Application Note 21

L2TP over IPSEC VPN server

Digi Technical Support

June 2016
Contents

1 Introduction.. 3
 1.1 Outline... 3
 1.2 Assumptions .. 3
 1.3 Corrections ... 4
 1.4 Version.. 4
2 Configuration ... 5
 2.1 Cellular WAN Configuration ... 5
 2.2 LAN Configuration .. 5
 2.3 IPsec Tunnel Configuration ... 7
 2.4 Configure the TransPort L2TP settings for multiple sessions ... 14
 2.5 Configure the TransPort PPP Settings .. 15
 2.6 Server GUI Access, Preshared Key and Remote Users Configuration .. 19
 2.7 L2TP Server behind NAT Windows Configuration ... 22
 2.8 Configure VPN Connection on Vista/Windows 7, running L2TP Client ... 22
 2.9 Configure VPN Connection on Windows 8 running L2TP Client ... 28
 2.10 Configure VPN Connection on Windows XP running L2TP Client ... 31
 2.11 Windows 2000/XP Additional Settings .. 35
 2.12 Manually specifying a Windows client IP address ... 36
3 Testing .. 37
 3.1 Connect Remote Clients to the L2TP Server .. 37
 3.2 Confirm Traffic Traverses the L2TP Tunnels ... 40
4 Troubleshooting .. 46
 4.1 Error 789 on the Windows PC client: .. 46
 4.2 Error 682 on the Windows PC client: .. 46
5 Configuration Files .. 48
 5.1 TransPort configuration file .. 48
 5.2 TransPort firmware version ... 56
1 INTRODUCTION

1.1 Outline

Layer 2 Tunneling Protocol (L2TP) can be used to tunnel layer 2 frames and thus provide remote access to a private LAN.

IPsec is a standard for encryption and security; running L2TP over IPSEC can therefore provide secure encrypted remote access to a private LAN. This is commonly known as a VPN or Virtual Private Network connection.

Microsoft Windows XP™ and Vista™/Windows 7™ provide a VPN client that is capable of running L2TP over IPsec. This Application Note (AN) explains the procedure of configuring a TransPort to act as an L2TP/IPsec VPN server for a Windows XP™, Vista™ or Windows 7™ client.

This solution works even if the client does not have a public IP address, i.e. is connecting from a behind a router running NAT.

Multiple remote hosts will open a VPN tunnel between themselves and the VPN server. L2TP will run over the IPsec connection and the PPP connection will be negotiated over the newly established L2TP pipe.

The remote PCs will be running the Microsoft® Windows™ L2TP over IPsec VPN Client with a Dial-up Networking connection to an ISP. This AN will also take the user through the Microsoft® Windows™ Connection Wizard.

NOTE: Although in this example the WR44v2 model is used, the same settings can be applied to all other TransPort models (certain models may need the IPsec encryption software option to be enabled).

1.2 Assumptions

This guide has been written for use by technically competent personnel with a good understanding of the communications technologies used in the product, and of the requirements for their specific application.
This AN applies to:

Models shown: TransPort WR44v2.

Other Compatible Models: All Digi TransPort products.

Firmware versions: 5.123 or later.

NOTE: This AN has been specifically rewritten for firmware release 5.123 and later but the original AN was testing and working for routers running earlier firmware and the previous GUI. Routers running earlier firmware will find that the screen shots do not accurately reflect what will be seen on those older routers. Contact tech.support@digi.com if you require this document for the older GUI.

Configuration: This AN assumes the devices are set to their factory default configurations. Most configuration commands are only shown if they differ from the factory default.

Users have access to the TransPort command line interface (via serial port or telnet) and also the web interface.

This AN applies only to:

TransPorts running the specified firmware version above (or newer) and factory default settings.

Client OS: Microsoft® XP™ SP1 or SP2 with correct registry settings (see Additional Assumptions)

Client VPN: Microsoft® Windows™ L2TP IPsec VPN

Internet Connection:

PC is connected to an ISP that allows PPP dialup and allocates a public or "NAT’ed“ (via Network Address Translation) IP addresses with Internet access.

1.3 Corrections

Requests for corrections or amendments to this Application Note are welcome and should be addressed to: tech.support@digi.com

Requests for new ANs can be sent to the same address.

1.4 Version

<table>
<thead>
<tr>
<th></th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Published</td>
</tr>
<tr>
<td>1.1</td>
<td>Corrections and enhancement</td>
</tr>
<tr>
<td>1.2</td>
<td>Now supports server behind NAT</td>
</tr>
<tr>
<td>1.3</td>
<td>Now supports Vista</td>
</tr>
<tr>
<td>1.4</td>
<td>Added new section on using static IPs</td>
</tr>
<tr>
<td>2.0</td>
<td>New Gui version 5.123 onwards</td>
</tr>
<tr>
<td>2.1</td>
<td>Updated screenshots and instructions for new web interface, rebranding (Jun 2016)</td>
</tr>
</tbody>
</table>
2 CONFIGURATION

2.1 Cellular WAN Configuration

The TransPort will act as the VPN server and will need to be connected to the public Internet to allow clients to establish an IPsec and finally an L2TP connection. This can be any interface; this AN will assume PPP for cellular, but ADSL, Ethernet, ISDN, etc. are just as acceptable.

Enable IPsec on the WAN interface and then click the Apply button.

Configuration - Network > Interfaces > Mobile

Mobile Network Settings

- Enable NAT on this Interface
-
 - IP address
 - IP address and Port
- **Enable IPsec on this interface**

 - Keep Security Associations (SAs) when this Mobile interface is disconnected

 - Use interface [Default] for the source IP address of IPsec packets
- Enable the firewall on this interface

Mobile Firmware (OTA) Update

SIM Selection

Advanced

SMS Settings

Apply

2.2 LAN Configuration

Now assign an IP address and subnet mask to the Ethernet port. This is for the private LAN that the remote client requires access to. The settings shown in italics are user dependent.

