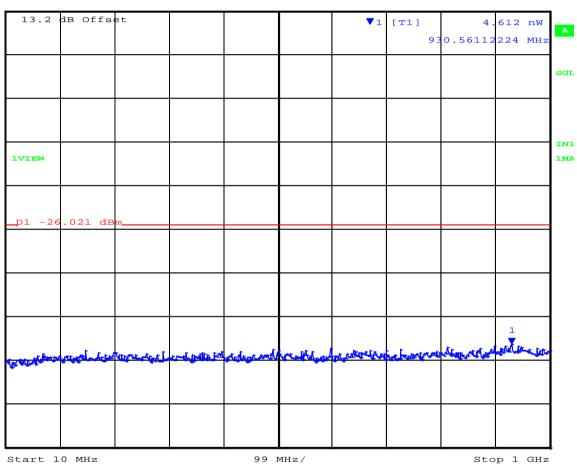
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 84 of 144

TABLE OF RESULTS - Channel 2,440 MHz

Voltage	Start Frequency (MHz)	Stop Frequency (MHz)	Highest Emission (µW/MHz)	Limit (μW/MHz)	Margin (dB)
+3.3 Vdc	10.00	1,000.00	0.0046	2.5	-27.34
	1,000.00	2,387.00	0.0353	2.5	-18.50
	2,387.00	2,400.00	0.0380	25	-28.18
	2,483.50	2,496.50	0.0324	25	-28.88
	2,496.50	16,000.00	0.0924	2.5	-14.32
+2.2 Vdc	10.00	1,000.00	0.0048	2.5	-27.21
	1,000.00	2,387.00	0.0340	2.5	-18.66
	2,387.00	2,400.00	0.0429	25	-27.66
	2,483.50	2,496.50	0.0363	25	-28.38
	2,496.50	16,000.00	0.0858	2.5	-14.65
+3.6 Vdc	10.00	1,000.00	0.0046	2.5	-27.35
	1,000.00	2,387.00	0.0387	2.5	-18.11
	2,387.00	2,400.00	0.0403	25	-27.92
	2,483.50	2,496.50	0.0401	25	-27.95
	2,496.50	16,000.00	0.0958	2.5	-14.17



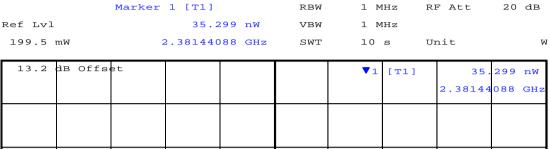

To: Japanese ARIB STD-T66

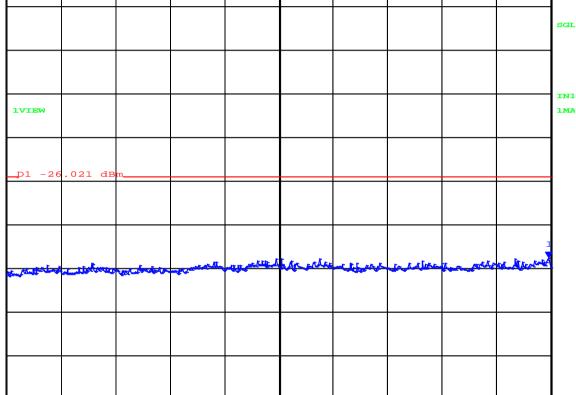
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 85 of 144

Channel 2,440 MHz Transmitter Spurious Emissions 10.00 – 1000.00 MHz +3.3 Vdc

Date: 19.DEC.2010 13:25:26


A


To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 86 of 144

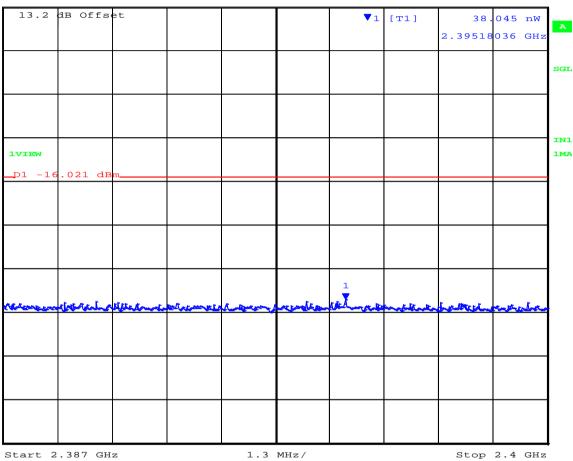
Channel 2,440 MHz Transmitter Spurious Emissions 1000.00 – 2387.00 MHz +3.3 Vdc

Start 1 GHz 138.7 MHz/ Stop 2.387 GHz

19.DEC.2010 13:26:25

Date:

Stop 2.4 GHz


To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

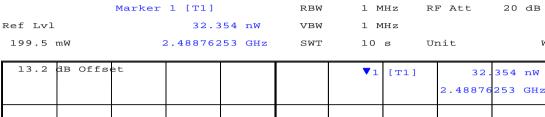
Page: 87 of 144

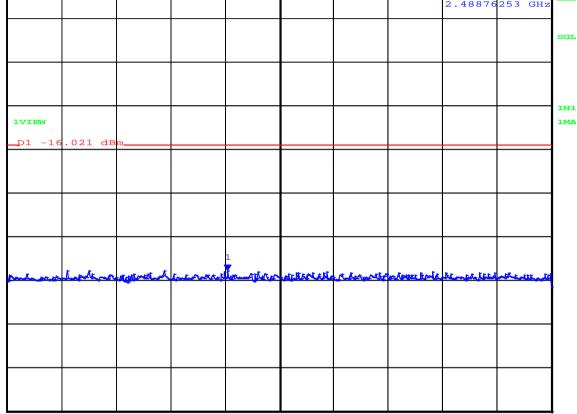
Channel 2,440 MHz Transmitter Spurious Emissions 2387.00 - 2,400.00 MHz +3.3 Vdc

RF Att 20 dB Marker 1 [T1] RBW 1 MHz Ref Lvl VBW 38.045 nW 1 MHz 199.5 mW 2.39518036 GHz SWT 10 s Unit

Start 2.387 GHz

19.DEC.2010 13:27:18




To: Japanese ARIB STD-T66

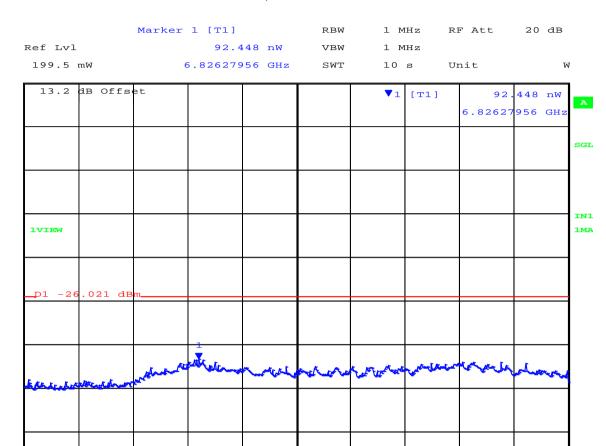
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 88 of 144

Channel 2,440 MHz Transmitter Spurious Emissions 2,483.50 – 2496.50 MHz +3.3 Vdc

Start 2.4835 GHz 1.3 MHz/ Stop 2.4965 GHz

Date: 19.DEC.2010 13:28:11



To: Japanese ARIB STD-T66

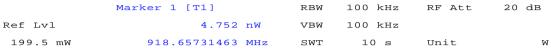
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

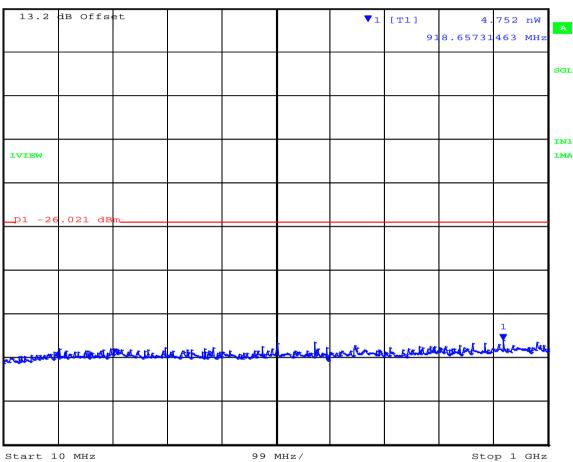
Page: 89 of 144

Channel 2,440 MHz Transmitter Spurious Emissions 2496.50 – 16,000.00 MHz +3.3 Vdc

