Application Note 22

IPSEC VPN tunnel between two Digi Transport Routers using Certificates and SCEP

UK Support

November 2015
Contents

1 Introduction ... 4
 1.1 Outline.. 4
 1.2 Corrections... 5
 1.3 Version... 5
2 The Certificate Infrastructure .. 6
 2.2 IKE – Authentication .. 6
 2.3 IPSEC – Secure Data Transfer ... 7
3 Microsoft® 2003 Server Configuration ... 7
 3.1 Requirements... 7
 3.2 Configure the Microsoft® 2003 Server as a Certificate Authority ... 7
 3.3 Automatic Enrolment .. 14
4 VPN Responder Certificates .. 17
 4.1 Ethernet 0 LAN Configuration ... 17
 4.2 Time and Date... 17
 4.3 ADSL Interface Configuration ... 18
 4.4 Creating the Private Key and Certificate Request ... 19
5 VPN client Certificates .. 34
 5.1 Ethernet 0 LAN Configuration ... 34
 5.2 Time and Date... 34
 5.3 Wireless WAN Interface Configuration ... 35
 5.4 Creating the Private Key and Certificate Request ... 38
 5.5 Using SCEP to retrieve the CA certificates .. 41
 5.6 Using SCEP to Enroll the Certificate Request .. 44
6 Configure IKE and IPSEC – VPN Responder .. 47
 6.1 Configure IKE (Internet Key Exchange) ... 47
 6.2 Configure IPSEC ... 48
7 Configure IKE and IPSEC – VPN client ... 51
 7.1 Configure IKE (Internet Key Exchange) ... 51
 7.2 Configure IPSEC ... 54
8 Testing..56

8.1 Check the WAN Link is Active...56

NB: The default PPP instance for the WAN interface may differ depending on the type of router.56

8.2 Check the IPSEC Tunnel is Active..56

8.3 Test the IPSEC Routing...58

9 Configuration Files..65

9.1 Digi Transport Configuration Files...65
1 INTRODUCTION

1.1 Outline

This application note is intended to explain how to create RSA key files, certificate requests, and how to use SCEP to retrieve a signed certificate from a Microsoft® 2003 server for use with IPSEC.

This document is a worked example of how to configure two TranPort routers to establish an IPSEC tunnel between each other using signed certificates, RSA key files and CA (Certificate Authority) certificates. This will allow full secure connectivity between two private networks connected together via the Internet.

The advantages of using RSA certificates over pre-shared keys are;
Scalable - pre-shared keys become unmanageable on large schemes
Provides increased security over pre-shared keys
Assumptions

This guide has been written for use by technically competent personnel with a good understanding of the communications technologies used in the product, and of the requirements for their specific application.

This application note applies only to;

TransPort Model: Any 2000 series TransPort router or later

Firmware versions: 4.804 or later.

Configuration: This Application Note assumes that the TransPort product is set to its factory default. Most configuration commands are only shown if they differ from the factory default.

Microsoft® Operating System: Microsoft® 2003 Server with IIS (Internet Information Services) and Certificate Services installed

1.2 Corrections

Requests for corrections or amendments to this application note are welcome and should be addressed to: applicationnotes@digi.com

Requests for new application notes can be sent to the same address.

1.3 Version

<table>
<thead>
<tr>
<th>Version Number</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Published</td>
</tr>
<tr>
<td>1.1</td>
<td>Minor classification</td>
</tr>
<tr>
<td>1.2</td>
<td>Change to section 3.2</td>
</tr>
<tr>
<td>1.3</td>
<td>Update & rebranding</td>
</tr>
<tr>
<td>2.0</td>
<td>Firmware Change</td>
</tr>
</tbody>
</table>

2 THE CERTIFICATE INFRASTRUCTURE

2.1.1 Private Key

Each device creates its own private key. The private key is the basis for all the security for this method of IKE authentication and as such it is important that it is kept safe. If it becomes available to anyone other than the owner of the certificate, the certificate can no longer be used to confirm the owner’s identity.

Private Key files installed on a TransPort router should be in the format of “priv*.pem” (e.g. privxxxx.pem). Private Key files of this format cannot be copied, renamed or have their contents read.

2.1.2 Certificate Request

In order to receive a signed public key certificate from a CA (Certificate Authority), a certificate request is generated from the private key and sent to the CA for signing.

2.1.3 Public Key Certificate

The Certificate request is sent to a trusted CA (Certificate Authority). The CA digitally signs the certificate request thus creating a public key certificate.

The public key certificate is used to identify Router ‘A’ with the opposite router ‘B’ and vice versa.

Public key certificate files installed on a TransPort router should be in the format of "cert*.pem" (e.g. certxxxx.pem).

2.1.4 CA (Certificate Authority) Certificate

The CA Certificate contains the public portion of the CA’s public/private key pair which signed the certificate request.

2.2 IKE – Authentication

Before you begin to send and receive confidential data you need to be sure that you are connecting to your trusted host and not some impostor.

When making the trusted connection between two routers, each router will send its signed Public Key Certificate to the other if it is available on the FLASH filing system. If it is not available, the remote unit must be able to access the file by some other means. These Certificates will then have their digital signatures compared with the signature of the trusted CA Certificate. If the signatures match, this proves that the Certificate Authority did sign the certificates.

Router ‘A’ then uses its Private Key to sign (encrypt) a HASH which is created from other data unique to the negotiation. The signature is sent to Router ‘B’ which uses Router ‘A’s public key to verify the signature.

The certificates are used for authentication purposes only. A unique set of keys, applicable only to that IKE session are created for the secure transfer of data.
2.3 IPSEC – Secure Data Transfer

Once the Identities of each router have been proved the transfer of secure data can begin. Dynamically generated Public and Private Keys are used to secure data, only this time the Private Key is used to decrypt data and the Public Key is used to encrypt data.

Example (see diagram on page 3)

Router ‘A’ receives a confidential text document from computer ‘A’. The text document should be sent in a secure manner over the Internet to Router ‘B’ then forwarded to Server ‘B’.

Using the Public Key received from Router ‘B’, Router ‘A’ encrypts the IP packets containing the text file and sends them to Router ‘B’ over the Internet connection via the VPN tunnel. Router ‘B’ uses its secure Private Key to decrypt the IP packets containing the text document and forwards them to Server ‘B’.

This is highly secure because only the owner of the Private Key can decrypt the data. So if the data is intercepted by a third party it is rendered useless without possession of the correct Private Key.

3 MICROSOFT® 2003 SERVER CONFIGURATION

If you have already have access to a working Certificate Authority server then you can skip to section 5

3.1 Requirements

For a Microsoft® 2003 server to act as a Certificate Authority the following services must be installed;

IIS (Internet Information Services)
Certificate Services, including Certificate Services CA and Certificate Services Web Enrolment Support.

The Simple Certificate Enrolment Protocol (SCEP) Add-on for Certificate Services will also require downloading to the server for installation.

At the time of publication the SCEP add-on could be obtained from the following link.

3.2 Configure the Microsoft® 2003 Server as a Certificate Authority

3.2.1 Install SCEP Add-on for certificates

Login to the Microsoft® 2003 Server with an appropriate System Administrator account. With your mouse double-click the cepsetup.exe icon to begin installation.
The following dialogue box will appear. Click **Yes** to proceed.

Next the end user licence agreement will appear. If you agree, click **YES**.

The SCEP Add-on for Certificate Services Setup Wizard will start. To proceed click **Next**.
A dialogue box will appear asking for the identity that IIS (Internet Information Services) should use for running the SCEP Add-on for Certificate Services.

Choose Use the local system account and click Next.
A dialogue box will appear asking if you wish to select the challenge phrase if you wish the CA to automatically issue certificates to SCEP requests.

Select the Require SCEP Challenge Phrase to Enroll tick box. Click Next.

A form will appear in which you are asked for information to enrol for the RA* (Registration Authority) certificates. Enter appropriate details and click Next.

*RA. A computer that is configured for an administrator to request and retrieve issued certificates on behalf of other users.
A dialogue box will appear completing the SCEP Add-on for Certificate Services Setup Wizard. Confirm the details shown are correct. If so click **Finish**.