CONFIGURATION > NETWORK > INTERFACES > ETHERNET > ETH0

Using the TransPort’s web interface, navigate to the above link and use this form to enter Ethernet 0 settings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td><Description of Interface></td>
<td>Use something here that will be meaningful to your setup, e.g. “AN21 Test LAN”</td>
</tr>
<tr>
<td>IP Address</td>
<td><LAN_IP_Address></td>
<td>Ethernet 0 IP address</td>
</tr>
<tr>
<td>Mask</td>
<td><Subnet_Mask></td>
<td>Ethernet 0 subnet mask</td>
</tr>
</tbody>
</table>
Command line commands to achieve the above:

```
eth 0 descr "AN21 Test LAN"
eth 0 IPaddr "192.168.63.194"
```

2.2.1 Local LAN DHCP Configuration

If you do not intend to use DHCP on the local LAN, then the settings here can be cleared. If using DHCP for the local LAN clients, then as the default LAN IP address range has been changed, the matching Eth 0 DHCP settings need to be changed too.

CONFIGURATION - NETWORK > DHCP SERVER > DHCP SERVER FOR ETHERNET 0

Using the TransPort web interface, navigate to the above path and use the form just below to enter Eth 0 DHCP settings, and then click the ‘Apply’ button:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Addresses</td>
<td>192.168.63.195</td>
<td>The first free IP address in the range you wish to allocate to DHCP users</td>
</tr>
<tr>
<td>to</td>
<td>192.168.63.214</td>
<td>The last free IP address in the range you wish to allocate to DHCP users</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.0</td>
<td>Ethernet 0 subnet mask</td>
</tr>
<tr>
<td>Gateway</td>
<td>192.168.63.194</td>
<td>Eth 0 IP Address</td>
</tr>
<tr>
<td>DNS Server</td>
<td>192.168.63.194</td>
<td>Eth 0 IP Address or address of the network DNS server</td>
</tr>
</tbody>
</table>
2.3 IPsec Tunnel Configuration

In this example, L2TP will connect across an established IPsec VPN tunnel, so first an IPsec Security Association (SA) with an initiating peer will need to be established. This section contains the configuration for all the initiating IPsec peers.
Using the TransPort web interface, navigate to the above path and use this form to enter IPsec settings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td><Description of Interface></td>
<td>Use something meaningful to your setup, e.g. “L2Tp Eroute Vista and Win 7”</td>
</tr>
<tr>
<td>Use interface</td>
<td>PPP</td>
<td>Select PPP from the drop down box for the Local LAN interface address</td>
</tr>
<tr>
<td>Use interface</td>
<td>1</td>
<td>Enter the instance number in the second box for the Local LAN interface address</td>
</tr>
<tr>
<td>Use the following security on this tunnel</td>
<td>Preshared Keys</td>
<td>Select the radio button for the required option</td>
</tr>
<tr>
<td>Remote ID</td>
<td>*</td>
<td>This will allow any ID to build a tunnel</td>
</tr>
<tr>
<td>Use <ENC> encryption on this tunnel</td>
<td>AES (128 bit keys)</td>
<td>Select the encryption type used for this tunnel</td>
</tr>
<tr>
<td>Use <AUTH> authentication on this tunnel</td>
<td>SHA1</td>
<td>Select the authentication method to be used on this tunnel</td>
</tr>
<tr>
<td>Renew the tunnel after</td>
<td>1 hrs 0 mins 0 secs</td>
<td>Set the period of time for SA to stay valid on this tunnel before rekey</td>
</tr>
<tr>
<td>Renew the tunnel after ... of traffic</td>
<td>250 Mbytes</td>
<td>Enter 250 in the first box and select Mbytes in the second box</td>
</tr>
</tbody>
</table>
Expand the Advanced section, enter these additional values, and then click the ‘Apply’ button:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPsec mode</td>
<td>Transport</td>
<td>Select the relevant radio button to change the tunnel from Tunnel mode to Transport mode</td>
</tr>
<tr>
<td>Allow <PROT> IP protocol(s) in this tunnel</td>
<td>UDP</td>
<td>L2TP traffic is UDP only so we restrict the tunnel to only carry this traffic</td>
</tr>
<tr>
<td>Remote TCP/UDP port</td>
<td>1701</td>
<td>L2TP traffic only uses port 1701 so we restrict to this port only</td>
</tr>
</tbody>
</table>
If 3DES/AES is not available as an option, the TransPort needs the “Encryption software” option.

*** SHA1 is used by Windows Vista & Windows 7. If the client computer is Windows XP, set this to “MD5”. If both XP and Vista machines are used, two eroutes will be needed please see next section.

Command line commands to achieve the above:

```bash
eroute 0 descr "L2TP Eroute Vista and Win 7"
eroute 0 peerid "*"
eroute 0 locipifent "PPP"
eroute 0 locipifadd 1
eroute 0 mode "Transport"
eroute 0 ESPauth "SHA1"
eroute 0 ESPenc "AES"
eroute 0 proto "UDP"
eroute 0 remport 1701
eroute 0 ltime 3600
eroute 0 lbytes 250000
eroute 0 authmeth "PRESHARED"
eroute 0 enckeybits 128
```
2.3.1 Optional IPsec (Windows XP) Tunnel Configuration

To enable this configuration to work with Windows XP, a second eroute must be configured. This is because Vista is set by default to a higher encryption standard that is not supported by Windows XP.