Start 2.4965 GHz 1.35035 GHz/ Stop 16 GHz

Date: 19.DEC.2010 13:29:04



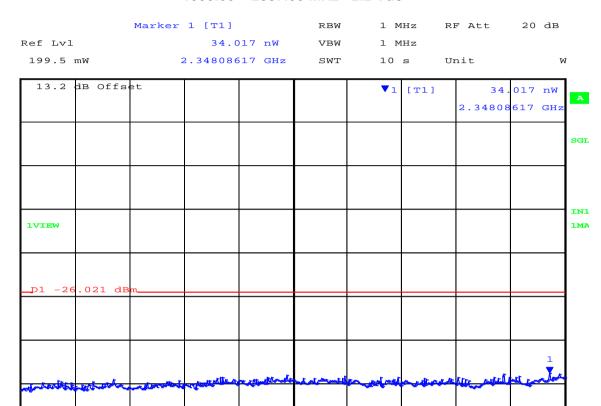

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 90 of 144

Channel 2,440 MHz Transmitter Spurious Emissions 10.00 – 1000.00 MHz +2.2 Vdc

Date: 19.DEC.2010 13:30:48



To: Japanese ARIB STD-T66

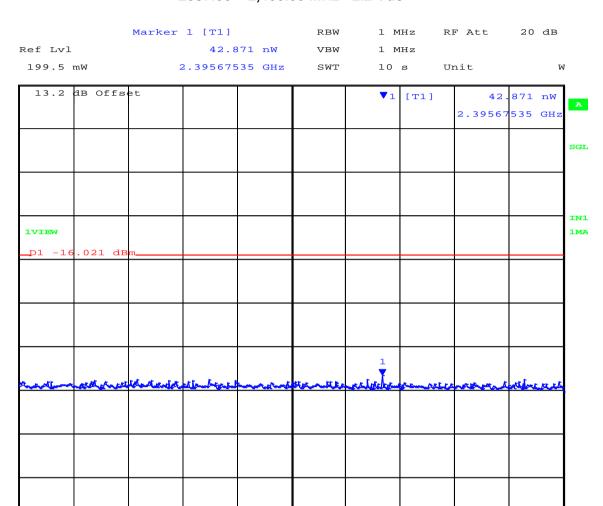
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 91 of 144

Channel 2,440 MHz Transmitter Spurious Emissions 1000.00 – 2387.00 MHz +2.2 Vdc

Start 1 GHz 138.7 MHz/ Stop 2.387 GHz

Date: 19.DEC.2010 13:31:47


Stop 2.4 GHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

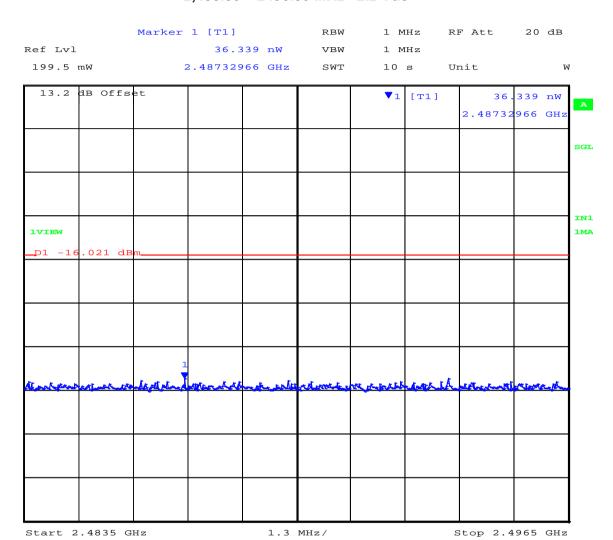
Page: 92 of 144

Channel 2,440 MHz Transmitter Spurious Emissions 2387.00 – 2,400.00 MHz +2.2 Vdc

Date: 19.DEC.2010 13:32:40

Start 2.387 GHz

1.3 MHz/



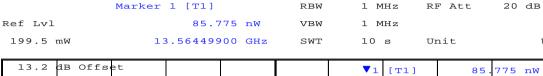
To: Japanese ARIB STD-T66

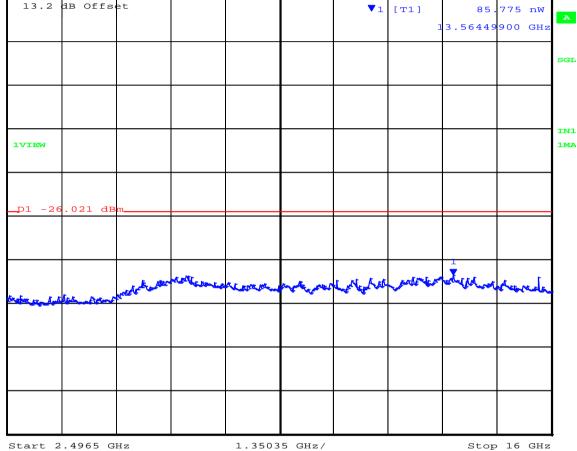
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 93 of 144

Channel 2,440 MHz Transmitter Spurious Emissions 2,483.50 – 2496.50 MHz +2.2 Vdc

Date: 19.DEC.2010 13:33:32




To: Japanese ARIB STD-T66

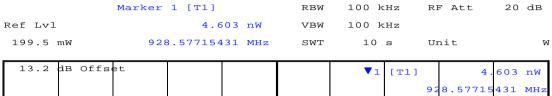
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

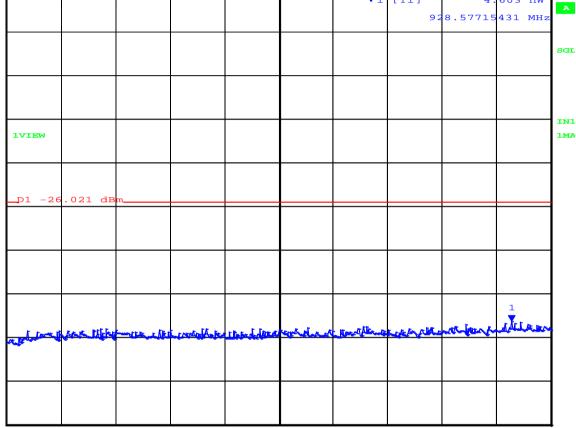
Page: 94 of 144

Channel 2,440 MHz Transmitter Spurious Emissions 2496.50 - 16,000.00 MHz +2.2 Vdc

Start 2.4965 GHz

19.DEC.2010 13:34:25


Stop 1 GHz


To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

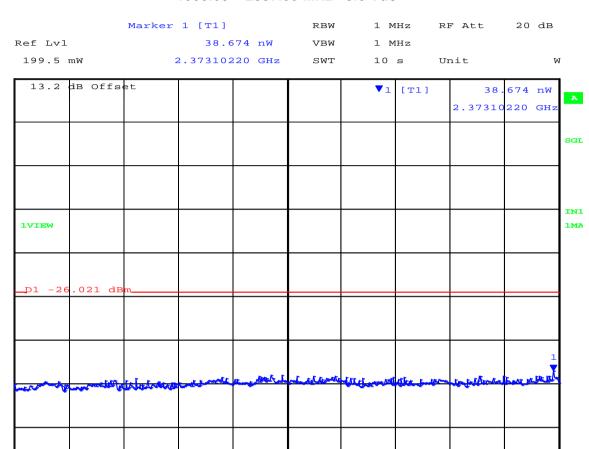
Page: 95 of 144

Channel 2,440 MHz Transmitter Spurious Emissions 10.00 – 1000.00 MHz +3.6 Vdc

99 MHz/

Date: 19.DEC.2010 13:36:07

Start 10 MHz


Stop 2.387 GHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

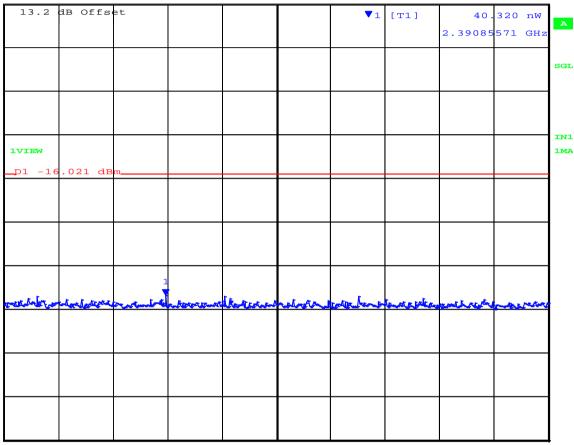
Page: 96 of 144

Channel 2,440 MHz Transmitter Spurious Emissions 1000.00 – 2387.00 MHz +3.6 Vdc

Date: 19.DEC.2010 13:37:06

Start 1 GHz

138.7 MHz/


To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 97 of 144

Channel 2,440 MHz Transmitter Spurious Emissions 2387.00 – 2,400.00 MHz +3.6 Vdc

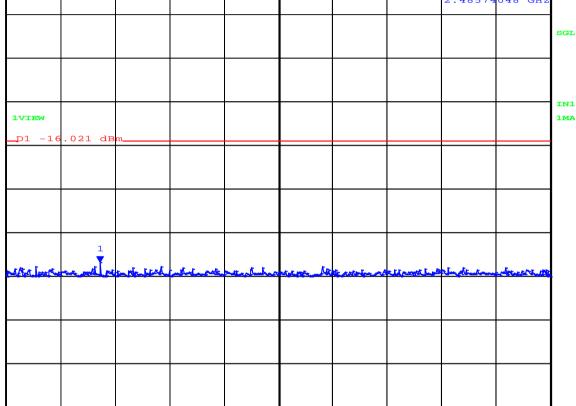
Start 2.387 GHz

1.3 MHz/

Stop 2.4 GHz

Date:

19.DEC.2010 13:37:59


To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

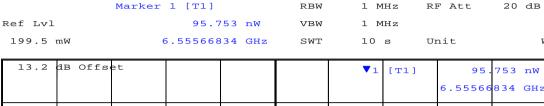
Page: 98 of 144

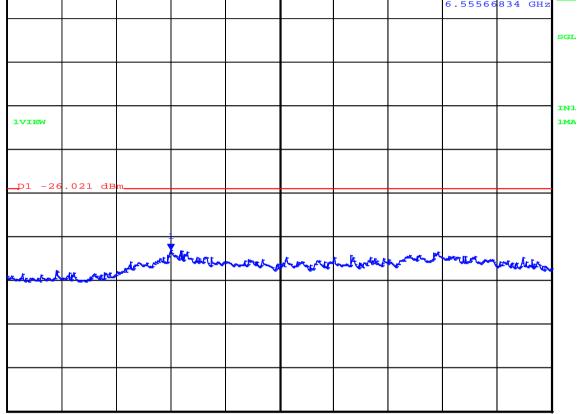
Channel 2,440 MHz Transmitter Spurious Emissions 2,483.50 – 2496.50 MHz +3.6 Vdc

RF Att 20 dB Marker 1 [T1] RBW 1 MHz Ref Lvl 40.113 nW VBW 1 MHz 199.5 mW 2.48574048 GHz SWT 10 s Unit 13.2 dB Offset **▼**1 [T1] 40.113 nW 2.48574048 GHz

Start 2.4835 GHz 1.3 MHz/ Stop 2.4965 GHz

Date: 19.DEC.2010 13:38:52


Stop 16 GHz


To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 99 of 144

Channel 2,440 MHz Transmitter Spurious Emissions 2496.50 – 16,000.00 MHz +3.6 Vdc

Start 2.4965 GHz 1.35035 GHz/ e: 19.DEC.2010 13:39:45

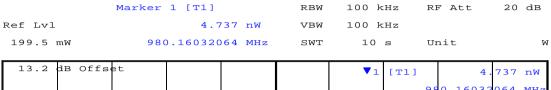
To: Japanese ARIB STD-T66

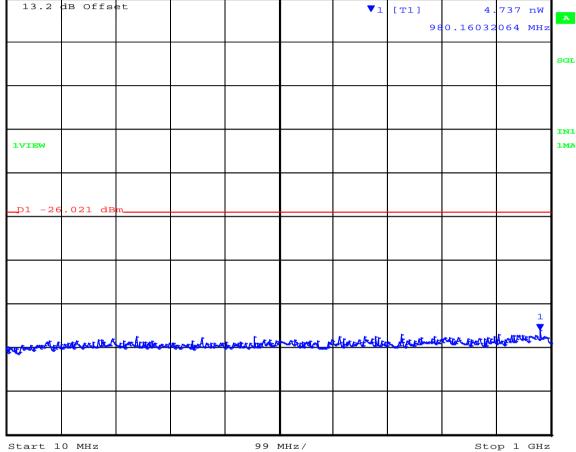
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 100 of 144

TABLE OF RESULTS - Channel 2,480 MHz

Voltage	Start Frequency (MHz)	Stop Frequency (MHz)	Highest Emission (µW/MHz)	Limit (µW/MHz)	Margin (dB)
+3.3 Vdc	10.00	1,000.00	0.0047	2.5	-27.22
	1,000.00	2,387.00	0.0374	2.5	-18.25
	2,387.00	2,400.00	0.0356	25	-28.47
	2,483.50	2,496.50	3.1120	25	-9.05
	2,496.50	16,000.00	0.0911	2.5	-14.39
+2.2 Vdc	10.00	1,000.00	0.0043	2.5	-27.61
	1,000.00	2,387.00	0.0352	2.5	-18.52
	2,387.00	2,400.00	0.0369	25	-28.31
	2,483.50	2,496.50	3.0760	25	-9.10
	2,496.50	16,000.00	0.0866	2.5	-14.60
+3.6 Vdc	10.00	1,000.00	0.0048	2.5	-27.20
	1,000.00	2,387.00	0.0353	2.5	-18.50
	2,387.00	2,400.00	0.0407	25	-27.89
	2,483.50	2,496.50	3.0730	25	-9.10
	2,496.50	16,000.00	0.1245	2.5	-13.03



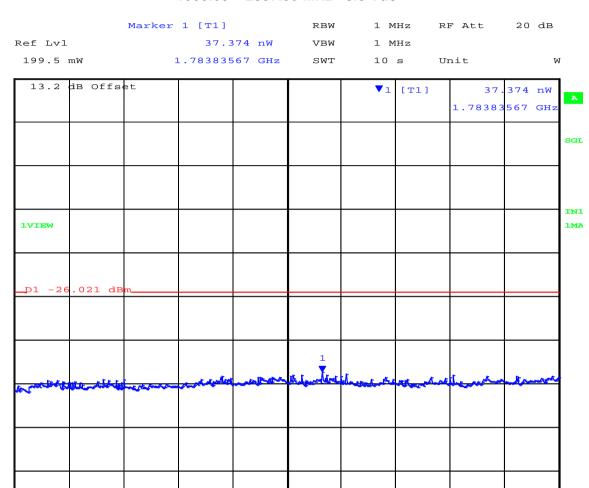

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 101 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 10.00 – 1000.00 MHz +3.3 Vdc

Date: 19.DEC.2010 14:20:51


Stop 2.387 GHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

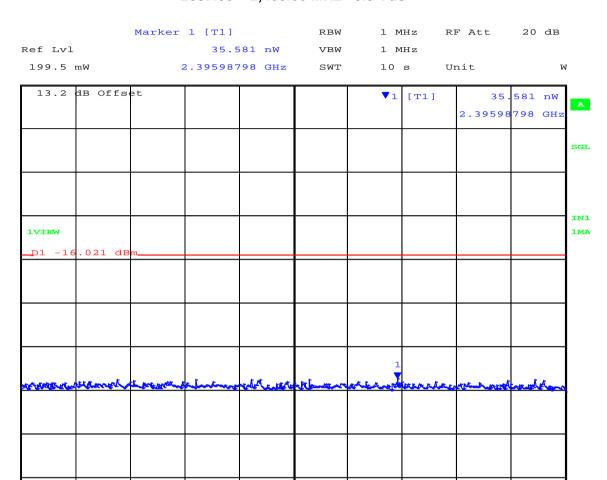
Page: 102 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 1000.00 – 2387.00 MHz +3.3 Vdc

Date: 19.DEC.2010 14:21:49

Start 1 GHz

138.7 MHz/



To: Japanese ARIB STD-T66

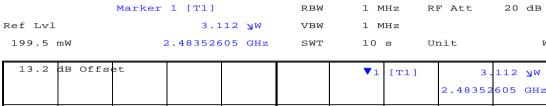
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

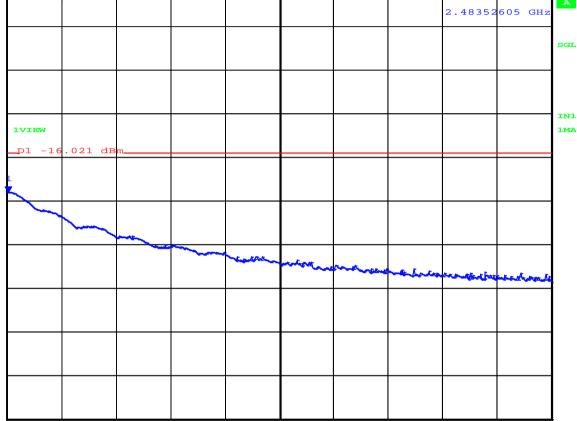
Page: 103 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 2387.00 – 2,400.00 MHz +3.3 Vdc