Finally a dialogue box will appear containing a URL to use for SCEP enrolment.
IMPORTANT: Make a permanent note of this URL. You will need it every time you create certificates with this CA.

3.2.2 Check the CA Certificate service is running

To check the CA Certificate service is running, click Start → All Programs → Administrative Tools → Certificate Authority.

The Certificate Authority console window will open. If the service is running there will be a green tick on your Certificate Authority. If not the service will need to be started by right clicking on the Certificate Authority, select All Tasks → Start Service.
3.2.3 Configure IIS

When IIS is installed, the service is installed in a highly secure and locked mode. Therefore you may have to configure IIS to allow the SCEP Add-on service to run in IIS.

Open the Computer Management console.

Expand the Services and Applications icon and Internet Information Services and Web Service Extensions. In the **Web Service Extensions** window, highlight **Simple Certificate Enrolment Protocol (SCEP) Add-on**. Click the **Allow** button. A green tick should appear on that item.
3.3 Automatic Enrolment

As with this application note, the default action for the Microsoft 2003 Certificate Authority is for all certificate requests to be issued manually by the CA administrator. This ensures that the administrator is responsible for verifying the identity of the certificate requestor.

However, Microsoft have included a facility for automatic enrolment where certificates are signed and issued by the CA server automatically on receipt of the certificate request.

To enable this feature open the Certificate Authority console as previous. click **Start → All Programs → Administrative Tools → Certificate Authority**.

Right click on your certificate authority and select **Properties**.
In the **Properties** window select the **Policy Module** tab.

![Policy Module Window](image)

Whilst in the **Policy Module** tab click the **Properties** button.

Select Follow the settings in the certificate template, if applicable. Otherwise, automatically issue the certificate.
Click **OK** and again **OK** on the **Policy Module** tab.

Note: For the change to take effect, certificate services must be stopped and started again.
4 VPN RESPONDER CERTIFICATES

4.1 Ethernet 0 LAN Configuration

The following configures the Ethernet local area network IP address for the VPN responder. Browse to CONFIGURATION - NETWORK → INTERFACES → ETHERNET → ETH 0.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>172.16.0.254</td>
<td>Configures the IP address for the LAN</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.0.0</td>
<td>Configures the subnet mask for the LAN</td>
</tr>
</tbody>
</table>

4.2 Time and Date

Any certificates stored on the TransPort’s flash will have a validity period. Therefore it is important that the TransPort is configured with the correct time and date.

Browse to CONFIGURATION → SYSTEM → Date and Time

Amend the time and date as appropriate and click Set Time button.
4.3 ADSL Interface Configuration

By default on the DR6410 MKII VPN Concentrator, PPP 1 is configured for use with ADSL. Here you enter the details of your ADSL account and enable IPSEC on this interface.

Browse to

[Image of configuration interface]

← Missing Lines →
Parameter Setting Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username:</td>
<td>Adsl_username</td>
<td>Enter the username for your ADSL account</td>
</tr>
<tr>
<td>Password:</td>
<td>password</td>
<td>Enter the password for your ADSL account</td>
</tr>
<tr>
<td>Confirm Password:</td>
<td>password</td>
<td>Confirm the password for your ADSL account</td>
</tr>
<tr>
<td>IPSEC:</td>
<td>ON</td>
<td>Enables IPSEC on PPP 1 (ADSL) Interface</td>
</tr>
<tr>
<td>Keep SA</td>
<td>ON</td>
<td>Keeps Security Associations after Interface is disconnected</td>
</tr>
</tbody>
</table>

NB: When configuring a router as an IPSEC “responder” such as this example where the outside interface is “always on” and has a fixed IP address, it is recommended that you choose the IPSEC option “**On – Keep SA’s when link down**”. This prevents the IPSEC Security Associations from being deleted should the link be dropped and thus enables the VPN tunnel to continue to work immediately as soon as the link becomes available again.

If this IPSEC value is set to “**On – Remove SA’s when link down**”, then the VPN tunnel will not continue to work should the link be dropped and raised until the IPSEC Security Associations on the IPSEC “Initiator” have timed out and new IPSEC Security Associations have been re-negotiated.

4.4 Creating the Private Key and Certificate Request

4.4.1 Obtain a Challenge Password for the Certificate Request.

Before you can create a certificate request you must first obtain a challenge password from the Certificate Authority Server. This password is generally obtained from the SCEP CA server by way of WEB server, or a phone call to the CA Server Administrator. For the Microsoft® SCEP server, you browse to a web interface. If the server requires a challenge password, it will be displayed on the page along with the CA certificate fingerprint.

This challenge password is usually only valid once and for a short period of time, in this case 60 minutes, meaning that a certificate request must be created after retrieving the challenge password.
From a PC browse to the following Microsoft® CA server web page using URL http://<hostname>/certsrv/mscep/mscep.dll (as detailed in “Microsoft® 2003 server Configuration) and make a note of the challenge password.
4.4.2 Create the Private Key and Certificate

Now the details for the certificate request have been entered, the TransPort must create a Private Key and from this the certificate request will be created.

NOTE: This method assumes that a private key does NOT already exist. Both the private key and certificate request will be created simultaneously.

Browse to **Administrator – X.509 Certificate Management > Key Generation**.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Key Size:</td>
<td>1024</td>
<td>Size of the private key in bits</td>
</tr>
<tr>
<td>Private Key filename:</td>
<td>privdem1.pem</td>
<td>Enter a name for the private key (must be prefixed with “priv” and have a .pem extension).</td>
</tr>
</tbody>
</table>

Click the **Generate Certificate Request** button. You will see some indication of the progress as the TransPort generates the Private Key file and certificate request as follows;
4.4.3 Using SCEP to retrieve the CA certificates

Before delivering the request to the server, the unit must first have access to the server CA certificate(s). Some servers require the use of more than one CA certificate. In this case the Microsoft® 2003 server requires 3 CA certificates before SCEP can work. For other servers, just one certificate may be used for all three tasks. Check your server vendor for details.

The tasks these certificates are used for are:

CA certificate. This is the certificate that will contain the public key portion of the key used to sign the certificate request.

CA encryption certificate. This certificate is used to encrypt the data the client will send to the server.

CA signature certificate. This is attached to the reply from the CA which is validated by the client. The public key from this certificate is used to verify the signature.

Browse to Administration – X.509 Certificate Management > Certificate Authorities (CAs)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>CA server ip address</td>
<td>The IP address/hostname of your CA server</td>
</tr>
<tr>
<td>Remote port</td>
<td>0</td>
<td>MS SCEP uses HTTP port 80 to carry the requests unless you specify otherwise here.</td>
</tr>
<tr>
<td>Path</td>
<td>certsrv/mscep/mscep.dll</td>
<td>Select Microsoft SCEP from drop down list and the path will be entered automatically</td>
</tr>
<tr>
<td>Application</td>
<td>pkiclient.exe</td>
<td>This represents the SCEP application on the server</td>
</tr>
</tbody>
</table>
Click the **Get Ca certificate/s** button to retrieve the CA certificates from the Microsoft® 2003 Server. An indication of progress will be shown as follows;

![CA Certificate Upload Results](image)

The fingerprint of each certificate is displayed. This fingerprint of the CA certificate should be checked (using some out of band mechanism) against the fingerprint of the CA certificates as advertised by the server. For the Microsoft® server the CA certificate fingerprint is displayed when the page http://<hostname>/certsrv/mscep/mscep.dll is accessed.

If the fingerprints do not match, it possibly means that you have some attacker sitting between the unit and the server.

With a telnet session to the router issue the **dir** command, you will see the CA certificates prefixed with ca and cert.
4.4.4 Configure the Certificate Request Postion of page

Browse to Administration - X.509 Certificate Management > IPsec/SSH/HTTPS Certificates

Enter the above challenge password and configure all other fields as appropriate. These details will form part of the certificate request and thus form part of the signed public key certificate.

NOTE: The Common Name (case sensitive) field is important as this will be used as the ID for the device for the IKE negotiations.