CONFIGURATION > NETWORK > VIRTUAL PRIVATE NETWORKING (VPN) > IPSEC > IPSEC TUNNELS > IPSEC 1

Using the TransPort’s web interface, navigate to the above link and use this form to enter IPsec settings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td><Description of Interface></td>
<td>Use something meaningful to your setup, e.g. “L2Tp Eroute XP”</td>
</tr>
<tr>
<td>Use interface</td>
<td>PPP</td>
<td>Select PPP from the drop down box for the local LAN interface address</td>
</tr>
<tr>
<td>Use interface</td>
<td>1</td>
<td>Enter the instance number in the second box for the local LAN interface address</td>
</tr>
<tr>
<td>Use the following security on this tunnel</td>
<td>Preshared Keys</td>
<td>Select the radio button for the required option</td>
</tr>
<tr>
<td>Remote ID</td>
<td>*</td>
<td>This will allow any ID to build a tunnel</td>
</tr>
<tr>
<td>Use <ENC> encryption on this tunnel</td>
<td>3DES</td>
<td>Select the encryption type used for this tunnel</td>
</tr>
<tr>
<td>Use <AUTH> authentication on this tunnel</td>
<td>MD5</td>
<td>Select the authentication method to be used on this tunnel</td>
</tr>
<tr>
<td>Renew the tunnel after</td>
<td>1 hrs 0 mins 0 secs</td>
<td>Set the period of time for SA to stay valid on this tunnel before rekey</td>
</tr>
<tr>
<td>Renew the tunnel after ... of traffic</td>
<td>250 Mbytes</td>
<td>Enter 250 in the first box and select Mbytes in the second box</td>
</tr>
</tbody>
</table>
Expand the Advanced section, enter these additional values, and then click the ‘Apply’ button:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPsec mode</td>
<td>Transport</td>
<td>Select the relevant radio button to change the tunnel from Tunnel mode to TransPort mode</td>
</tr>
<tr>
<td>Allow <PROT> IP protocol(s) on this tunnel</td>
<td>UDP</td>
<td>L2TP traffic is UDP only so we restrict the tunnel to only carry this traffic</td>
</tr>
<tr>
<td>Destination TCP/UDP port</td>
<td>1701</td>
<td>L2TP traffic only uses port 1701 so we restrict to this port only</td>
</tr>
</tbody>
</table>
NOTE: The only differences between this tunnel and the previous one are the ESP Encapsulation method and Auth Algorithm.

Command line commands to achieve the above:

```
eroute 1 descr "L2TP Eroute XP"
eroute 1 peerid "*"
eroute 1 locipifent "PPP"
eroute 1 locipifadd 1
route 1 mode "Transport"
eroute 1 ESPauth "MD5"
eroute 1 ESPenc "3DES"
eroute 1 proto "UDP"
eroute 1 remport 1701
route 1 itime 3600
route 1 lkbytes 250000
route 1 authmeth "PRESHARED"
```
2.4 Configure the TransPort L2TP settings for multiple sessions

L2TP will provide a tunnel through which a logical PPP connection can be established. When the TransPort is configured to be an L2TP Server, it listens on UDP port 1701 and terminates L2TP connections. It then only allows PPP frames to be passed in the L2TP “tunnel” between the TransPort and the PC. As there is a need for multiple L2TP sessions, multiple L2TP instances will need to be created. In this AN, ten L2TP instances (0-9) will be configured.

CONFIGURATION - NETWORK > VIRTUAL PRIVATE NETWORKING (VPN) > L2TP > L2TP 0

Using the TransPort web interface, navigate to the above link to enter the L2TP settings, and then continue configuring the nine remaining L2TP instances from 1-9.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act as a listener only</td>
<td>Ticked</td>
<td>Sets L2TP 0 to Listen on UDP port 1701 (L2TP)</td>
</tr>
<tr>
<td>Enable Server mode</td>
<td>Ticked</td>
<td>Sets L2TP 0 to be an L2TP Server, not initiator</td>
</tr>
</tbody>
</table>

Command line commands to achieve the above:

- `l2tp 0 listen ON`
- `l2tp 0 swap_io ON`

Command line commands to complete the setup for the other 9 L2TP instances:

- `l2tp 1 listen ON`
- `l2tp 1 swap_io ON`
- `l2tp 2 listen ON`
- `l2tp 2 swap_io ON`
- `l2tp 3 listen ON`
- `l2tp 3 swap_io ON`
2.5 Configure the TransPort PPP Settings

PPP frames passed up from the L2TP layer will be terminated by a PPP instance. Again, as there is a need for multiple PPP sessions, multiple PPP instances will need to be configured. In this AN, PPP instances 10-19 will be configured.

CONFIGURATION - NETWORK > INTERFACES > ADVANCED > PPP 10 - 19 > PPP 10

Using the TransPort web interface, navigate to path above and then click the ‘Load answering defaults’ button:

![Configuration - Network > Interfaces > Advanced > PPP 10 - 19 > PPP 10](#)

Once the answering defaults have been loaded, which can be confirmed by looking for the “Answering config loaded” message to the right of the buttons, enter the L2TP configuration detailed below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td><Description of Interface></td>
<td>Use something meaningful to your setup, e.g. “L2TP 0 Dial in Interface”</td>
</tr>
<tr>
<td>This PPP interface will use</td>
<td>L2TP</td>
<td>Select from the drop down menu</td>
</tr>
<tr>
<td>This PPP interface will use</td>
<td>0</td>
<td>Enter L2TP instance into the right hand box</td>
</tr>
<tr>
<td>Use <code><IPADDRESS></code> as the local IP address for</td>
<td><code><ETH_o_IP_Address></code></td>
<td>The address that this PPP interface will use</td>
</tr>
<tr>
<td>this router</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attempt to assign the following IP configuration to remote devices</td>
<td>Ticked</td>
<td>Enable remote dialup user IP assignment</td>
</tr>
<tr>
<td>Assign remote IP addresses from <code><IP_Address1></code> to <code><IP_Address2></code></td>
<td><code><IP_Address></code></td>
<td>Both values will be the same address in this project – choose a free address in your IP addressing schema</td>
</tr>
<tr>
<td>Allow this PPP interface to answer incoming calls</td>
<td>Ticked</td>
<td>When enabled, causes the PPP instance to answer an incoming call</td>
</tr>
</tbody>
</table>
Close PPP connection ... if it has been idle for 0 hrs 0 mins 0 secs