Start 2.387 GHz 1.3 MHz/ Stop 2.4 GHz

Date: 19.DEC.2010 14:22:42




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 104 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 2,483.50 – 2496.50 MHz +3.3 Vdc

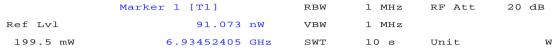
Start 2.4835 GHz

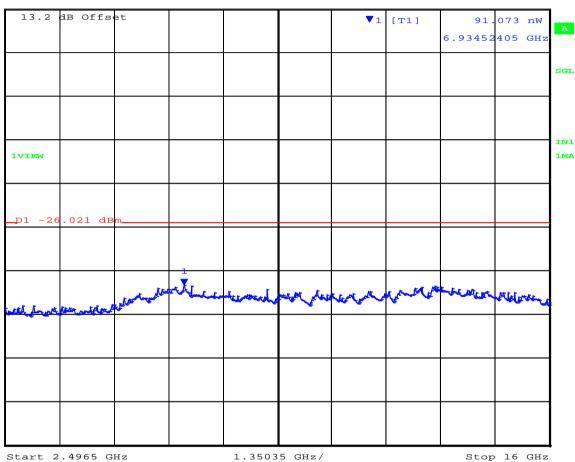
1.3 MHz/

Stop 2.4965 GHz

Date: 19.DEC.20

19.DEC.2010 14:23:35



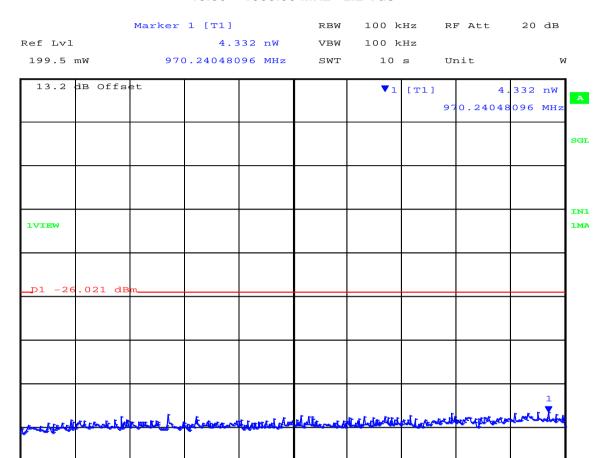

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 105 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 2496.50 – 16,000.00 MHz +3.3 Vdc

Date: 19.DEC.2010 14:24:28


Stop 1 GHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

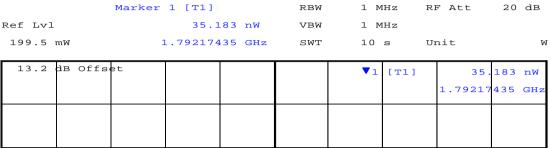
Page: 106 of 144

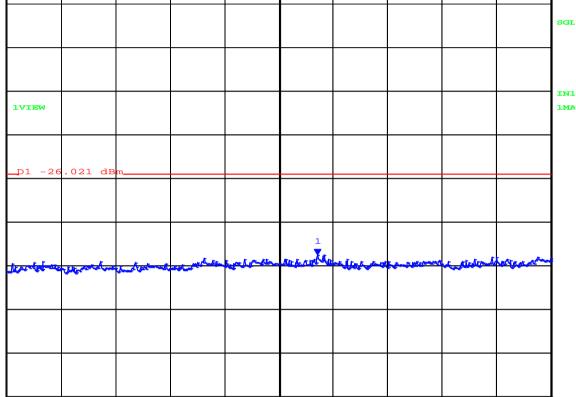
Channel 2,480 MHz Transmitter Spurious Emissions 10.00 – 1000.00 MHz +2.2 Vdc

Date: 19.DEC.2010 14:26:12

Start 10 MHz

99 MHz/




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

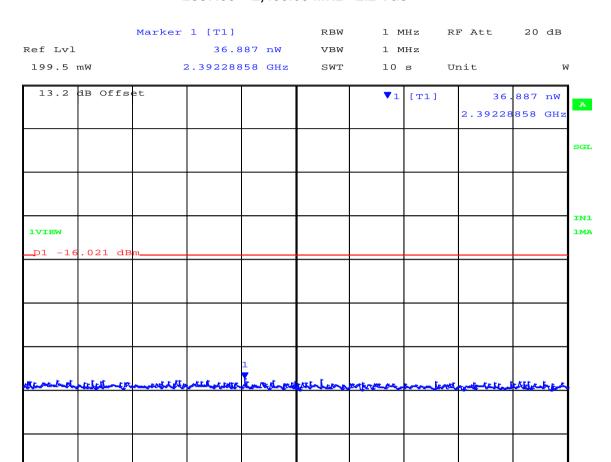
Page: 107 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 1000.00 – 2387.00 MHz +2.2 Vdc

Start 1 GHz 138.7 MHz/ Stop 2.387 GHz

19.DEC.2010 14:27:11

Date:



To: Japanese ARIB STD-T66

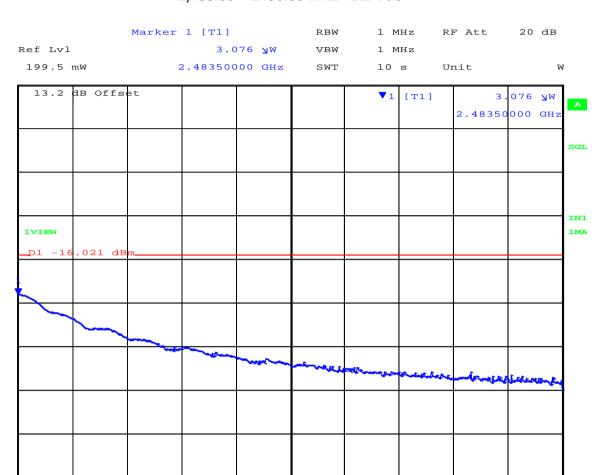
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 108 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 2387.00 – 2,400.00 MHz +2.2 Vdc

Start 2.387 GHz 1.3 MHz/ Stop 2.4 GHz

Date: 19.DEC.2010 14:28:03


Stop 2.4965 GHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

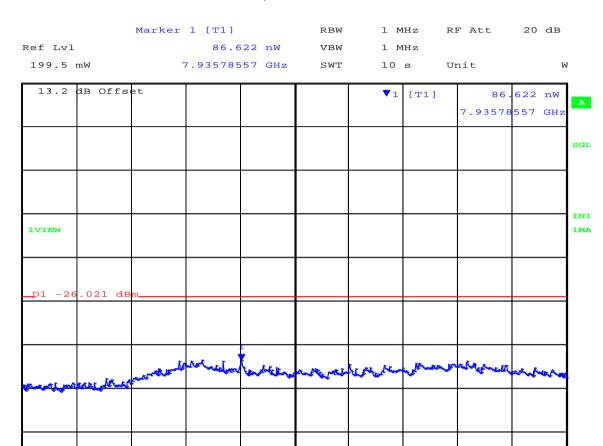
Page: 109 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 2,483.50 – 2496.50 MHz +2.2 Vdc

Start 2.4835 GHz

19.DEC.2010 14:28:56

1.3 MHz/



To: Japanese ARIB STD-T66

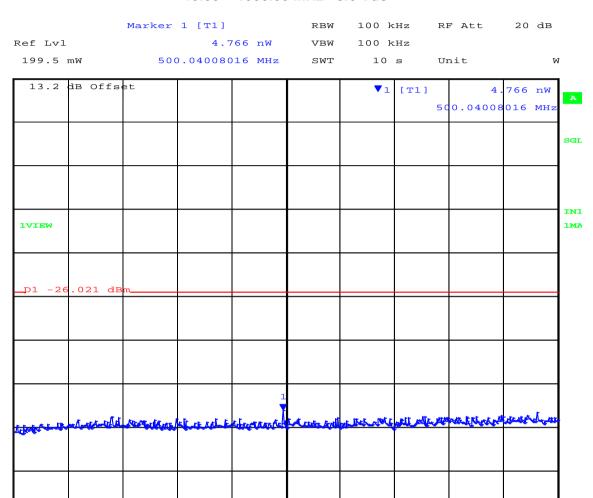
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 110 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 2496.50 – 16,000.00 MHz +2.2 Vdc