Parameter	**Setting**	**Description**
Challenge Password: | Password from website | Enter the Challenge Password issued by the SCEP server
Country: | UK | Enter a two character representation of the country
Common Name: | DR6000 | Enter a Common Name for the router’s ID
<table>
<thead>
<tr>
<th>Locality:</th>
<th>Ilkley</th>
<th>The Location of the unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>Digi International</td>
<td>An appropriate Company name</td>
</tr>
<tr>
<td>Organisational Unit:</td>
<td>Tech Support</td>
<td>An appropriate organisational unit</td>
</tr>
<tr>
<td>State:</td>
<td>Yorkshire</td>
<td>State or County or Province</td>
</tr>
<tr>
<td>Email Address:</td>
<td>support@sarian.co.uk</td>
<td>An appropriate email Address</td>
</tr>
<tr>
<td>Unstructured Name:</td>
<td></td>
<td>Optional descriptive text</td>
</tr>
<tr>
<td>Digest Algorithm:</td>
<td>MD5</td>
<td>Choose either MD5 or SHA1. This is used when signing the certificate request</td>
</tr>
</tbody>
</table>

4.4.5 Using SCEP to Enroll the Certificate Request

The next process is to send the certificate request to the CA server for signing. This will be the router’s ‘public key’. Complete the SCEP configuration as follows in order to enroll the certificate request.

NB: See section 5.6.1 for identifying the CA certificates

Browse to **Administration - X.509 Certificate Management > IPsec/SSH/HTTPS Certificates.**
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>10.1.10.249</td>
<td>The IP address/hostname of your CA server</td>
</tr>
<tr>
<td>Remote port</td>
<td>0</td>
<td>MS SCEP uses HTTP port 80 to carry the requests unless you specify otherwise here.</td>
</tr>
<tr>
<td>Path</td>
<td>certsrv/mscep/mscep.dll</td>
<td>Select Microsoft SCEP from drop down list and the path will be entered automatically</td>
</tr>
<tr>
<td>Application</td>
<td>pkiclient.exe</td>
<td>This represents the SCEP application on the server</td>
</tr>
<tr>
<td>CA Identifier</td>
<td>testca</td>
<td>CA identifier</td>
</tr>
<tr>
<td>Private Key filename</td>
<td>privdem1.pem</td>
<td>The name of the private key created earlier</td>
</tr>
<tr>
<td>Certificate request filename</td>
<td>creq.pem</td>
<td>The name of the certificate request</td>
</tr>
</tbody>
</table>
4.4.6 **Signing the certificate request**

Once the SCEP configuration page has been completed click the **Enroll Certificate Request** button.

You should receive one of three responses.

Failure - The request failed. Check that the correct CA certificates have been used. Check that the challenge password is correct. Check that the correct certificate request has been specified, and that the correct private key has been used. Check the server logs to see what the problem is.

Success - The response should contain the signed certificate.

Pending - The server has our request, but hasn’t signed it yet. It may require some input by the System Administrator.
The unit should poll the server occasionally until the certificate is returned. However, if you know that the certificate request has been allowed having contacted the System Administrator you can simply press the Enroll Certificate Request button again rather than wait for the TransPort to re-poll.

NB: If you are the CA Server Administrator and you have received the *Pending* enrollment result, see section 5.4.9 to see how you would issue and approve or deny a certificate request. Otherwise skip to paragraph 6.
4.4.7 Identifying the CA certificates

To complete the previous task you would normally need to determine which certificate is used for what task. For the purpose of this application note these have already been determined but for future reference the following information will be useful.

If only one CA certificate is returned, it is a trivial task. When three are returned, you need to display the certificates using the ‘view’ button having selected a CA certificate from the drop down list and investigate the attributes of the certificate.

Identifying the CA certificate:

This certificate will have matching Issuer and Subject fields. It may have a V3 extension which shows something like...

X509v3 Basic Constraints: critical

CA: TRUE

Identifying the encryption certificate:

This certificate will have an Issuer which matches the CA certificate. It will probably have a V3 extension something like...

X509v3 Key Usage: critical

Key Encipherment, Data Encipherment

Identifying the signature certificate:

This certificate will have an Issuer which matches the CA certificate. It will probably have a V3 extension something like...

X509v3 Key Usage: critical

Digital Signature, Non Repudiation

For example the following screen shot of the same page after clicking a ‘view’ button to determine which of the CA certificates is the encryption certificate.
Certificate file: cal.pem

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 56:42:1a:f8:00:00:00:00:00:00:03
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: CN=testCA
 Validity
 Not Before: Jul 3 14:43:02 2009 GMT
 Not After: Jul 3 14:53:02 2010 GMT
 Subject: C=UK,
 ST=Yorkshire,
 L=Ilkley,
 O=Digi International,
 OU=Tech Support,
 CN=sarianca_demo/emailAddress=support@digi.co.uk
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 82:a6:8e:79:4e:9c:e5:8c:5c:e7:44:12:2e:0b:8e:9f:
 63
 Exponent: 65537 (0x10001)

X509v3 extensions:
 X509v3 Key Usage: critical
 Key Encipherment, Data Encipherment
 S/MIME Capabilities:
 0'0...*H........80...*H........80...+....
4.4.8 Issuing a Signed Certificate on the Microsoft® 2003 Server

Login to the Microsoft® 2003 Server with an appropriate System Administrator account.

With your mouse click START → ALL PROGRAMS → ADMINISTRATIVE TOOLS → CERTIFICATION AUTHORITY

The Certification Authority console will open.
To sign and issue a pending certificate request click on the **Pending Requests** directory.

Right-click the pending certificate and highlight the ‘**All Tasks**’ option which will reveal another menu.

From the new menu select the ‘**Issue**’ option to sign the certificate request.

![Image of Certification Authority](image)

Once the certificate request has been signed you can wait for the router to automatically re-poll the CA server over time or re-poll manually by again clicking on the **Enroll Certificate Request** button as before.

You should now see a success message indicating that the certificate request has been signed and returned by the CA. This is the routers public key.

If you wish to view your public key certificate, browse to CONFIGURATION → SECURITY → CERTIFICATES → SCEP. In the Certificate filename: parameter drop down list select the name of the public key certificate (certdem2.pem in this case) and click the view button.
5 VPN CLIENT CERTIFICATES

5.1 Ethernet 0 LAN Configuration

The following configures the Ethernet local area network IP address for the VPN responder.

Browse to CONFIGURATION → INTERFACES → ETHERNET → ETH 0 → CONFIGURE

![Ethernet Configuration Interface]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address:</td>
<td>192.168.0.254</td>
<td>Configures the IP address for the LAN</td>
</tr>
<tr>
<td>Mask:</td>
<td>255.255.255.0</td>
<td>Configures the subnet mask for the LAN</td>
</tr>
</tbody>
</table>

5.2 Time and Date

Any certificates stored on the TransPort’s flash will have a validity period. Therefore it is important that the TransPort is configured with the correct time and date.

Browse to CONFIGURATION → SYSTEM → TIME

Amend the time and date as appropriate and click Set Time button.
5.3 Wireless WAN Interface Configuration

By default on the WR44 W-WAN router, PPP 1 is configured for use with 3G.

Here you enter the details of your 3G/GPRS account and enable IPSEC on this interface.

Browse to Configuration - Network > Interfaces > Advanced > PPP 1.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username:</td>
<td>username</td>
<td>Enter the username for your 3G/GPRS account</td>
</tr>
<tr>
<td>Password:</td>
<td>password</td>
<td>Enter the password for your 3G/GPRS account</td>
</tr>
<tr>
<td>Confirm Password:</td>
<td>password</td>
<td>Confirm the password for your 3G/GPRS account</td>
</tr>
<tr>
<td>IPSEC:</td>
<td>ON</td>
<td>Enables IPSEC on PPP 1 (ADSL) Interface</td>
</tr>
</tbody>
</table>

NB: When configuring a router with a dynamic WAN IP address as an IPSEC “initiator” such as this example, it is recommended that you choose the IPSEC option “On –
Browse to **Configuration - Network > Interfaces > Mobile**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APN:</td>
<td>Your_APN</td>
<td>Enter the APN given by the 3G/GPRS provider</td>
</tr>
<tr>
<td>PIN:</td>
<td>SIM_PIN</td>
<td>Enter your SIM card PIN (if required)</td>
</tr>
</tbody>
</table>
5.4 Creating the Private Key and Certificate Request

Obtain a Challenge Password for the Certificate Request.