Remove any values in these boxes so the connection never times out
The windows client will use 1400 for the MRU on this link, so we need to match this on our end. Expand the ‘PPP Negotiation’ section, enter the following settings, and then click the ‘Apply’ button:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired local MRU</td>
<td>1400</td>
<td>Set the local MRU for the connection</td>
</tr>
<tr>
<td>Desired remote MRU</td>
<td>1400</td>
<td>Set the remote MRU for the connection</td>
</tr>
</tbody>
</table>

The settings shown in *italics* are user dependent.

NOTE #1: The “Assign remote IP addresses from <IP_Address1> to <IP_Address2>” setting specifies the IP address that will be assigned to the remote client for each PPP instance (see Note #2 just below). This should therefore be different for each PPP instance that you configure. In this example, an IP address on the same subnet as the private LAN has been chosen. You must ensure that no other hosts on the private LAN use this address. It is possible to assign an address to the remote clients that are in a different subnet to that of the private LAN. However, if you choose to do this, any hosts on the private LAN will need to use the TransPort as the gateway for this subnet.

If you do choose to assign an IP address to the remote client that is on the same subnet as the TransPort local LAN, then you can choose whether broadcast packets should be routed to the remote unit by setting the advanced PPP parameter “Forward IP broadcasts over this interface if this interface is on the same IP network as an Ethernet interface” as appropriate (ticked for on, unticked for off). The default and recommended value is NOT to forward broadcasts.

The advantage of forwarding broadcasts is that software features that make use of broadcast packets (such as browsing for work groups and PCs through the “Entire Network” in Windows Explorer) should work. The disadvantage is that an excessively large amount of traffic could be sent over the VPN tunnel thus rendering it expensive and/or slow.

NOTE #2: This address *can* (not must) be an address in the LAN subnet. The address *must not* be in used by another device on the same subnet as the TransPort LAN. If an address on the LAN subnet is chosen, the TransPort will use proxy ARP and so no routing changes will be required to any devices on the LAN.

A user can be associated with a static address for their username and this is done by allocating an IP under the user setup for access in the next section.

The Windows VPN properties can be configured to manually specify the IP address that when connecting in to the TransPort. For example, if there are multiple answering PPP multiple PCs connecting in and each PC must use a specific IP address, rather than the pool, the TransPort is configured with on each PPP instance. If this is required, see the section titled “
Manually specifying a Windows client IP address.

Each answering PPP instance needs to be associated with a **different** answering L2TP instance.

The suggested Layer 1 interface settings for this AN are:

- PPP 19 → L2TP instance 9
- PPP 18 → L2TP instance 8
- PPP 17 → L2TP instance 7
- PPP 16 → L2TP instance 6
- PPP 15 → L2TP instance 5
- PPP 14 → L2TP instance 4
- PPP 13 → L2TP instance 3
- PPP 12 → L2TP instance 2
- PPP 11 → L2TP instance 1
- PPP 10 → L2TP instance 0

Command line commands to achieve the above:

```bash
ppp 10 name "L2TP 0 Dial in Interface"
ppp 10 l1iface "L2TP"
ppp 10 r_addr ON
ppp 10 IPaddr "192.168.63.194"
ppp 10 mask "255.255.255.255"
ppp 10 DNSport 53
ppp 10 IPmin "192.168.63.100"
ppp 10 IPrange 1
ppp 10 ans ON
ppp 10 metric 1
ppp 10 netip "0.0.0.0"
ppp 10 ip2count 3
ppp 10 ripauth 1
ppp 10 inrip ON
ppp 10 maxneg 80
ppp 10 l_accm "0x00000000"
ppp 10 r_accm "0xffffffff"
ppp 10 l_mru 1400
ppp 10 r_mru 1400
ppp 10 l_acfc ON
ppp 10 l_pap ON
ppp 10 l_chap ON
ppp 10 l_comp ON
ppp 10 l_pfc ON
ppp 10 l_callb 1
ppp 10 l_md5 1
ppp 10 r_md5 ON
ppp 10 r_md5 ON
ppp 10 r_ms1 ON
ppp 10 r_ms2 ON
ppp 10 lcn 1027
ppp 10 defpak 128
ppp 10 baklcn 1027
```
Command line commands to complete the setup for the other nine PPP for L2TP Dial in interfaces (11-19) can be found in Section 5.1.