Start 2.4965 GHz 1.35035 GHz/ Stop 16 GHz

Date: 19.DEC.2010 14:29:49


Stop 1 GHz

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

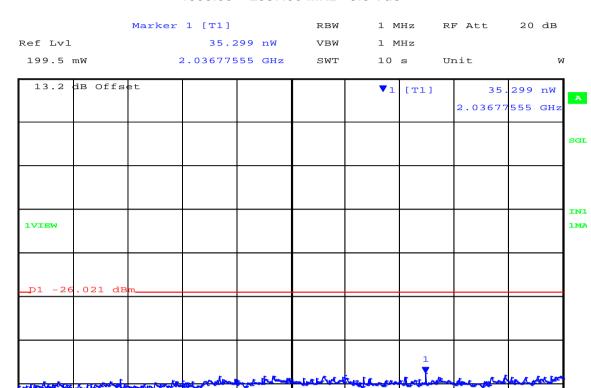
Page: 111 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 10.00 – 1000.00 MHz +3.6 Vdc

99 MHz/

Date: 19.DEC.2010 14:31:31

Start 10 MHz



To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

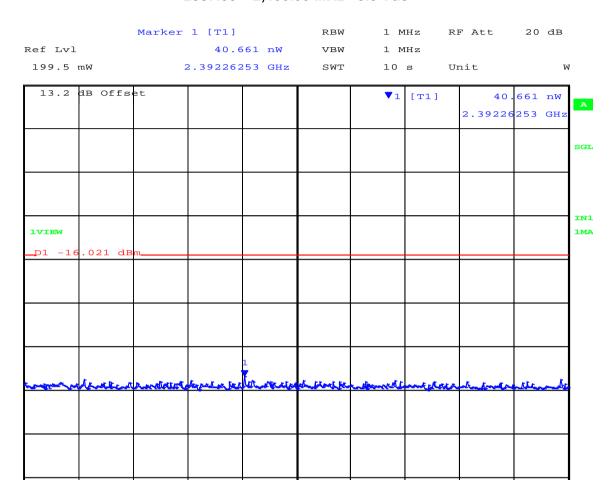
Page: 112 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 1000.00 – 2387.00 MHz +3.6 Vdc

Start 1 GHz 138.7 MHz/ Stop 2.387 GHz

Date:

19.DEC.2010 14:32:30



To: Japanese ARIB STD-T66

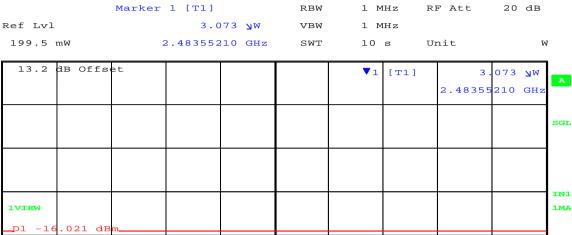
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

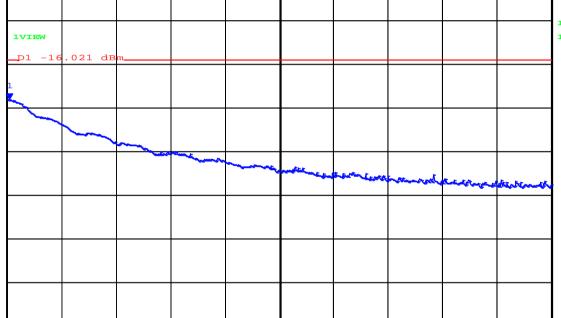
Page: 113 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 2387.00 – 2,400.00 MHz +3.6 Vdc

Start 2.387 GHz 1.3 MHz/ Stop 2.4 GHz

Date: 19.DEC.2010 14:33:22




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 114 of 144

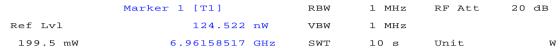
Channel 2,480 MHz Transmitter Spurious Emissions 2,483.50 – 2496.50 MHz +3.6 Vdc

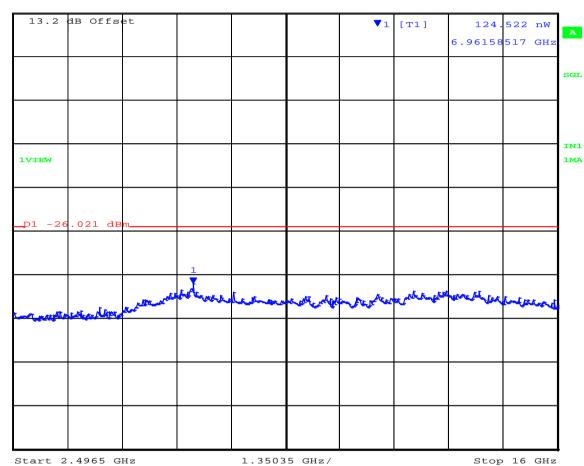
Start 2.4835 GHz

1.3 MHz/

Stop 2.4965 GHz

Date: 19.DEC.2010 14:34:15




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 115 of 144

Channel 2,480 MHz Transmitter Spurious Emissions 2496.50 – 16,000.00 MHz +3.6 Vdc

Date: 19.DEC.2010 14:35:09

Title: 2.4 GHz XBee S2C RF Module **To:** Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A
Issue Date: 29th March 2017

Page: 116 of 144

Specification

Transmitter Spurious Emission Limits

Lower Frequency (MHz)	Upper Frequency (MHz)	Limit (µW/MHz)
5	2,387	2.5
2,387	2,400	25
2,483.5	2,497	25
2,497	16,000	2.5

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
mode and the anicontainty	-L.O. GD

Traceability

Method	Test Equipment Used		
Measurements were made per work	0223, 0088, 0116, 0158, 0193, 0312, 0313,		
instruction WI-05 'Measurement of	0314		
Spurious Emissions'			

To: Japanese ARIB STD-T66
Serial #: DIGI55-J2 Rev A

Issue Date: 29th March 2017 **Page:** 117 of 144

5.1.5. Receiver Spurious Emissions

Test Procedure

Receiver Spurious Emissions were measured conductively per the test set up below. The EUT was set on the channel of interest and the spectrum was investigated fro 5-16,000 MHz. As the receiver operates in a continuous receive mode covering all channels only one set of results were taken for all channels.

Test Measurement Set up

Measurement set up for Receiver Spurious Emissions

Radio Operational Condition

Operational Mode: Receive mode only

Operational Mode: Low, mid and high channels

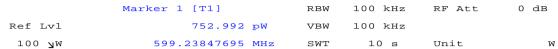
To: Japanese ARIB STD-T66
Serial #: DIGI55-J2 Rev A

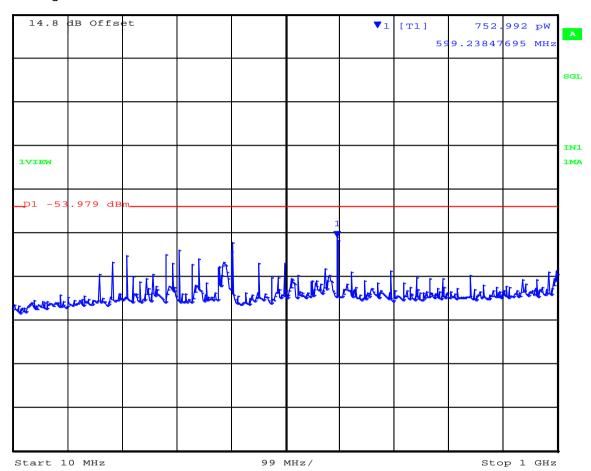
Issue Date: 29th March 2017

Page: 118 of 144

TABLE OF RESULTS - Channel 2,405 MHz

Voltage	Start Frequency (MHz)	Stop Frequency (MHz)	Highest Emission (nW/MHz)	Limit (nW/MHz)	Margin (dB)
12.27/4-	10.00	1,000.00	0.7530	4	-7.25
+3.3 Vdc	1,000.00	16,000.00	6.5120	20	-4.87
+2.2 Vdc	10.00	1,000.00	0.7484	4	-7.28
	1,000.00	16,000.00	6.2120	20	-5.08
+3.6 Vdc	10.00	1,000.00	0.7644	4	-7.19
	1,000.00	16,000.00	6.6110	20	-4.81



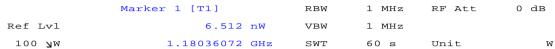

To: Japanese ARIB STD-T66

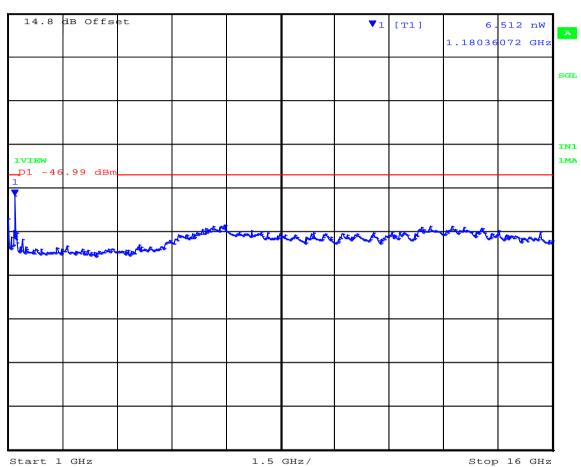
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 119 of 144