From a PC browse to the Microsoft® CA server web page using URL http://<hostname>/certsrv/mscep/mscep.dll (as detailed in “Microsoft® 2003 server Configuration) and make a note of the challenge password.

5.4.1 Configure the Certificate Request page

Browse to CONFIGURATION → SECURITY → CERTIFICATES → CERTIFICATE REQUEST

Enter the above challenge password and configure all other fields as appropriate. These details will form part of the certificate request and thus form part of the signed public key certificate.

NOTE: The Common Name (case sensitive) field is important as this will be used as the ID for the device for the IKE negotiations.
<table>
<thead>
<tr>
<th>SCEP Server IP address:</th>
<th>10.1.10.240</th>
<th>Port:</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path:</td>
<td>certry\msecp\mscep.dll (Microsoft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application:</td>
<td>yklient.exe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA identifier:</td>
<td>testca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA certificate:</td>
<td>TESTCA-CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA encryption certificate:</td>
<td>TESTCA-MSCEP-RA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA signature certificate:</td>
<td>TESTCA-MSCEP-RA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA Private Key:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Use Existing Key</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Generate new key with size</td>
<td>1024 bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private key filename:</td>
<td>privdkm2.exe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrollment Password:</td>
<td>4BE12A4E4E1D3D3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country Code (C):</td>
<td>UK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State or Province (ST):</td>
<td>Yorkshire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locality (L):</td>
<td>Key</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation (O):</td>
<td>Digi International</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisational unit (OU):</td>
<td>Tech Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-mail:</td>
<td>uksupport@digi.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unstructured name:</td>
<td>(Optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digest Algorithm:</td>
<td>MD5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ignore NONCE in SCEP response:</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Setting</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Challenge Password:</td>
<td>4BE12AE4AE41D3D3</td>
<td>Enter the Challenge Password issued by the SCEP server</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td>UK</td>
<td>Enter a two character representation of the country</td>
<td></td>
</tr>
<tr>
<td>Common Name:</td>
<td>WR44</td>
<td>Enter a Common Name of your choice for the router’s ID (case sensitive).</td>
<td></td>
</tr>
<tr>
<td>Locality:</td>
<td>Ilkley</td>
<td>The Location of the router</td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td>Digi International</td>
<td>An appropriate Company name</td>
<td></td>
</tr>
<tr>
<td>Organisational Unit:</td>
<td>Tech Support</td>
<td>An appropriate organisational unit</td>
<td></td>
</tr>
<tr>
<td>State:</td>
<td>Yorkshire</td>
<td>State or County or Province</td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td>uksupport@digi.com</td>
<td>An appropriate email Address</td>
<td></td>
</tr>
<tr>
<td>Unstructured Name:</td>
<td></td>
<td>Optional descriptive text</td>
<td></td>
</tr>
<tr>
<td>Digest Algorithm:</td>
<td>MD5</td>
<td>Choose either MD5 or SHA1. This is used when signing the certificate request</td>
<td></td>
</tr>
</tbody>
</table>

5.4.2 Create the Private Key and Certificate Request Files

Now the details for the certificate request have been entered, the TransPort must create a Private Key and from this the certificate request will be created.

NOTE: This method assumes that a private key does NOT already exist. Both the private key and certificate request will be created simultaneously. If the New key size: parameter is set to OFF then a private key will not be generated.

Browse to **Administrator – X.509 Certificate Management > Key Generation.**
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Key Size:</td>
<td>1024</td>
<td>Size of the private key in bits</td>
</tr>
<tr>
<td>Private Key filename:</td>
<td>privdem2.pem</td>
<td>Enter a name for the private key (must be prefixed with “priv” and have a .pem extension).</td>
</tr>
</tbody>
</table>

Click the **Generate Key** button. You will see some indication of the progress as the TransPort generates the Private Key file and certificate request as follows;

5.5 Using SCEP to retrieve the CA certificates

Ensure the TransPort router is able to connect to the CA Server.

Browse to **Administration - X.509 Certificate Management > Certificate Authorities (CAs).**
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host:</td>
<td>10.1.10.249</td>
<td>The IP address/hostname of your CA server</td>
</tr>
<tr>
<td>Remote port:</td>
<td>0</td>
<td>MS SCEP uses HTTP port 80 to carry the requests unless you specify otherwise here.</td>
</tr>
<tr>
<td>Path:</td>
<td>certsrv/mscep/mscep.dll</td>
<td>Select 'Microsoft SCEP' from drop down list and the path will be entered automatically</td>
</tr>
<tr>
<td>Application:</td>
<td>pkiclient.exe</td>
<td>This represents the SCEP application on the server</td>
</tr>
<tr>
<td>CA Identifier:</td>
<td>testca</td>
<td>CA identifier</td>
</tr>
</tbody>
</table>

Click the **Get Ca certificate/s** button to retrieve the CA certificates from the Microsoft® 2003 Server. An indication of progress will be shown as follows;
The fingerprint of each certificate is displayed. This fingerprint of the CA certificate should be checked (using some out of band mechanism) against the fingerprint of the CA certificates as advertised by the server. For the Microsoft® server the CA certificate fingerprint is displayed when the page http://<hostname>/certsrv/mscep/mscep.dll is accessed.

If the fingerprints do not match, it possibly means that you have some attacker sitting between the router and the server.

If you open telnet session to the router and issue the dir command, you will see the CA certificates with the ca file prefix.
5.6 Using SCEP to Enroll the Certificate Request

Next send the certificate request to the CA server for signing. This will be the router’s ‘public key’. The SCEP configuration page can be completed in order to enroll the certificate request.

Browse to **CONFIGURATION → SECURITY → CERTIFICATES → SCEP**.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host:</td>
<td>10.1.10.249</td>
<td>The IP address/hostname of your CA server</td>
</tr>
<tr>
<td>Remote port:</td>
<td>0</td>
<td>MS SCEP uses HTTP port 80 to carry the requests unless you specify otherwise here.</td>
</tr>
<tr>
<td>Path:</td>
<td>certsrv/mscep/mscep.dll</td>
<td>Select Microsoft SCEP from drop down list and the path will be entered automatically</td>
</tr>
<tr>
<td>Application:</td>
<td>pkiclient.exe</td>
<td>This represents the SCEP application on the server</td>
</tr>
<tr>
<td>CA Identifier:</td>
<td>Testca</td>
<td>CA identifier</td>
</tr>
<tr>
<td>Private Key filename:</td>
<td>privdem2.pem</td>
<td>The name of the private key created earlier</td>
</tr>
<tr>
<td>CA certificate filename:</td>
<td>ca2.pem</td>
<td>Enter the name of the CA certificate.</td>
</tr>
<tr>
<td>CA encryption certificate filename:</td>
<td>ca1.pem</td>
<td>Enter the name of the CA encryption certificate.</td>
</tr>
<tr>
<td>CA signature certificate filename:</td>
<td>ca0.pem</td>
<td>Enter The name of the CA signature certificate</td>
</tr>
</tbody>
</table>

5.6.1 Identifying the CA certificates

See “Identifying the CA certificates” in section 5.6.1

5.6.2 Signing the certificate request

Once the SCEP configuration page has been completed click the **Enroll Certificate Request** button.
You should receive one of three responses. In this example the CA Server has returned a **Success** message.

Failure - The request failed. Check that the correct CA certificates have been used. Check that the challenge password is correct. Check that the correct certificate request has been specified, and that the correct private key has been used. Check the server logs to see what the problem is.

Success - The response should contain the signed certificate.

Pending - The server has our request, but hasn’t signed it yet. It may require some input by the System Administrator. The unit should poll the server occasionally until the certificate is returned. However, if you know that the certificate request has been allowed having contacted the System Administrator you can simply press the **Enroll Certificate Request** button again rather than wait for the TransPort to re-poll.