2.6 Server GUI Access, Preshared Key and Remote Users Configuration

2.6.1 Administration User Setup

CONFIGURATION > SECURITY > USERS > USER 0 - 9 > USER 1

As this project involves configuring a unit to be on a public address, it is highly recommended that you use the firewall and change the default username and password. Navigate to the path above and change the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td><Admin_User_Name></td>
<td>It is recommended that you change this to something unique</td>
</tr>
<tr>
<td>Password</td>
<td><Admin_User_Password></td>
<td>It is recommended that you change this to something unique and hard to guess</td>
</tr>
<tr>
<td>Confirm Password</td>
<td><Admin_User_Password></td>
<td>Confirm the password in the section above</td>
</tr>
</tbody>
</table>

Configuration - Security > Users > User 0 - 9 > User 1

![User 1 configuration form]

2.6.2 Preshared Key Setup

CONFIGURATION > SECURITY > USERS > USER 10 - 14 > USER 14

The last user instance will need to be configured with the IPsec preshared key. Navigate to the last user instance (choose the last one if there are more than 14) to enter and confirm the preshared key, then expand the ‘Advanced’ section and untick the ‘Allow this user to log in over a PPP network’ option:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>*</td>
<td>Wild card to allow any remote VPN client access</td>
</tr>
<tr>
<td>Password</td>
<td><shared_secret_key></td>
<td>Pre-Shared Key remote VPN Client will use</td>
</tr>
<tr>
<td>Confirm Password</td>
<td><shared_secret_key></td>
<td>Pre-Shared Key remote VPN Client will use</td>
</tr>
<tr>
<td>Access Level</td>
<td>None</td>
<td>Users knowing this password will not be allowed to log on to administer the TransPort</td>
</tr>
</tbody>
</table>
Allow this user to log in over a PPP network | Unticked | This will prevent users gaining access to the network with any username and the preshared key as the password

Configuration - Security > Users > User 10 - 14 > User 14

User 14

- Username:
- Password:
- Confirm Password:
- Access Level: None

Advanced

- Allow this user to log in over a PPP network
- Use this number when PPP dial-back is required for this user
- Alternate IKE Key:
- Confirm Alternate IKE Key:
- Remote Peer IP address:
- Remote Peer IP subnet:
- Remote Peer IP subnet mask:
- Public Key file:
- Default WEB page:

Apply

Command line commands to achieve the above:

```
user 14 name "*"
user 14 password "shared_secret_key"
user 14 access 4
user 14 dun_en OFF
```

2.6.3 Remote User Configuration

CONFIGURATION - SECURITY > USERS > USER 0 - 9 > USER 9

Good network security practice would dictate that you will need to setup at least one user for each remote access L2TP user instance available. You may then remove access to an individual without having to get all other users to change their settings (please note that the TransPort can support RADIUS or TACACS+ for remote user authentication). In this project, we are setting up seven instances so the seven users 3 through 9 can be configured:
You can assign remote users for general access for the L2TP tunnels to users 3 through 9.

NOTE: This password field represents the password that the end user will input into the Windows PC client, which should be different than the password for the "*" user, which is the preshared key.

2.6.4 Remote User with Static IP Assignment

CONFIGURATION - SECURITY > USERS > USER 0 - 9 > USER 2

A remote user can be allocated a static remote IP addresses so that they always have the same IP when they connect. This assignment overrides the PPP configured IP assigned in the configuration step above upon connection. We set the user so that they have no CLI or GUI access by setting the Access Level to 'None'; this doesn't affect whether the user can access the L2TP tunnel. In the following configuration, the remote user will receive the IP allocation 192.168.63.10. This user will be used to access the project in the testing section in Section 3.
NOTE: This password field represents the password that the end user will input into the Windows PC client, which should be different than the password for the "*" user, which is the preshared key.

2.7 L2TP Server behind NAT Windows Configuration

In the special case of the TransPort L2TP/IPsec Server being behind NAT, it is necessary to create the following case sensitive DWORD registry key and set the value to "2".

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\IPsec\AssumeUDPEncapsulationContextOnSendRule

http://support.microsoft.com/kb/885407/

2.8 Configure VPN Connection on Vista/Windows 7, running L2TP Client

L2TP will run over an IPsec connection between the PC and the TransPort. This in turn will run over the PC’s existing ISP connection. As there is a need for multiple L2TP sessions, from multiple remote PCs, this procedure will need to be replicated on as many remote PCs as needed.

Open Control Panel -> Network and Sharing Center:
Within it Select **Set up a connection or network**. This will bring up the Set Up a Connection or Network wizard:

Select **Connect to a workplace**:
If prompted to use an existing connection or not, select **No, create a new connection** and click **Next**:

Select **Use my Internet connection (VPN)**:
Type the Internet address of the TransPort in the Internet Address box. The Destination Name labels the connection for your use - it does not affect how the VPN works. The only other thing to tick is "Don't connect now, just set it up so I can connect later". Make sure the others are unticked.

Hit Next:

Put the appropriate Username and Password in and optionally select Remember this password.
NOTE: This password field represents the password specific to the username in question. This password is different than the preshared key (the password for the * user).

Click Create:

![Connect to a workplace](image)

Click **Close**, open the Properties of the new network connection and select the **Security** tab:
Set **Type of VPN** to **Layer 2 Tunneling Protocol with IPsec (L2TP/IPsec)**.

Click the **Advanced Settings** button:

Select **Use preshared key for authentication** and input the shared key in the **Key** field. The Preshared key is the password of the "**" user that was setup earlier on the TransPort.

Click **OK** then click **OK** again to save the settings.

Double-click on the connection to activate it. If the password was not saved in the earlier step, it will need to be re-entered.
2.9 Configure VPN Connection on Windows 8 running L2TP Client

L2TP will run over an IPsec connection between the PC and the TransPort; this in turn will run over the PC’s existing ISP connection. As there is a need for multiple L2TP sessions, from multiple remote PCs, this procedure will need to be replicated on as many remote PCs as needed.

Open Control Panel -> Network and Sharing Center. Within it, select Set up a connection or network. This will bring up the Set Up a Connection or Network wizard:

Select Connect to a Workplace:
Select **Use my Internet connection (VPN)**:

Type the Internet address of the TransPort in the Internet Address box. The Destination name labels the connection for your use. It does not affect how the VPN works.