Channel 2,405 MHz Receiver Spurious Emissions 10 – 1,000 MHz +3.3 Vdc

Date: 19.DEC.2010 14:50:48



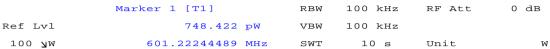

To: Japanese ARIB STD-T66

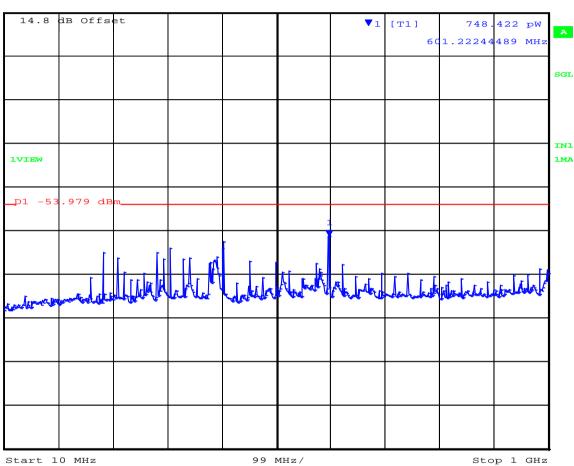
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 120 of 144

Channel 2,405 MHz Receiver Spurious Emissions 1,000 – 16,000 MHz +3.3 Vdc

Date: 19.DEC.2010 14:52:01



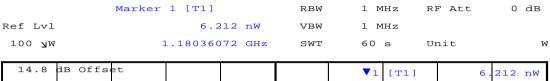

To: Japanese ARIB STD-T66

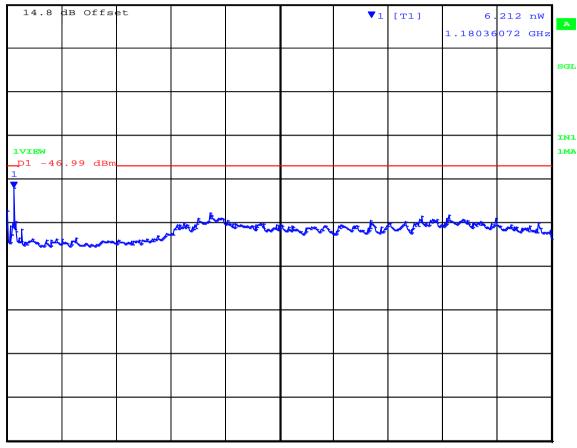
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 121 of 144

Channel 2,405 MHz Receiver Spurious Emissions 10 – 1,000 MHz +2.2 Vdc

Date: 19.DEC.2010 14:52:46




To: Japanese ARIB STD-T66

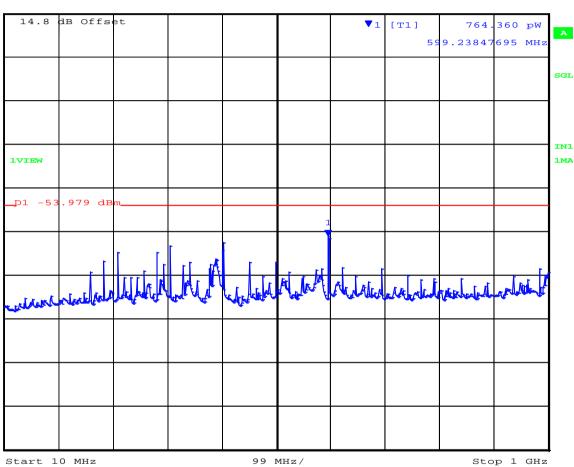
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 122 of 144

Channel 2,405 MHz Receiver Spurious Emissions 1,000 – 16,000 MHz +2.2 Vdc

Start 1 GHz 1.5 GHz/ Stop 16 GHz

Date: 19.DEC.2010 14:53:59

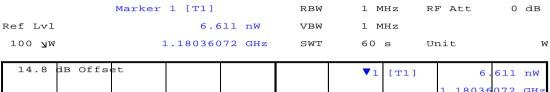

To: Japanese ARIB STD-T66

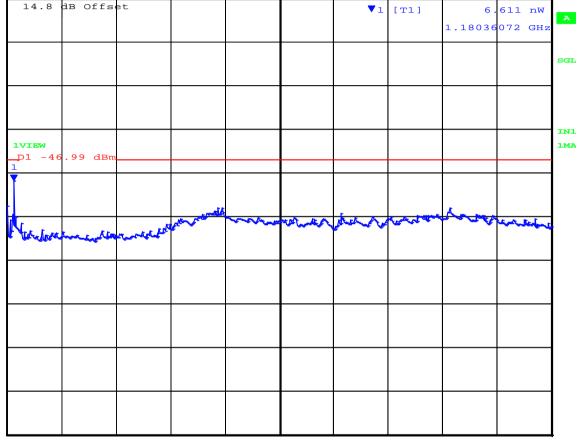
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 123 of 144

Channel 2,405 MHz Receiver Spurious Emissions 10 – 1,000 MHz +3.6 Vdc

Date: 19.DEC.2010 14:54:45




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 124 of 144

Channel 2,405 MHz Receiver Spurious Emissions 1,000 – 16,000 MHz +3.6 Vdc

Start 1 GHz 1.5 GHz/ Stop 16 GHz

Date: 19.DEC.2010 14:55:57

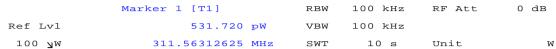
To: Japanese ARIB STD-T66

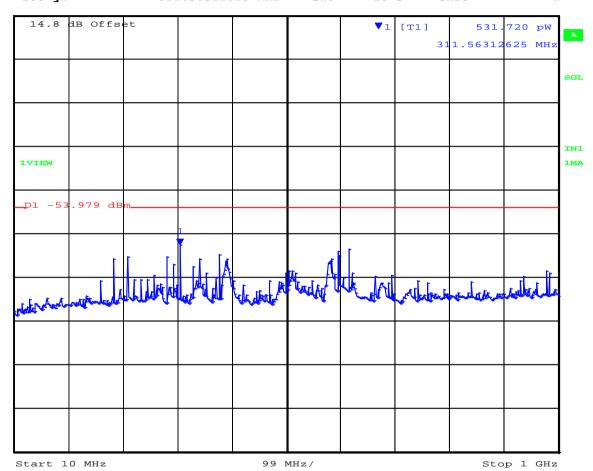
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 125 of 144

TABLE OF RESULTS - Channel 2,440 MHz

Voltage	Start Frequency (MHz)	Stop Frequency (MHz)	Highest Emission (nW/MHz)	Limit (nW/MHz)	Margin (dB)
12.27/4-	10.00	1,000.00	0.5317	4	-8.76
+3.3 Vdc	1,000.00	16,000.00	6.0760	20	-5.17
+2.2 Vdc	10.00	1,000.00	0.5027	4	-9.01
	1,000.00	16,000.00	6.3470	20	-4.98
+3.6 Vdc	10.00	1,000.00	0.4741	4	-9.26
	1,000.00	16,000.00	6.3830	20	-4.96



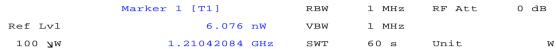

To: Japanese ARIB STD-T66

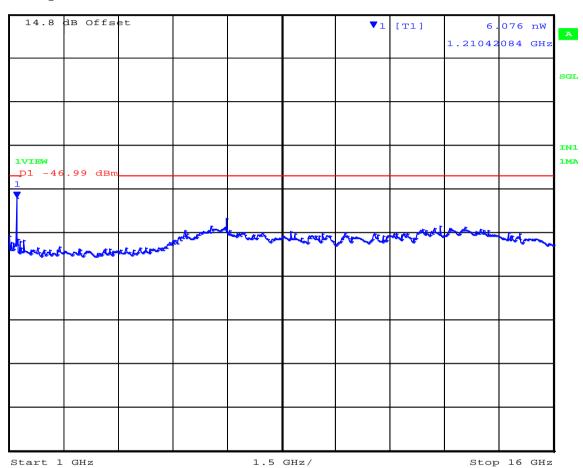
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 126 of 144