NB: If you are the CA Server Administrator and you have received the **Pending** enrollment result, see section 5.7 to see how you would issue and approve or deny a certificate request. Otherwise skip to paragraph 7.
6.1 Configure IKE (Internet Key Exchange)

IKE is the first stage in establishing a secure link between two endpoints. The VPN Responder will act as the IKE ‘responder’ and as such will not initiate VPN tunnels. By default the DR6410 MKII responder setup is configured to accept the full range of authentication and encryption algorithms available.

Browse to **Configuration - Network > Virtual Private Networking (VPN) > IPsec > IKE > IKE Responder**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA private key file:</td>
<td>privdem1.pem</td>
<td>Enter the name of the private key file</td>
</tr>
</tbody>
</table>

Browse to : **Configuration - Network > Virtual Private Networking (VPN) > IPsec > IKE > IKE Debug**
Configure IPSEC

The IPSEC itself is configured in the eroutes (encrypted routes). The eroutes define the characteristics of the encrypted routes i.e. local and remote subnets, authentication and encryption methods etc.

Browse to

Configuration - Network > Virtual Private Networking (VPN) > IPsec > IPsec Tunnels > IPsec 0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable IKE Debug</td>
<td>Tick</td>
<td>Allow debug of IKE</td>
</tr>
<tr>
<td>Debug level:</td>
<td>Very High</td>
<td>Set the maximum debug level for the analyser trace</td>
</tr>
</tbody>
</table>
Configuration - Network > Virtual Private Networking (VPN) > IPsec > IPsec Tunnels > IPsec 0

IPsec 0

Description: Responder

The IP address or hostname of the remote unit: [Field]

Use _as a backup unit_ [Field]

<table>
<thead>
<tr>
<th>Local LAN</th>
<th>Remote LAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address: 172.16.0.0</td>
<td>IP Address: 192.168.0.0</td>
</tr>
<tr>
<td>Mask: 255.255.0.0</td>
<td>Mask: 255.255.255.0</td>
</tr>
<tr>
<td>Use interface [] []</td>
<td>Use interface [] []</td>
</tr>
</tbody>
</table>

Use these settings for the local LAN

- Use these settings for the remote LAN

Use the following security on this tunnel

- Off []
- Preshared Keys []
- XAUTH Init Preshared Keys []
- RSA Signatures []
- XAUTH Init RSA []

RSA Key File: []

Our ID: []

Our ID type [IKE ID [] FQDN [] User FQDN [] IPv4 Address []]

Remote ID: []

Use AES (128 bit keys) [] encryption on this tunnel

Use MD5 [] authentication on this tunnel

Use Diffie Hellman group: []

Use IKE [v1 []] to negotiate this tunnel

Use IKE configuration: []

Bring this tunnel up

- All the time []
- Whenever a route to the destination is available []
- On demand []

If the tunnel is down and a packet is ready to be sent [] []

Bring this tunnel down if it is idle for [] hrs [] mins [] secs

Renew the tunnel after [] hrs [] mins [] secs

[] Kbytes [] of traffic
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer ID:</td>
<td>WR44</td>
<td>Common name specified in the peer’s public key *</td>
</tr>
<tr>
<td>Our ID:</td>
<td>DR6000</td>
<td>Common name specified in our public key *</td>
</tr>
<tr>
<td>Local subnet IP address:</td>
<td>172.16.0.0</td>
<td>Enter the local subnet IP address</td>
</tr>
<tr>
<td>Local subnet mask:</td>
<td>255.255.0.0</td>
<td>Enter the local subnet mask</td>
</tr>
<tr>
<td>Remote subnet IP address:</td>
<td>192.168.0.0</td>
<td>Enter the remote subnet IP address</td>
</tr>
<tr>
<td>Remote subnet mask:</td>
<td>255.255.255.0</td>
<td>Enter the remote subnet mask</td>
</tr>
<tr>
<td>ESP authentication algorithm:</td>
<td>MD5</td>
<td>Select MD5 as the authentication algorithm **</td>
</tr>
<tr>
<td>ESP encryption algorithm:</td>
<td>AES</td>
<td>Select AES as the encryption algorithm **</td>
</tr>
<tr>
<td>Duration (s):</td>
<td>1200</td>
<td>Enter 1200 seconds for the IPSEC lifetime</td>
</tr>
<tr>
<td>Authentication method:</td>
<td>RSA Signatures</td>
<td>Select RSA signatures for the authentication method</td>
</tr>
</tbody>
</table>

* If you wish to check the common name used in the public key you can view the contents of the public key as follows;

Browse to CONFIGURATION ➔ SECURITY ➔ CERTIFICATES ➔ SCEP

In the Certificate filename drop-down list select the public key certificate (certdem1.pem in this case) and click view. You will then be able to view the certificate and see the entry in the common name field.

** The authentication and encryption algorithms must match exactly the settings in the peer IPSEC router.
7 CONFIGURE IKE AND IPSEC – VPN CLIENT

7.1 Configure IKE (Internet Key Exchange)
IKE is the first stage in establishing a secure link between two endpoints. The VPN client will act as the IKE ‘initiator’ and as such will make first contact with the VPN responder. This is because the 3G/GPRS device is issued with a dynamic IP address from the provider which will change over time. This therefore makes it impossible for the VPN responder to know the client’s IP address unless the client initiates the VPN connection. The client’s current IP address will be included each time IKE is negotiated.

Browse to
Configuration - Network > Virtual Private Networking (VPN) > IPsec > IPsec Tunnels > IPsec 0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption algorithm:</td>
<td>3DES</td>
<td>Select 3DES for the IKE encryption algorithm *</td>
</tr>
<tr>
<td>Authentication algorithm:</td>
<td>SHA1</td>
<td>Select SHA1 for the IKE Authentication</td>
</tr>
<tr>
<td>Algorithm</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Duration (s):</td>
<td>1200</td>
<td>Enter 1200 seconds for the IKE lifetime **</td>
</tr>
<tr>
<td>RSA private key file:</td>
<td>privdem2.pem</td>
<td>Enter the name of the private key file</td>
</tr>
<tr>
<td>NAT traversal enabled:</td>
<td>YES</td>
<td>Enable NAT traversal</td>
</tr>
</tbody>
</table>

* The encryption/authentication algorithms must be within the threshold set by the VPN responder.

** It is advisable to set the IKE duration set to the same or lesser value to that of the VPN Responder.
Browse to: **Configuration - Network > Virtual Private Networking (VPN) > IPsec > IKE > IKE Debug**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable IKE Debug</td>
<td>Tick</td>
<td>Allow debug of IKE</td>
</tr>
<tr>
<td>Debug level:</td>
<td>Very High</td>
<td>Set the maximum debug level for the analyser trace</td>
</tr>
</tbody>
</table>
7.2 Configure IPSEC

Browse to CONFIGURATION → VPN → IPSEC → IPSEC EROUTES → EROUTE 0 - 9 → EROUTE 0.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer IP/Hostname:</td>
<td>213.152.58.85</td>
<td>Enter the WAN IP address of your VPN responder router</td>
</tr>
<tr>
<td>Peer ID:</td>
<td>DR6400</td>
<td>Common name specified in the peer’s public key *</td>
</tr>
<tr>
<td>Our ID:</td>
<td>WR44</td>
<td>Common name specified in our public key *</td>
</tr>
<tr>
<td>Local subnet IP address:</td>
<td>192.168.0.0</td>
<td>Enter the local subnet IP address</td>
</tr>
<tr>
<td>Local subnet mask:</td>
<td>255.255.255.0</td>
<td>Enter the local subnet mask</td>
</tr>
<tr>
<td>Remote subnet IP address:</td>
<td>172.16.0.0</td>
<td>Enter the remote subnet IP address</td>
</tr>
<tr>
<td>Remote subnet mask:</td>
<td>255.255.0.0</td>
<td>Enter the remote subnet mask</td>
</tr>
<tr>
<td>ESP authentication</td>
<td>MD5</td>
<td>Select MD5 as the authentication algorithm **</td>
</tr>
<tr>
<td>ESP encryption algorithm:</td>
<td>AES</td>
<td>Select AES as the encryption algorithm **</td>
</tr>
<tr>
<td>Duration (s):</td>
<td>1200</td>
<td>Enter 1200 seconds for the IPSEC lifetime</td>
</tr>
<tr>
<td>No SA action</td>
<td>Use IKE</td>
<td>If no SA action then Use IKE</td>
</tr>
<tr>
<td>Create SA’s automatically</td>
<td>Yes</td>
<td>Create Security Associations automatically</td>
</tr>
<tr>
<td>Authentication method:</td>
<td>RSA</td>
<td>Select RSA signatures for the authentication method</td>
</tr>
</tbody>
</table>

* If you wish to check the common name used in the public key you can view the contents of the public key as follows:

Browse to CONFIGURE → CERTIFICATES → SCEP

In the Certificate filename drop-down list select the public key certificate (certdem2.pem in this case) and click view. You will then be able to view the certificate and see the entry in the common name field.