Hit Create. The new connection will appear on the sidebar. Do not hit Connect now.
Right-click on the **VPN Connection** and chose **View Connection Properties**. Select the **Security** tab, set the Type of VPN to **L2TP IPsec VPN**, and then click the **Advanced Settings** button.

Select **Use preshared key for authentication**, put the shared key in the **Key** text box, click **OK**, and then click **OK** again to save the settings.
You can then go back to the side bar, select the connection, click **Connect** and enter the **username** and password:

![VPN Connection Sign-in](image)

2.10 Configure VPN Connection on Windows XP running L2TP Client

L2TP will run over an IPsec connection between the PC and the TransPort. This in turn will run over the PC’s existing ISP connection. As there is a need for multiple L2TP sessions, from multiple remote PC’s, this procedure will need to be replicated on as many remote PCs as needed.

Note: The following configuration is for Windows XP. Windows Vista is very similar.

From the ‘Start’ Menu navigate to **Settings** ➔ **Network Connections** ➔ **Create New Connection to open the New Connection wizard.**
Click **Next**, select **Connect to the network at my workplace** from the list, and then click **Next** again.

Select **Virtual Private Network connection** from the list and click **Next**. Now give the VPN connection a name i.e. “L2TP Connection” and click **Next**.
Now add the Public IP address given to the TransPort WAN interface to the 'Host name of Domain name' field and click **Next**, then finally click **Finish**.
Now some additional settings have to be changed to allow the VPN connection to use IPsec to reach the TransPort. Click on Properties and then the Security tab, now select IPsec settings, tick the ‘Use pre-shared key for authentication’ option and add in the Pre_shared_key defined in 2.6.2, now the click OK once again.
Select the **Networking** tab, from the list under **Type of VPN** select 'L2TP IPsec VPN' and click **OK**.

To activate the connection, put the appropriate **Username** and **Password** in, optionally select **Remember this password**, and then click the **Connect** button.

NOTE: This password field represents the password specific to the username in question. This password is different than the preshared key (the password for the * user).

2.11 Windows 2000/XP Additional Settings

The ProhibitIpSec registry value if present must NOT be set to 1 in any Windows 2000-based endpoint computer of a L2TP/IPsec connection. This registry value prevents the automatic filter for L2TP/IPsec traffic from being created. When the ProhibitIpSec registry value is set to 1, your Windows 2000/XP computer does not create the IPSEC connection before initiating the L2TP tunnel.

To check the ProhibitIpSec registry value, follow these steps:

1. Start Registry Editor.
2. Locate and then click the following registry subkey:
   ```
   HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Rasman\Parameters
   ```
3. Check if the prohibitipsec value exists.
4. If it exists either delete the key or ensure it is set to 0 and not 1.
5. Quit Registry Editor, and then restart the computer.

Warning If you use Registry Editor incorrectly, you may cause serious problems that may require you to reinstall your Operating System. **Use the Registry Editor at your own risk.**
2.12 Manually specifying a Windows client IP address

This section is optional and not required in normal circumstances. Only complete this section if there are multiple answering PPP instances for incoming L2TP connections & each PC is required to always use the same IP address regardless of which PPP instance it is answered by.

In the Windows VPN connection properties, click on the Networking tab. Double click on the option "Internet Protocol Version 4 (TCP/IPv4)".

Configure the IP address and DNS server that the TransPort will use for this L2TP connection. In this example, the IP address configured would be 192.168.63.10 and the DNS sever would be 192.168.63.194. These values are taken from the configuration in Section 2.6.4, but have been specified manually in the Windows client.

Click OK.

Click OK again to save the settings.

The TransPort also needs configuring so it doesn't try and allocate an IP address to the Windows client from its pool of addresses configured on the answering PPP instance. In this example, the following configuration would need completing on PPP instances 10 through 19.

CONFIGURATION - NETWORK > INTERFACES > ADVANCED > PPP <N> - <N+9> > PPP <N>

Using the TransPort web interface, navigate to the above link for the relevant PPP connection and set the following setting as follows then click the 'Apply' button:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attempt to assign the following IP configuration to remote devices</td>
<td>Unticked</td>
<td>Stops the TransPort assigning an address to VPN clients</td>
</tr>
</tbody>
</table>
37

Command line commands to achieve the above, using PPP instance 10 as an example:

```bash
ppp 10 IPmin !
ppp 10 IPrange !
```

3 TESTING

3.1 Connect Remote Clients to the L2TP Server

This test stage will show that the IPsec/L2TP tunnel has been established.

Windows XP – Click Start > Connect To > L2TP Connection (the name will depend on what name you gave the connection when you set this up). Enter the username and password and then click the ‘Connect’ button.

Windows 7 – Click the network icon, click the connection from the list then click the ‘Connect’ button. Enter the username and password, and then click ‘Connect’ again.

When the PC tries to establish a L2TP tunnel to the VPN Server an IPSec Security Association is established first. This allows the L2TP packets to be encrypted with in the IPSec Tunnel.

MANAGEMENT - EVENT LOG

On the VPN Server's web interface, navigate to the above link and click on the 'Clear Log' button:

![Clear Log button](image)

Connect the PC to the Internet using an ISP that allows PPP dialup and allocates a Public IP addresses. Now click 'Connect' on the L2TP/VPN connection created earlier. After some brief negotiations, the PC's VPN client shall receive an IP address, via PPP, from the VPN Server.

Re-navigate to the Event Log. Each stage of the L2TP establishment will have been entered in the Event Log.