Channel 2,440 MHz Receiver Spurious Emissions 10 – 1,000 MHz +3.3 Vdc

Date: 19.DEC.2010 13:41:30



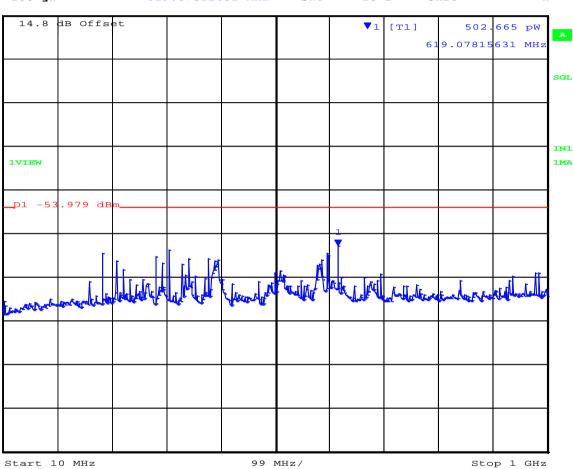

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 127 of 144

Channel 2,440 MHz Receiver Spurious Emissions 1,000 – 16,000 MHz +3.3 Vdc

Date: 19.DEC.2010 13:42:42

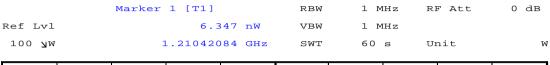

To: Japanese ARIB STD-T66

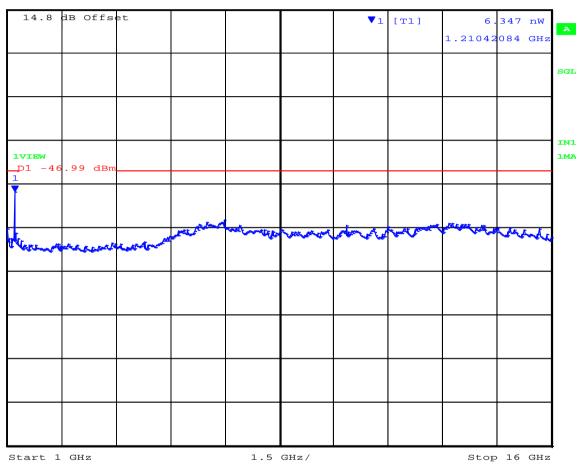
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 128 of 144

Channel 2,440 MHz Receiver Spurious Emissions 10 - 1,000 MHz +2.2 Vdc

Date: 19.DEC.2010 13:43:26



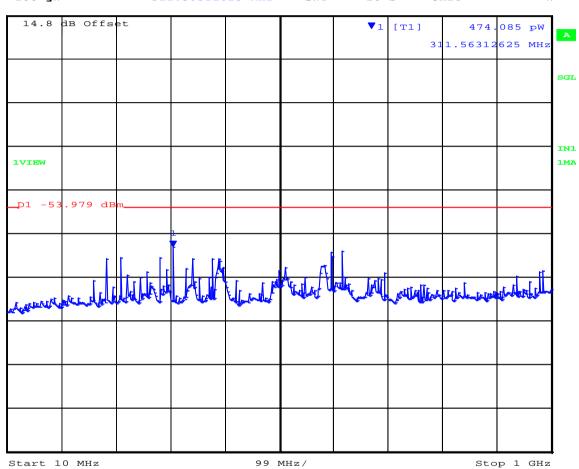

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 129 of 144

Channel 2,440 MHz Receiver Spurious Emissions 1,000 – 16,000 MHz +2.2 Vdc

ate: 19.DEC.2010 13:44:39

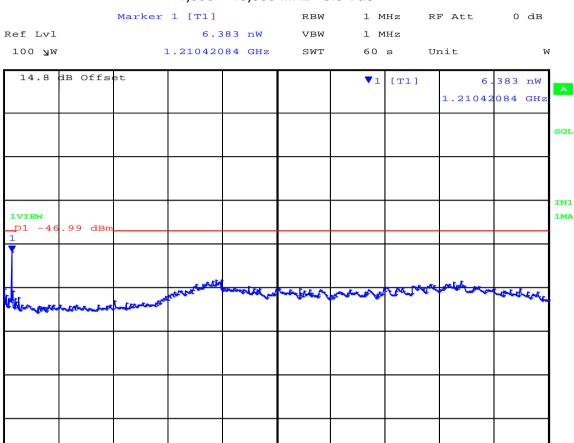

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 130 of 144

Channel 2,440 MHz Receiver Spurious Emissions 10 – 1,000 MHz +3.6 Vdc

Date: 19.DEC.2010 13:46:02



To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 131 of 144

Channel 2,440 MHz Receiver Spurious Emissions 1,000 – 16,000 MHz +3.6 Vdc

Start 1 GHz 1.5 GHz/ Stop 16 GHz

Date: 19.DEC.2010 13:47:15

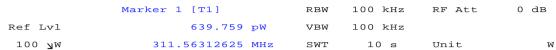
To: Japanese ARIB STD-T66

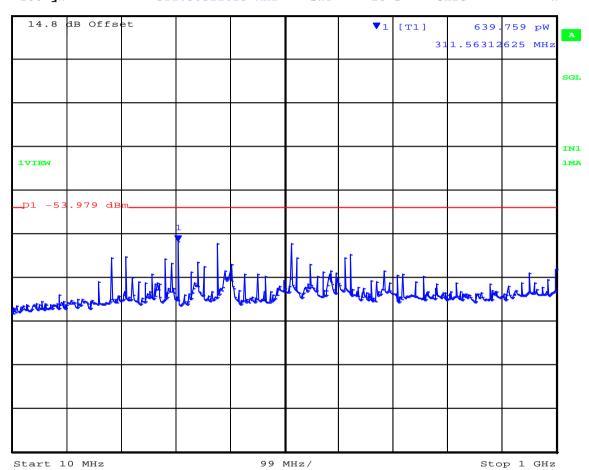
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 132 of 144

TABLE OF RESULTS - Channel 2,480 MHz

Voltage	Start Frequency (MHz)	Stop Frequency (MHz)	Highest Emission (nW/MHz)	Limit (nW/MHz)	Margin (dB)
12.27/4-	10.00	1,000.00	0.6398	4	-7.96
+3.3 Vdc	1,000.00	16,000.00	7.7730	20	-4.10
+2.2 Vdc	10.00	1,000.00	0.6314	4	-8.02
	1,000.00	16,000.00	8.0320	20	-3.96
+3.6 Vdc	10.00	1,000.00	0.6667	4	-7.78
	1,000.00	16,000.00	7.8580	20	-4.06



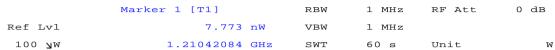

To: Japanese ARIB STD-T66

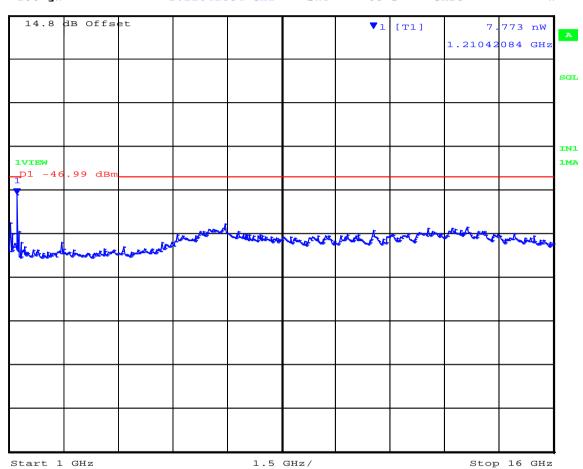
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 133 of 144

Channel 2,480 MHz Receiver Spurious Emissions 10 – 1,000 MHz +3.3 Vdc

Date: 19.DEC.2010 14:36:55



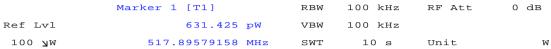

To: Japanese ARIB STD-T66

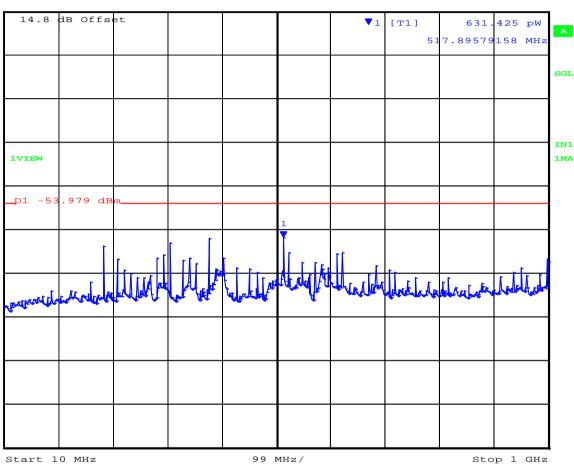
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 134 of 144