** The authentication and encryption algorithms must be within the threshold set by the VPN responder
8.1 Check the WAN Link is Active

When browsing the TransPort’s web interface you can view the status of any interface. The following screen shot shows the status of the WR44 Wireless WAN interface. The presence of an IP address in the IP Address field shows the ADSL link is up.

Browse to Management - Connections > PPP Connections > PPP 1

NB: The default PPP instance for the WAN interface may differ depending on the type of router.

8.2 Check the IPSEC Tunnel is Active

8.2.1 IPSEC PEERS

The IPSec Peers shows the WAN address of all the VPN Clients/Hosts that are currently in session.

Browse to STATUS → IPSEC → IPSEC PEERS
8.2.2 IKE SA’s

The IKE SA’s status page shows the current active IKE security associations.

Browse to STATUS → IPSEC → IKE SA’s

8.2.3 IPSEC SA’s

The IPSEC SA’s status page shows the current active IPSEC security associations. Each IPSEC VPN tunnel has IPSEC security associations for both inbound and outbound traffic.

Browse to STATUS → IPSEC → IPSEC SA’s
8.2.4 Eventlog

You can also check the eventlog to see if the VPN tunnel establishes.

Browse to DIAGNOSTICS → EVENTLOG.

15:59:16, 04 Jan 2010, Eroute 0 VPN up peer: DR6000
15:59:16, 04 Jan 2010, New IPSec SA created by DR6000
15:59:15, 04 Jan 2010, (2) IKE Notification: Initial Contact, RX
15:59:15, 04 Jan 2010, Event delay, Logger busy
15:59:15, 04 Jan 2010, (3) IKE Notification: Responder Lifetime, RX
15:59:15, 04 Jan 2010, (2) New Phase 2 IKE Session 213.152.58.85, Initiator
15:59:15, 04 Jan 2010, (1) IKE Keys Negotiated. Peer:
15:59:14, 04 Jan 2010, (1) New Phase 1 IKE Session 213.152.58.85, Initiator
15:59:14, 04 Jan 2010, IKE Request Received From Eroute 0
15:59:14, 04 Jan 2010, Default Route 0 Available, Activation

8.3 Test the IPSEC Routing

When an IP packet is received by a VPN Responder/Client TransPort it must meet certain criteria for it to be passed through the VPN tunnel. I.e. the source and destination IP address MUST match that of one of the configured eroutes and IPSec SA's.

In brief, the VPN tunnel in this application note will pass data from network on subnet 192.168.0.0/24 to network on subnet 172.16.0.0/16 and vice versa (see diagram on page 3).

Using the TransPort's analyser trace we will see evidence of data being routed through the IPSEC VPN Tunnel. In this example computer A (192.168.0.10) will ping Server B (172.16.0.10).

NOTE: The WR44 3G Router has been issued with a private (NAT'ed) IP address (10.16.33.234) from the wireless network as is usually the case in the UK. Hence NAT Traversal is being used.

To view the analyser trace browse to DIAGNOSTICS → ANALYSER → ANALYSER TRACE.

Items of particular interest have been highlighted in red in the decoded IP packets.

The WR44 VPN Client receives a PING (echo request) on interface Ethernet 0 from computer A (192.168.0.10), which is to be routed over the VPN tunnel to Server B (172.16.0.10).

----- 27-10-2005 11:36:19.810 -----

45 00 00 3C 9C 67 00 00 80 01 31 8D C0 A8 00 0A E...œg..€.1
AC 10 00 0A 08 00 41 5C 02 00 0A 00 61 62 63 64 A.....abcd
65 66 67 68 69 6A 68 6C 6D 6E 6F 70 71 72 73 74 efghijklmnopqrst
75 76 77 61 62 63 64 65 66 67 68 69 uvwabcdefghi

IP (In) From REM TO LOC IFACE: ETH 0
The PING is passed to the PPP 1 interface for routing over the Wireless network.
The PING is then encapsulated in a UDP IKE FLOAT (NAT-Traversal) Packet.

Note: the source IP addresses of the NAT-Traversal packet is that of the WAN interface of VPN Client (10.16.33.234) and the destination IP address is that of the WAN Interface of the VPN Responder (213.152.85.8).

IP (Final) From LOC TO REM IFACE: PPP 1
45 IP Ver: 4
00 Hdr Len: 20
00 TOS: Routine
00 Delay: Normal
00 Throughput: Normal
00 Reliability: Normal
00 80 Length: 128
00 0E ID: 14
00 00 Frag Offset: 0
Congestion: Normal
May Fragment
Last Fragment

FA

TTL: 250

11

Proto: UDP

84 77

Checksum: 33911

0A 10 21 EA

Src IP: 10.16.33.234

D5 98 3A 55

Dst IP: 213.152.85.8

UDP:

11 94

SRC Port: IKE FLOAT (4500)

11 94

DST Port: IKE FLOAT (4500)

00 6C

Length: 108

00 00

Checksum: 0

The WR44 VPN Client receives a NAT-Traversal packet on interface PPP 1 from the DR6410 MKII VPN Responder (213.152.85.8).

----- 27-10-2005 11:36:20.430 ----- 45 00 00 80 00 Od 00 00 E8 11 96 78 D5 98 3A 55 E..€......-x...U 0A 10 21 EA 11 94 11 94 00 6C 00 00 03 F4 6E 4E".".l....nN 00 00 00 00 BC F0 60 0A 6E 80 0F 7E 67 ED 69 DA¼...n€..g.ï 4A 1D B4 87 15 3A A4 E8 EB 4F 09 FE C7 41 54 99 J.'...r...O..ÇAT. 9B B3 CC 1F 49 98 CD 31 72 D7 DF E1 D7 33 D3 E6 .ªI.I.Îr....3ø 71 72 03 A6 E0 32 C4 AD 1B 68 13 AF 43 2B 8B DC qr..à2À..h..C.<Ü E3 1C 7F CD 4C 13 70 FD 6A E9 BE A0 F6 F7 A3 3B ...îL.p.j.% .×Î. F2 38 03 FA F2 C7 01 B9 58 3A 78 D2 0D 93 4C 17 .8...Ç.'X.xò."L.

IP (In) From REM TO LOC IFACE: PPP 1
45

IP Ver: 4

Hdr Len: 20

00

TOS: Routine

Delay: Normal

Throughput: Normal

Reliability: Normal

00 80

Length: 128

00 0D

ID: 13

00 00

Frag Offset: 0

Congestion: Normal

May Fragment

Last Fragment

E8

TTL: 232

11

Proto: UDP

61
The WR44 VPN Client un-packs the encrypted (ESP) packet from the NAT-Traversal packet.

The Encrypted PING REPLY (Echo reply) is de-crypted.
NOTE: The source IP address is that of **Server B (172.16.0.10)** and the destination IP address is that of **Computer A (192.168.0.10)**.