Highest PPP instance answers packets passed up from L2TP Layer

17:37:27, 14 Jun 2011, PPP 19 up
17:37:27, 14 Jun 2011,PPP 19 Start IPCP
17:37:27, 14 Jun 2011,PPP Login OK by Remote_User_Static_1 lvl 4
17:37:27, 14 Jun 2011,PPP 19 Start AUTHENTICATE
17:37:27, 14 Jun 2011,PPP 19 Start LCP
17:37:27, 14 Jun 2011,PPP 19 Start

L2TP Answering L2TP packets encrypted in IPSec tunnel

17:37:27, 14 Jun 2011, L2TP Call 9 up
17:37:27, 14 Jun 2011, L2TP Tunnel 0 up

IPSec SA up

17:37:27, 14 Jun 2011, (2) IKE SA Removed. Peer: 10.1.63.1, Successful Negotiation
17:37:27, 14 Jun 2011, Eroute 0 VPN up peer: 10.1.63.1
17:37:27, 14 Jun 2011, New IPSec SA created by 10.1.63.1
17:37:27, 14 Jun 2011, (2) New Phase 2 IKE Session 79.75.71.39, Responder

IKE SA up

17:37:26, 14 Jun 2011, (1) IKE Keys Negotiated. Peer:
17:37:26, 14 Jun 2011, (1) New Phase 1 IKE Session 79.75.71.39, Responder

MANAGEMENT - CONNECTIONS > VIRTUAL PRIVATE NETWORKING (VPN) > IPSEC > IPSEC TUNNELS > IPSEC TUNNELS 0 - 9 > IPSEC TUNNELS 0 - 9

Navigate to the above link where the status of the newly established IPsec tunnels can be seen. The first column shows which tunnel number the tunnel is connected to. In this example, two machines are connected, an XP and a Windows 7.

The TransPort is designed to allow the highest numbered PPP instance to answer an incoming PPP call. If two devices are connected then they will be connected to the two highest numbered PPP instances (in this example PPP 19 and PPP 18). For PPP 19 connection, navigate to the link below. This page will show the local IP address that the PPP instance is using (please note this is not the IP of the remote device, but the local interface address on the TransPort) and the L2TP instance that is associated with this PPP call.

MANAGEMENT - NETWORK STATUS > INTERFACES > ADVANCED > PPP > PPP 10 - 19 > PPP 19

The link above will show the other connected interface as below.
The PC client will now have an L2TP tunnel running PPP on to the VPN Server.

3.2 Confirm Traffic Traverses the L2TP Tunnels

This test stage will show traffic passing across the tunnel to hosts on the LAN side of the VPN server. In this scenario, an ICMP Echo Request/Reply (or PING) will pass from the PC to a server on the LAN side of the TransPort.

MANAGEMENT > ANALYSER > SETTINGS

Set the Analyser to show ICMP traffic. Navigate to the above link and set the following settings then click the ‘Apply’ button:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Analyser</td>
<td>Ticked</td>
<td>Enable analysis of network events</td>
</tr>
<tr>
<td>Maximum packet capture size</td>
<td>128</td>
<td>Bytes to be collected on the interfaces</td>
</tr>
<tr>
<td>Log size</td>
<td>180</td>
<td>Set the analyser to the maximum size</td>
</tr>
<tr>
<td>Enable IKE debug</td>
<td>Unticked</td>
<td>Disable logging of Tunnel negotiations</td>
</tr>
<tr>
<td>Clear all Serial Interfaces</td>
<td>Click</td>
<td>Click to clear any asy port monitoring</td>
</tr>
<tr>
<td>Clear all Ethernet Interfaces</td>
<td>Click</td>
<td>Click to clear any Ethernet interface monitoring</td>
</tr>
<tr>
<td>Clear all PPP Interfaces</td>
<td>Click</td>
<td>Click to clear any PPP interface monitoring</td>
</tr>
<tr>
<td>PPP Interfaces</td>
<td>ETH 0</td>
<td>Select only these three interfaces</td>
</tr>
<tr>
<td></td>
<td>PPP 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPP 19</td>
<td></td>
</tr>
<tr>
<td>Trace discarded packets</td>
<td>Ticked</td>
<td>Track discarded packets</td>
</tr>
<tr>
<td>Ethernet Packet Filters</td>
<td>Clear</td>
<td>Remove any settings in this section</td>
</tr>
<tr>
<td>IP Packet Filters:TCP/UDP Ports</td>
<td>Clear</td>
<td>Remove any settings in this section</td>
</tr>
<tr>
<td>IP Packet Filters:IP Protocols</td>
<td>~1</td>
<td>We are monitoring ICMP only</td>
</tr>
<tr>
<td>IP Packet Filters: IP Addresses</td>
<td>Clear</td>
<td>Remove any settings in this section</td>
</tr>
<tr>
<td>Discarded IP</td>
<td>Clear</td>
<td>Remove any settings in this section</td>
</tr>
<tr>
<td>Packet Filters: TCP/UDP Ports:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Discarded IP Packet Filters: IP Protocols</td>
<td>~1</td>
<td>We are monitoring ICMP only</td>
</tr>
<tr>
<td>Discarded IP Packet Filters: IP Addresses</td>
<td>Clear</td>
<td>Remove any settings in this section</td>
</tr>
</tbody>
</table>

Enable Analyzer

- Maximum packet capture size: 128 bytes
- Log size: 180 Kbytes

Protocol layers

- Layer 1 (Physical)
- Layer 2 (Link)
- Layer 3 (Network)
- Layer 4 (Transport)
- Layer 5 (Session)
- Layer 6 (Presentation)
- Layer 7 (Application)

Clear all Serial Interfaces:

Ethernet Interfaces

- ETH 0
- ETH 1
- ETH 2
- ETH 3
- ETH 4
- ETH 5
- ETH 6
- ETH 7
- ETH 8
- ETH 9
- ETH 10
- ETH 11
- ETH 12
- ETH 13
- ETH 14
- ETH 15
- ETH 16
- ETH 17

