1 INTRODUCTION

1.1 Outline

This document describes how to configure the TransPort router to establish a GRE tunnel connection to a Cisco router with IPSEC encryption. This solution would be used in a situation where a routing protocol such as OSPF is required as the GRE tunnel will be used to route the multicast packets. An IPsec tunnel secures the traffic between the 2 routers.
1.2 Assumptions

This guide has been written for use by technically competent personnel with a good understanding of the communications technologies used in the product, and of the requirements for their specific application.

Configuration: This application note assumes that the WR41 will be connecting to a cellular network (i.e. GPRS, EDGE, 3G, HSDPA or HSUPA).

This application note applies to;

Models shown: Digi Transport WR41

Other Compatible Models: All other Digi Transport products.

Firmware versions: All Versions newer than 5130

Please note: This application note has been specifically rewritten for firmware release 5.123 and later but the original application note was testing and working for routers running earlier firmware and the previous GUI. Routers running earlier firmware will find that the screen shots do not accurately reflect what will be seen on those older routers. Contact uksupport@digi.com if you require this document for the older GUI.

Configuration: This Application Note assumes the devices are set to their factory default configurations. Most configuration commands are only shown if they differ from the factory default.

It is assumed in this document that the TransPort router already has a working internet connection.
1.3 Corrections

Requests for corrections or amendments to this application note are welcome and should be addressed to: uksupport@digi.com

Requests for new application notes can be sent to the same address.

1.4 Version

<table>
<thead>
<tr>
<th>Version Number</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Published</td>
</tr>
<tr>
<td>1.1</td>
<td>Re-branded to Digi Transport</td>
</tr>
<tr>
<td>1.2</td>
<td>Updated for new GUI</td>
</tr>
</tbody>
</table>
2 CONFIGURATION

2.1 Configuration of PPP 1

This section will detail the changes needed to be made to PPP 1, it is assumed that the TransPort router has already been configured with a working internet connection on PPP 1.

Navigate to:
Configuration - Network > Interfaces > Advanced > PPP 0 - 9 > PPP 1
Enable IPsec on this interface

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable IPsec on this interface</td>
<td>Ticked</td>
<td>Enables IPsec</td>
</tr>
</tbody>
</table>

2.2 Configuration of IKE

This section will detail the changes needed to be made to IKE.
These settings are the equivalent of the Cisco Crypto configuration, configure the Cisco accordingly.

Navigate to:
Configuration - Network > Virtual Private Networking (VPN) > IPsec > IKE > IKE 0
Configuration - Network > Interfaces

Virtual Private Networking (VPN)
- IPSec
 - IPSec Tunnels
 - IPSec Default Action
 - Dead Peer Detection (DPD)
- IKE
 - IKE Debug
 - IKE 0

Use the following settings for negotiation:
- **Encryption:** None, DES, 3DES, AES (128 bit), AES (192 bit), AES (256 bit)
- **Authentication:** None, MD5, SHA1
- **Mode:** Main, Aggressive
- **MODP Group for Phase 1:** 1 (768)
- **MODP Group for Phase 2:** No PFS
- **Renegotiate after:** 0 hrs, 0 mins, 0 secs

Advanced

[Apply button]
2.3 Configuring the Eroute

This section covers configuring the Eroute used to encrypt the GRE packets. These settings are the equivalent of the Cisco Crypto configuration, configure the Cisco accordingly.

Navigate to:

Configuration - Network > Virtual Private Networking (VPN) > IPsec > IPsec Tunnels > IPsec 0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption</td>
<td>DES</td>
<td>Enables the use of DES encryption</td>
</tr>
<tr>
<td>Authentication</td>
<td>MD5</td>
<td>Hash Algorithm to use</td>
</tr>
<tr>
<td>Mode</td>
<td>Aggressive</td>
<td>Enables aggressive mode</td>
</tr>
<tr>
<td>Parameter</td>
<td>Setting</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>The IP address or hostname of the remote unit</td>
<td>217.24.123.25</td>
<td>Internet IP address of the Remote Cisco router</td>
</tr>
<tr>
<td>Use these settings for the local LAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Address</td>
<td>4.4.4.1</td>
<td>TransPort router End point IP address of the GRE Tunnel</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.255</td>
<td>TransPort router End point Subnet Mask of the GRE Tunnel</td>
</tr>
<tr>
<td>Remote LAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Address</td>
<td>3.3.3.1</td>
<td>Cisco End point IP address of the GRE Tunnel</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.255</td>
<td>Cisco End point Subnet Mask of the GRE Tunnel</td>
</tr>
<tr>
<td>Use the following security on this tunnel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preshared Keys</td>
<td>Selected</td>
<td>Uses preshared key authentication</td>
</tr>
<tr>
<td>Our ID</td>
<td>wr41</td>
<td>ID of the TransPort router</td>
</tr>
<tr>
<td>Our ID type</td>
<td>IKE ID</td>
<td>Sets the ID type for authentication</td>
</tr>
<tr>
<td>Remote ID</td>
<td>cisco</td>
<td>Peer ID as set on the Cisco router</td>
</tr>
<tr>
<td>encryption on this tunnel</td>
<td>DES</td>
<td>Phase 2 Encryption algorithm</td>
</tr>
<tr>
<td>authentication on this tunnel</td>
<td>MD5</td>
<td>Phase 2 Authentication algorithm</td>
</tr>
<tr>
<td>Diffie Hellman group</td>
<td>2</td>
<td>DH group</td>
</tr>
<tr>
<td>Bring this tunnel up</td>
<td>Whenever a route to the destination is available</td>
<td>Creates an always on VPN when a valid route exists</td>
</tr>
<tr>
<td>If the tunnel is down and a packet is ready to be sent</td>
<td>Bring the tunnel up</td>
<td>If no SAs exist, create new SAs</td>
</tr>
</tbody>
</table>
2.4 Configuration of TUN 0

This section shows the changes the GRE Tunnel interface configuration.

These settings are the equivalent of the Cisco Loopback interface configuration, configure the Cisco accordingly.

Navigate to:

Configuration - Network > Interfaces > GRE > Tunnel 0

![Configuration - Network > Interfaces > GRE > Tunnel 0](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>172.16.2.2</td>
<td>IP address of the GRE tunnel endpoint</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.252</td>
<td>Mask for the GRE tunnel endpoint</td>
</tr>
<tr>
<td>Source IP Address</td>
<td>4.4.4.1</td>
<td>GRE source address (treated at a host address)</td>
</tr>
<tr>
<td>Destination IP Address or Hostname</td>
<td>3.3.3.1</td>
<td>GRE dest address (treated at a host address)</td>
</tr>
<tr>
<td>Enable keepalives on this GRE tunnel</td>
<td>Ticked</td>
<td>Enables GRE keepalives</td>
</tr>
<tr>
<td>Send a keepalive every n seconds</td>
<td>10</td>
<td>GRE Keepalive delay interval in seconds</td>
</tr>
</tbody>
</table>
2.5 Configuration of route 0

This section shows the changes needed to be made to the routing table. This is so the router knows to route the traffic to the remote network over the GRE tunnel. A static route back to the WR41’s LAN will need adding to the Cisco.

Navigate to:
Configuration - Network > IP Routing/Forwarding > Static Routes > Route 0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Network</td>
<td>10.5.0.0</td>
<td>This is the end point of the GRE tunnel</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.0</td>
<td>The Mask treats it as a single host</td>
</tr>
<tr>
<td>Interface</td>
<td>TUN 0</td>
<td>Wan interface to send the packets to</td>
</tr>
</tbody>
</table>

After clicking **Apply**, follow the link that appears and save the configuration to flash.

3 TESTING

3.1 Checking the IPSEC tunnel

Firstly check the IPSEC tunnel has come up on the TransPort router.