----- 27-10-2005 11:36:20.440 -----
45 00 00 3C 02 B0 00 00 7F 01 CC 44 AC 10 00 0A E....".....ID....
C0 A8 00 0A 00 00 49 5C 02 00 0A 00 61 62 63 64 ".".....I.....abcd
65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74
efghijklmnopqrstuvwxyz
75 76 77 61 62 63 64 65 66 67 68 69

IP (Cont) From REM TO LOC IFACE: PPP 1
45
IP Ver: 4
Hdr Len: 20
00
TOS: Routine
Delay: Normal
Throughput: Normal
Reliability: Normal
00 3C
Length: 60
02 B0
ID: 688
00 00
Frag Offset: 0
Congestion: Normal
May Fragment
Last Fragment
7F
TTL: 127
01
Proto: ICMP
CC 44
Checksum: 52292
AC 10 00 0A
Src IP: 172.16.0.10
C0 A8 00 0A
Dst IP: 192.168.0.10
ICMP:
00
Type: ECHO REPLY
00
Code: 0
49 5C
Checksum: 18780

The PING REPLY is routed out of interface Ethernet 0 to Computer A (192.168.0.10).

----- 27-10-2005 11:36:20.440 -----
45 00 00 3C 02 B0 00 00 7E 01 CD 44 AC 10 00 0A E....".....ID....
C0 A8 00 0A 00 00 49 5C 02 00 0A 00 61 62 63 64 ".".....I.....abcd
65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74
efghijklmnopqrstuvwxyz
75 76 77 61 62 63 64 65 66 67 68 69

IP (Final) From LOC TO REM IFACE: ETH 0

63
IP Version: 4
Header Length: 20
Type of Service: Routine
Delay: Normal
Throughput: Normal
Reliability: Normal
Length: 60
Identification: 688
Fragment Offset: 0
Congestion: Normal
Time to Live: 126
Protocol: ICMP
Checksum: 52548
Source IP: 172.16.0.10
Destination IP: 192.168.0.10
ICMP Type: ECHO REPLY
Code: 0
Checksum: 18780
This is the configuration file from the VPN Responder (DR6410 MkII) used in this application note.

```
eth 0 IPaddr "172.16.0.254"
eth 0 mask "255.255.0.0"
eth 0 bridge ON
eth 0 ipanon ON
lapb 0 ans OFF
lapb 0 tinact 120
lapb 1 tinact 120
lapb 3 dtemode 0
lapb 3 asyport 7
lapb 3 mux_0710 ON
lapb 4 dtemode 0
lapb 4 dlc 1
lapb 4 asyport 7
lapb 4 virt_async "mux0"
lapb 4 mux_0710 ON
lapb 5 dtemode 0
lapb 5 dlc 2
lapb 5 asyport 7
lapb 5 virt_async "mux1"
lapb 5 mux_0710 ON
lapb 6 dtemode 0
lapb 6 dlc 3
lapb 6 asyport 7
lapb 6 virt_async "mux2"
lapb 6 mux_0710 ON
def_route 0 ll_ent "ppp"
def_route 0 ll_add 1
def_route 1 ll_ent "PPP"
def_route 1 ll_add 3
def_route 2 ll_ent "PPP"
def_route 2 ll_add 2
eroute 0 peerid "WR44"
eroute 0 ourid "DR6000"
eroute 0 locip "172.16.0.0"
eroute 0 locmsk "255.255.0.0"
eroute 0 remip "192.168.0.0"
eroute 0 remmsk "255.255.255.0"
eroute 0 ESPauth "MD5"
eroute 0 ESPenc "AES"
eroute 0 lkbytes 0
route 0 authmeth "RSA"
dhcp 0 IPmin "172.16.0.1"
dhcp 0 mask "255.255.0.0"
dhcp 0 gateway "172.16.0.254"
dhcp 0 DNS "172.16.0.254"
dhcp 0 wifionly ON
ppp 0 timeout 300
ppp 1 IPaddr "0.0.0.0"
ppp 1 username "Enter ADSL Username"
ppp 1 timeout 0
```
ppp 1 aodion 1
ppp 1 immoos ON
ppp 1 autoassert 1
ppp 1 ipsec 2
ppp 1 echo 10
ppp 1 echodropcnt 5
ppp 1 liiface "AAL"
ppp 2 l_pap OFF
ppp 2 l_chap OFF
ppp 2 l_addr ON
ppp 2 r_pap ON
ppp 2 r_chap ON
ppp 2 r_addr OFF
ppp 2 IPaddr "1.2.3.5"
ppp 2 username "Enter ISDN Username"
ppp 3 l_pap OFF
ppp 3 l_chap OFF
ppp 3 l_addr ON
ppp 3 r_chap OFF
ppp 3 r_addr OFF
ppp 3 IPaddr "0.0.0.0"
ppp 3 username "ENTER WWAN Username"
ppp 3 epassword "KD51SVJQVv="
ppp 3 phonenum "**98*1#"
ppp 3 timeout 0
ppp 3 use_modem 1
ppp 3 aodion 1
ppp 3 immoos ON
ppp 3 autoassert 1
ppp 3 defpak 16
ppp 4 defpak 16
ike 0 privrsakey "privdem1.pem"
ike 0 deblevel 3
modemcc 0 asy_add "mux1"
modemcc 0 info_asy_add "mux2"
modemcc 0 init_str "+CGQREQ=1"
modemcc 0 init_str1 "+CGQMIN=1"
modemcc 0 apn "Your.APN.Goes.Here"
modemcc 0 link_retries 10
modemcc 0 stat_retries 30
modemcc 0 sms_interval 1
modemcc 0 init_str_2 "+CGQREQ=1"
modemcc 0 init_str1_2 "+CGQMIN=1"
modemcc 0 apn_2 "Your.APN.Goes.Here"
modemcc 0 link_retries_2 10
modemcc 0 stat_retries_2 30
modemcc 0 sms_interval_2 1
modemcc 1 asy_add "mux0"
modemcc 1 link_retries 10
ana 0 anon ON
ana 0 l lion ON
ana 0 lapdon 0
ana 0 ipaddfilt "~10.1.253.251"
ana 0 logsize 45
cmd 0 unitid "ss%s>"
cmd 0 cmdnua "99"
This is the configuration file from the VPN Client (WR44) used in this application note.

eth 0 IPaddr "192.168.0.254"
lapb 0 ans OFF
lapb 0 tinact 120
lapb 1 tinact 120
lapb 3 dtemode 0
lapb 4 dtemode 0
lapb 5 dtemode 0
lapb 6 dtemode 0
def_route 0 ll_ent "ppp"
def_route 0 ll_add 1
eroute 0 descr "Initiator"
eroute 0 peerip "213.152.85.8"
eroute 0 peerid "DR6000"
eroute 0 ourid "WR44"
eroute 0 locip "192.168.0.0"
eroute 0 locmsk "255.255.255.0"
eroute 0 remip "172.16.0.0"
eroute 0 remmsk "255.255.0.0"
eroute 0 ESPPreauth "MD5"
eroute 0 ESPPreenc "AES"
eroute 0 lcbits 0
reroute 0 authmeth "RSA"
eroute 0 nosa "TRY"
eroute 0 autosa 1
dhcp 0 IPmin "192.168.0.1"
dhcp 0 mask "255.255.255.0"
dhcp 0 gateway "192.168.0.254"
dhcp 0 DNS "192.168.0.254"
dhcp 0 respdelms 500
ppp 0 timeout 300
ppp 1 r_chap OFF
ppp 1 IPaddr "0.0.0.0"
ppp 1 phonenum "**98*1#"
ppp 1 timeout 0
ppp 1 use_modem 1
ppp 1 aodion 1
ppp 1 autoassert 1
ppp 1 ipsec 1
ppp 1 ipanon ON
ppp 3 defpak 16
ppp 4 defpak 16
ike 0 encalg "3DES"
ike 0 authalg "SHA1"
ike 0 privrsakey "privdem2.pem"
ike 0 deblevel 4
modemcc 0 info_asy_add 6
modemcc 0 init_str "+CGQREQ=1"
modemcc 0 init_str1 "+CGQMIN=1"
modemcc 0 apn "internet"
modemcc 0 link_retries 10
modemcc 0 stat_retries 30
modemcc 0 sms_interval 1
modemcc 0 sms_access 1
modemcc 0 sms_concat 0
modemcc 0 init_str_2 "+CGQREQ=1"
modemcc 0 init_str1_2 "+CGQMIN=1"
modemcc 0 apn_2 "Your.APN.goes.here"
modemcc 0 link_retries_2 10
modemcc 0 stat_retries_2 30
ana 0 anon ON
ana 0 l1on ON
ana 0 lapdon 0
ana 0 asyon 1
ana 0 logsize 45
cmd 0 unitid "ss%s>"
cmd 0 cmdnua "99"
cmd 0 hostname "digi.router"
cmd 0 asyled_mode 2
cmd 0 tremto 1200
user 0 access 0
user 1 name "username"
user 1 epassword "KD51SVJDVVg=
user 1 access 0
user 2 access 0
user 3 access 0
user 4 access 0
user 5 access 0
user 6 access 0
user 7 access 0
user 8 access 0
user 9 access 0
local 0 transaccess 2
sslsvr 0 certfile "cert01.pem"
sslsvr 0 keyfile "privrsa.pem"
ssh 0 hostkey1 "privSSH.pem"
ssh 0 nb_listen 5
ssh 0 v1 OFF
creq 0 challenge_pwd "E7AA437DB0423FA1"
creq 0 country "UK"
creq 0 commonname "WR44"
creq 0 locality "Ilkley"
creq 0 orgname "Digi International"
creq 0 org_unit "Tech Support"
creq 0 state "Yorkshire"
creq 0 email "uksupport@digi.com"
creq 0 digest "MD5"
scep 0 host "10.1.253.251"
scep 0 path "certsrv/mscep/mscep.dll"
scep 0 caident "ACP"
scep 0 keyfile "privdem2.pem"
scep 0 reqfile "creq.pem"
scep 0 certfile "certdem2.pem"
scep 0 cafile "ca2.pem"
scep 0 caencfile "ca1.pem"
scep 0 casigfile "ca0.pem"
Digi Transport Versions