Channel 2,480 MHz Receiver Spurious Emissions 1,000 – 16,000 MHz +3.3 Vdc

Date: 19.DEC.2010 14:38:08



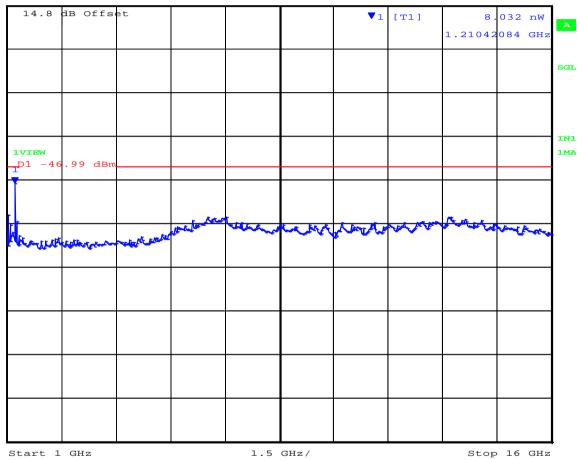

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 135 of 144

Channel 2,480 MHz Receiver Spurious Emissions 10 – 1,000 MHz +2.2 Vdc

Date: 19.DEC.2010 14:38:54


To: Japanese ARIB STD-T66

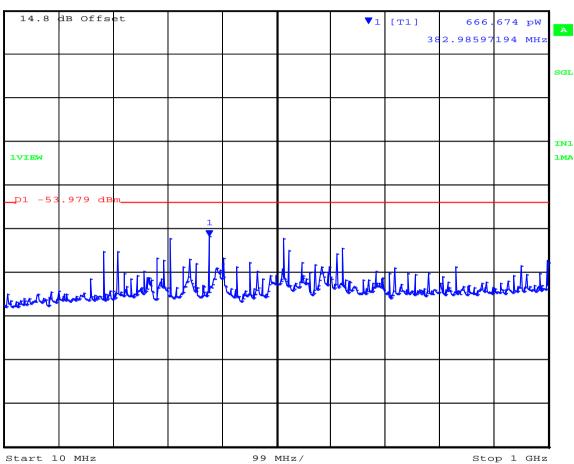
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 136 of 144

Channel 2,480 MHz Receiver Spurious Emissions 1,000 – 16,000 MHz +2.2 Vdc

ate: 19.DEC.2010 14:40:07



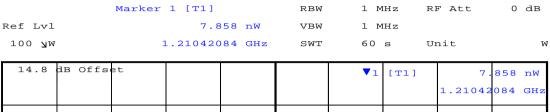

To: Japanese ARIB STD-T66

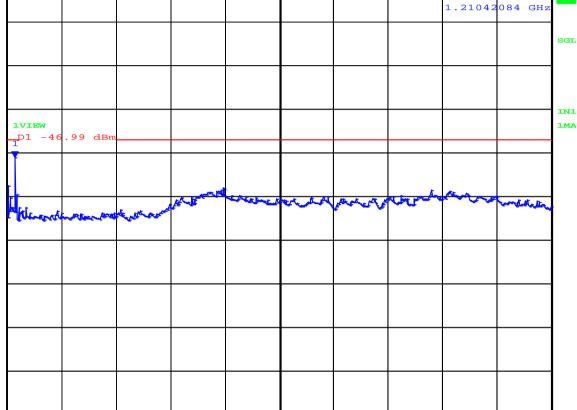
Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 137 of 144

Channel 2,480 MHz Receiver Spurious Emissions 10 – 1,000 MHz +3.6 Vdc

Date: 19.DEC.2010 14:41:28




To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 138 of 144

Channel 2,480 MHz Receiver Spurious Emissions 1,000 – 16,000 MHz +3.6 Vdc

Start 1 GHz 1.5 GHz/ Stop 16 GHz

Date: 19.DEC.2010 14:42:41

To: Japanese ARIB STD-T66
Serial #: DIGI55-J2 Rev A
Issue Date: 29th March 2017

Page: 139 of 144

Specification

Transmitter Spurious Emission Limits

Lower Frequency (MHz)	Upper Frequency (MHz)	Limit (nW/MHz)
5	1,000	4
1,000	16,000	20

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

Method	Test Equipment Used		
Measurements were made per work	0223, 0088, 0116, 0158, 0193, 0312, 0313,		
instruction WI-05 'Measurement of	0314		
Spurious Emissions'			

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 140 of 144

5.1.6. <u>Interference Protection Function</u>

Interference suppression and rejection in Digi brand XBee ZB (Zigbee) S2C radios

- 1. The RF power output is less than or equal to 8dBm.
- 2. A Personal Area Network will form. XBee ZB S2C radios will only function in a network of other XBee ZB S2C or XBee ® or XBee PRO® ZB radios. The network of routers and end points will form on the same channel and with the same PAN ID (personal area network ID) as the coordinator. There is to be only one coordinator in a network.
- 3. Using the Digi X-CTU tool (http://ftp1.digi.com/support/utilities/40002637_c.exe) "Modem Configuration" tab, the user can change network ID (PAN ID). A radio with a different PAN ID will not respond to radio traffic in this network. This can be done on all radios expected to be included in the network.
- 4. Radios in the network can also be set to specific channels. To do this, each radio will need to have the same channel mask settings. Using the "Modern Configuration" tab, select the SC Scan Channels settings. All radios that the user desires to be in this network need to have the same channel settings. All radios will then scan to the same channel, and "associate" with the coordinator. Recommended channels to scan are 15, 20, 21, 22, 25, and 26.

The channel mask is defined as follows:

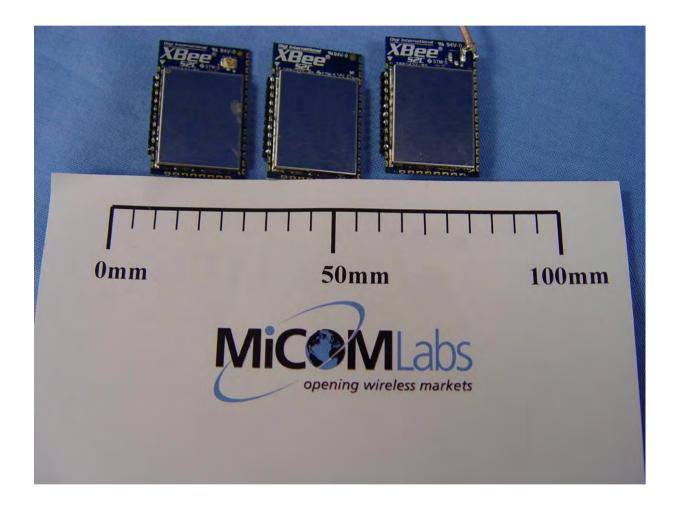
Bit (Channel):

0 (0x0B)	4 (0x0F)	8 (0x13)	12 (0x17)
1 (0x0C)	5 (0x10)	9 (0x14)	13 (0x18)
2 (0x0D)	6 (0x11)	10 (0x15)	14 (0x19)
3 (0x0E)	7 (0x12)	11 (0x16)	15 (0x1A)

Set the bit in the mask to allow scanning. No radio set on a different channel will respond to traffic on the set channel. Once the bits are set, be sure to "write" the settings.

All of options 2 through 4 are implemented in the MAC or NETWORK layer. Zigbee layers are PHY, MAC and NETWORK.

See chapters 3 and 4 of the XBee ZB S2C Users Manual (http://ftp1.digi.com/support/documentation/90002002_a.pdf) for further information on the use and setting for the XBee ZB S2C.


To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017

Page: 141 of 144

5.1.7. RF Accessibility

All components for the XBEE S2C are under the shield. The shield is soldered down on all 4 sides of the perimeter. The shield does not have a break-away section. This prevents unauthorized access and alterations to the module's circuitry. Without the proper equipment and skilled personnel, the module would be damaged during shield removal.

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017 Page: 142 of 144

6. PHOTOGRAPHS

6.1. General Measurement Test Set-Up

To: Japanese ARIB STD-T66

Serial #: DIGI55-J2 Rev A Issue Date: 29th March 2017 Page: 143 of 144

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #	Last Calibration Date
0223	Power Meter	Hewlett Packard	EPM-442A	US37480256	19 th Nov 10
0287	Spectrum Analyzer	Rhode & Schwarz	ESIB40	100201	17 th Nov 10
0116	Power Sensor	Hewlett Packard	8485A	3318A19694	17 th Nov 10
0158	Barometer /Thermometer	Control Co.	4196	E2846	8 th Jan 10
0312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181-3G0300	209092-001	N/A
0313	Coupler	Hewlett Packard	86205A	3140A01285	N/A
0314	20dB N-Type Attenuator	ARRA	N9444-30	1623	N/A

575 Boulder Court Pleasanton, California 94566, USA

Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com