Navigate to:
Management - Connections > Virtual Private Networking (VPN) > IPsec > IPsec Tunnels

The output should look similar to this below:

IPSec Status: Eroutes 0 → 4

<table>
<thead>
<tr>
<th>Outbound V1 SAs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1234567890</td>
<td>217.34.133.25</td>
<td>3.3.3.1</td>
<td>255.255.255.255</td>
<td>4.4.4.1</td>
<td>255.255.255.255</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inbound V1 SAs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1234567890</td>
<td>217.34.133.25</td>
<td>3.3.3.1</td>
<td>255.255.255.255</td>
<td>4.4.4.1</td>
<td>255.255.255.255</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outbound V2 SAs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1234567890</td>
<td>217.34.133.25</td>
<td>3.3.3.1</td>
<td>255.255.255.255</td>
<td>4.4.4.1</td>
<td>255.255.255.255</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inbound V2 SAs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1234567890</td>
<td>217.34.133.25</td>
<td>3.3.3.1</td>
<td>255.255.255.255</td>
<td>4.4.4.1</td>
<td>255.255.255.255</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Refresh
3.2 Check the routing table

This stage will show the output of the routing table, either use a serial or Telnet connection, or alternatively from the Web interface navigate to Administration - Execute a command and do the following:

Type `route print` then press enter, the output should look like the following:

```
route print
------------------------------------------------------------
Interface Addresses:
--------------------
PPP 1: 10.171.173.217
ETH 0: 10.49.206.1
TUN 0: 172.16.2.2

Routes:
-------
#    IP Address        Mask          Metric   Interface  Gateway

Dynamic Routes:
  10.49.206.1       255.255.255.0     1        ETH 0
  172.16.2.2        255.255.255.252   1        TUN 0

Static Routes:
  1: 10.5.0.0          255.255.255.0     1        TUN 0

Default Routes:
  0: 0.0.0.0           0.0.0.0          1        PPP 1

------------------------------------------------------------
```

3.3 Check the Statistics on TUN 0

Use a serial or Telnet connection, or alternatively from the Web interface navigate to Administration - Execute a command and do the following:

Type `tunstat 0` then press enter, the output should look like the following:

```
tunstat 0
Tun 0 stats:
  Admin Status       Up
  Oper Status        Up
  IP Address         172.16.2.2
  Mask               255.255.255.252
  Source             4.4.4.1
  Destination       3.3.3.1
  Tx Packets        155646
  Tx Bytes           7471008
  Tx Errors          0
  Tx Discards        0
  Rx Packets         0
  Rx Bytes           0
  Rx Errors          0
  Rx Unknown Protocols 0
  Keepalives Sent   155
  Keepalives Rcvd    153
OK
```
3.4 Ping Check from the TransPort router to remote

This stage will send a ping packet over the tunnel, either use a serial or Telnet connection, or alternatively from the Web interface navigate to Administration - Execute a command and do the following:

Type `ping 10.5.0.1 -e0` then press enter, the output should look like the following:

```
Ping 10.5.0.1 -e0
Pinging Addr [10.5.0.1]
  sent PING # 1
  PING receipt # 1 : response time 0.17 seconds
  Iface: TUN 0
  Ping Statistics
  Sent : 1
  Received : 1
  Success : 100 %
  Average RTT : 0.17 seconds

OK
```