This is the firmware/hardware information from the VPN Responder (DR6410 MKII) used in this application note.

<table>
<thead>
<tr>
<th>Software Package</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digi TransPort DR6410-EIA Mk.II DSL2/2+ Router</td>
<td>Ser#:92909 HW Revision: 7502a</td>
</tr>
<tr>
<td>Software Build Ver5087</td>
<td></td>
</tr>
<tr>
<td>ARM Bios Ver 5.80</td>
<td>v35 197MHz B128-M128-F300-0100000,0 MAC:00042d016aed</td>
</tr>
<tr>
<td>Power Up Profile</td>
<td>0</td>
</tr>
<tr>
<td>Async Driver</td>
<td>Revision: 1.19 Int clk</td>
</tr>
<tr>
<td>Ethernet Port Isolate Driver</td>
<td>Revision: 1.11</td>
</tr>
<tr>
<td>ISDN ST 21150 Driver</td>
<td>Revision: 1.7</td>
</tr>
<tr>
<td>Firewall</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>EventEdit</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>Timer Module</td>
<td>Revision: 1.1</td>
</tr>
<tr>
<td>AAL</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>ADSL</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>(B)USBHOST</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>L2TP</td>
<td>Revision: 1.10</td>
</tr>
<tr>
<td>PPTP</td>
<td>Revision: 1.00</td>
</tr>
<tr>
<td>TACPLUS</td>
<td>Revision: 1.00</td>
</tr>
<tr>
<td>MySQL</td>
<td>Revision: 0.01</td>
</tr>
<tr>
<td>LAPB</td>
<td>Revision: 1.12</td>
</tr>
<tr>
<td>LAPD</td>
<td>Revision: 1.16</td>
</tr>
<tr>
<td>TEI Management</td>
<td>Revision: 1.6</td>
</tr>
<tr>
<td>BRI Call Control Layer</td>
<td>Revision: 1.11</td>
</tr>
<tr>
<td>X25 Layer</td>
<td>Revision: 1.19</td>
</tr>
<tr>
<td>MACRO</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>PAD</td>
<td>Revision: 1.4</td>
</tr>
<tr>
<td>X25 Switch</td>
<td>Revision: 1.7</td>
</tr>
<tr>
<td>V120</td>
<td>Revision: 1.16</td>
</tr>
<tr>
<td>TPAD Interface</td>
<td>Revision: 1.12</td>
</tr>
<tr>
<td>SCRIBATSK</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>BASTSK</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>ARM Sync Driver</td>
<td>Revision: 1.18</td>
</tr>
<tr>
<td>TCP (HASH mode)</td>
<td>Revision: 1.14</td>
</tr>
<tr>
<td>TCP Utils</td>
<td>Revision: 1.13</td>
</tr>
<tr>
<td>PPP</td>
<td>Revision: 1.19</td>
</tr>
<tr>
<td>WEB</td>
<td>Revision: 1.5</td>
</tr>
<tr>
<td>SMTP</td>
<td>Revision: 1.1</td>
</tr>
<tr>
<td>FTP Client</td>
<td>Revision: 1.5</td>
</tr>
<tr>
<td>FTP</td>
<td>Revision: 1.4</td>
</tr>
<tr>
<td>IKE</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>Po11ANS</td>
<td>Revision: 1.2</td>
</tr>
<tr>
<td>PPPPOE</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>BRIDGE</td>
<td>Revision: 1.1</td>
</tr>
<tr>
<td>MODEM CC (Siemens MC75)</td>
<td>Revision: 1.4</td>
</tr>
<tr>
<td>FLASH Write</td>
<td>Revision: 1.2</td>
</tr>
<tr>
<td>Command Interpreter</td>
<td>Revision: 1.38</td>
</tr>
<tr>
<td>SSLCLI</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>OSPF</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>BGP</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>QOS</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>RADIUS Client</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>SSH Server</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>SCP</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>CERT</td>
<td>Revision: 1.0</td>
</tr>
</tbody>
</table>
This is the firmware hardware information from the VPN Client (WR44) used in this application note:

ati5
Digi TransPort WR44H-XXX-A00 Ser#:127171 HW Revision: 79021
Software Build Ver5087. Dec 23 2009 00:11:28 SW
ARM BIOS Ver 5.80 v39 400MHz B512-M512-F80-01,0 MAC:00042d01f0c3
Power Up Profile: 0
Async Driver Revision: 1.19 Int clk
IX Revision: 1.0
Ethernet Hub Driver Revision: 1.11
Firewall Revision: 1.0
EventEdit Revision: 1.0
Timer Module Revision: 1.1
(B)USBHOST Revision: 1.0
L2TP Revision: 1.10
PPTP Revision: 1.00
LAPB Revision: 1.12
X25 Layer Revision: 1.19
MACRO Revision: 1.0
PAD Revision: 1.4
X25 Switch Revision: 1.7
V120 Revision: 1.16
TPAD Interface Revision: 1.12
GPS Revision: 1.0
SCRIBATSK Revision: 1.0
BASTSK Revision: 1.0
PYTHON Revision: 1.0
ARM Sync Driver Revision: 1.18
TCP (HASH mode) Revision: 1.14
TCP Utils Revision: 1.13
PPP Revision: 1.19
WEB Revision: 1.5
SMTP Revision: 1.1
FTP Client Revision: 1.5
FTP Revision: 1.4
IKE Revision: 1.0
PollANS Revision: 1.2
PPPOE Revision: 1.0
BRIDGE Revision: 1.1
MODEM CC (Ericsson 3G) Revision: 1.4
FLASH Write Revision: 1.2
Command Interpreter Revision: 1.38
SSLCLI Revision: 1.0
OSPF Revision: 1.0
BGP Revision: 1.0
QOS Revision: 1.0
SSH Server Revision: 1.0
SCP Revision: 1.0
CERT Revision: 1.0
LowPrio Revision: 1.0
<table>
<thead>
<tr>
<th>Component</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel</td>
<td>1.2</td>
</tr>
<tr>
<td>QDL</td>
<td>1.0</td>
</tr>
<tr>
<td>Wifi</td>
<td>2.0</td>
</tr>
</tbody>
</table>