4 CONFIGURATION FILES

4.1 TransPort router Configuration Files

This is the configuration file from the TransPort router:

```
eth 0 IPaddr "10.49.206.1"
route 0 IPaddr "10.5.0.0"
route 0 ll_ent "tun"
def_route 0 ll_ent "ppp"
def_route 0 ll_add 1
eroute 0 peerip "217.24.123.25"
eroute 0 peerid "cisco"
eroute 0 ourid "wr41"
eroute 0 ouridtype 1
eroute 0 locip "4.4.4.1"
eroute 0 locmsk "255.255.255.255"
eroute 0 remip "3.3.3.1"
eroute 0 remmsk "255.255.255.255"
eroute 0 ESPauth "MD5"
eroute 0 ESPenc "DES"
eroute 0 ltime 8000
eroute 0 lbytes 0
eroute 0 authmeth "PRESHARED"
eroute 0 nosa "TRY"
eroute 0 autosa 1
dpd 0 okint 120
dpd 0 failint 5
dpd 0 inact 60
dpd 0 maxfail 3
ppp 0 timeout 300
ppp 1 r_chap OFF
ppp 1 IPaddr "0.0.0.0"
ppp 1 phonenum "*98*1#"
ppp 1 timeout 0
```
ppp 1 use_modem 1
ppp 1 aodion 1
ppp 1 autoassert 1
ppp 1 ipsec 1
ppp 1 ianon ON
ppp 3 defpak 16
ppp 4 defpak 16
ike 0 aggressive ON
modemcc 0 info_asy_add 5
modemcc 0 init_str "+CGQMIN=1,0,0,0,0,0"
modemcc 0 init_str1 "+CGQMIN=1,0,0,0,0,0"
modemcc 0 apn "internet"
modemcc 0 link_retries 10
modemcc 0 stat_retries 30
modemcc 0 sms_interval 1
modemcc 0 sms_access 1
modemcc 0 sms_concat 0
modemcc 0 init_str_2 "+CGQMIN=1,0,0,0,0,0"
modemcc 0 init_str1_2 "+CGQMIN=1,0,0,0,0,0"
modemcc 0 apn_2 "Your.APN.goes.here"
modemcc 0 link_retries_2 10
modemcc 0 stat_retries_2 30
modemcc 1 link_retries 10
cmd 0 unitid "ss%s>"
cmd 0 cmdnua "99"
cmd 0 hostname "ss.2000r"
cmd 1 gpsion 1
cmd 3 cfilton 1
user 0 name "Sarian"
user 0 epassword "EA0iCxQc"
user 0 access 0
user 1 name "username"
user 1 epassword "KD5lSVJDVVg="
user 1 access 0
user 8 name "cisco"
user 8 epassword "NDpiV0BFSQ=="
local 0 transaccess 2
scep 0 app "pkiclient.exe"
tun 0 IPaddr "172.16.2.2"
tun 0 mask "255.255.255.252"
tun 0 source "4.4.4.1"
tun 0 dest "3.3.3.1"
tun 0 kadelay 10
tun 0 descr "Tunnel to Cisco"

4.2 TransPort router Firmware Versions

This is the firmware hardware information from the TransPort router:

Digi TransPort WR41 HSDPA/3G Router Ser#:56691 HW Revision: 4405a
Software Build Ver5130. Apr 04 2007 11:15:57 YW
ARM Bios Ver 6.06 v31 200MHz B64-M64-F80-0100,0 MAC:00042d00dd73
Power Up Profile: 0
Async Driver Revision: 1.19 Int clk
Ethernet Driver Revision: 1.11
Firewall Revision: 1.0
EventEdit Revision: 1.0
SHIM Revision: 1.0
Timer Module Revision: 1.1
L2TP Revision: 1.10
LAPB Revision: 1.12
4.3 Configuration Files from other devices

Current configuration : 1895 bytes
! hostname cisco
! username wr41 password 0 XXXX
! aaa new-model
!
! aaa authentication login userlist group radius local
aaa authorization network grouplist group radius local
aaa session-id common
ip subnet-zero
!
no ip domain lookup
!
crypto isakmp policy 1
 hash md5
 authentication pre-share
crypto isakmp key letmein hostname wr41
crypto isakmp identity hostname
!
crypto ipsec security-association lifetime seconds 86400
!
crypto ipsec transform-set my_enc_config esp-des esp-md5-hmac
!
crypto dynamic-map mydynmap 1
crypto map mymap1 20 ipsec-isakmp dynamic mydynmap
!
interface Loopback3
 ip address 3.3.3.1 255.255.255.255
!
interface Tunnel0
 ip address 172.16.2.1 255.255.255.252
 ip ospf mtu-ignore
tunnel source Loopback3
tunnel destination 4.4.4.1
!
interface Ethernet0
 ip address 10.5.0.1 255.255.255.0
 full-duplex
!
interface FastEthernet0
 ip address 217.24.123.25 255.255.255.240
 speed auto
crypto map mymap1

ip classless
ip route 0.0.0.0 0.0.0.0 217.24.123.29
ip route 4.4.4.1 255.255.255.255 FastEthernet0
ip route 10.49.206.0 255.255.255.0 Tunnel0
!
radius-server authorization permit missing Service-Type
!

4.4 Firmware\Hardware Information from other devices

cisco 1720 (MPC860T) processor (revision 0x501) with 41780K/7372K bytes of memory.
IOS (tm) C1700 Software (C1700-K9SY7-M), Version 12.2(15)T
c1700-k9sy7-mz.122-15.T.bin