Clear all Ethernet Interfaces:

Raw SYNC Sources

- SYNC 3 (Physical Port 0)
- SYNC 4 (Physical Port 1)

DSL PVC Sources

- PVC 0
- PVC 1
- PVC 2
- PVC 3
- PVC 4
- PVC 5
- PVC 6
- PVC 7

Clear all DSL PVC Sources:

PPP Interfaces

- PPP 0
- PPP 1
- PPP 2
- PPP 3
- PPP 4
- PPP 5
- PPP 6
- PPP 7
- PPP 8
- PPP 9
- PPP 10
- PPP 11
- PPP 12
- PPP 13
- PPP 14
- PPP 15
- PPP 16
- PPP 17
- PPP 18
- PPP 19

Clear all PPP Interfaces:
MANAGEMENT - ANALYSER > TRACE

Click on ‘Trace’ and click ‘Clear Trace’:

Open the Windows 7 PC’s command (DOS) window. At the prompt type:

```
ping 192.168.63.1 -n 1
```

Press Enter then type:

```
ipconfig
```

Press Enter to view the allocated IP (in this instance this is 192.168.63.10 as the statically assigned IP for the Remote_User_Static) on the L2TP connection. As you can see below, the remote client has been issued with the Static IP we configured into the User setup above and that we used to connect into the L2TP server:
Open the Windows XP command (DOS) window. At the prompt type:

```
ping 192.168.63.1 -n 1
```

Press Enter then type:

```
Ping <Windows_7_Allocated_IP> -n 1
```

Press Enter then type:

```
ipconfig
```

Press Enter to view the allocated IP on the L2TP connection:

Return to the TransPort web interface and click ‘Refresh’. The ICMP packet should be seen entering the TransPort on PPP 19 and leaving on ETH 0. The Host with address 192.168.63.1 will return with an ICMP Reply that will be seen in the reverse direction.
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP (Cont) From REM TO LOC</td>
<td>IFACE: PPP 19</td>
</tr>
<tr>
<td></td>
<td>IP Ver: 4</td>
</tr>
<tr>
<td></td>
<td>Hdr Len: 20</td>
</tr>
<tr>
<td></td>
<td>TOS: Routine</td>
</tr>
<tr>
<td></td>
<td>Delay: Normal</td>
</tr>
<tr>
<td></td>
<td>Throughput: Normal</td>
</tr>
<tr>
<td></td>
<td>Reliability: Normal</td>
</tr>
<tr>
<td></td>
<td>Length: 60</td>
</tr>
<tr>
<td></td>
<td>ID: 649</td>
</tr>
<tr>
<td></td>
<td>Frag Offset: 0</td>
</tr>
<tr>
<td></td>
<td>Congestion: Normal</td>
</tr>
<tr>
<td></td>
<td>TTL: 128</td>
</tr>
<tr>
<td></td>
<td>Proto: ICMP</td>
</tr>
<tr>
<td></td>
<td>Checksum: 14556</td>
</tr>
<tr>
<td></td>
<td>Src IP: 192.168.63.10</td>
</tr>
<tr>
<td></td>
<td>Dst IP: 192.168.63.1</td>
</tr>
<tr>
<td>ICMP:</td>
<td>Type: ECHO REQ</td>
</tr>
<tr>
<td></td>
<td>Code: 0</td>
</tr>
<tr>
<td></td>
<td>Checksum: 14413</td>
</tr>
<tr>
<td>IP (Final) From LOC TO REM</td>
<td>IFACE: ETH 0</td>
</tr>
<tr>
<td></td>
<td>IP Ver: 4</td>
</tr>
<tr>
<td></td>
<td>Hdr Len: 20</td>
</tr>
<tr>
<td></td>
<td>TOS: Routine</td>
</tr>
<tr>
<td></td>
<td>Delay: Normal</td>
</tr>
<tr>
<td></td>
<td>Throughput: Normal</td>
</tr>
<tr>
<td></td>
<td>Reliability: Normal</td>
</tr>
<tr>
<td></td>
<td>Length: 60</td>
</tr>
<tr>
<td></td>
<td>ID: 649</td>
</tr>
<tr>
<td></td>
<td>Frag Offset: 0</td>
</tr>
<tr>
<td></td>
<td>Congestion: Normal</td>
</tr>
<tr>
<td></td>
<td>TTL: 127</td>
</tr>
<tr>
<td></td>
<td>Proto: ICMP</td>
</tr>
<tr>
<td></td>
<td>Checksum: 14812</td>
</tr>
<tr>
<td></td>
<td>Src IP: 192.168.63.10</td>
</tr>
<tr>
<td></td>
<td>Dst IP: 192.168.63.1</td>
</tr>
<tr>
<td>ICMP:</td>
<td>Type: ECHO REQ</td>
</tr>
<tr>
<td></td>
<td>Code: 0</td>
</tr>
<tr>
<td></td>
<td>Checksum: 14413</td>
</tr>
</tbody>
</table>
IP (In) From REM TO LOC
 IFACE: ETH 0
 IP Ver: 4
 Hdr Len: 20
 TOS: Routine
 Delay: Normal
 Throughput: Normal
 Reliability: Normal
 Length: 60
 ID: 15
 Frag Offset: 0
 Congestion: Normal
 May Fragment
 Last Fragment
 TTL: 250
 Proto: ICMP
 Checksum: 49493
 Src IP: 192.168.63.1
 Dst IP: 192.168.63.10
 ICMP:
 Type: ECHO REPLY
 Code: 0
 Checksum: 14421

IP (Final) From LOC TO REM
 IFACE: PPP 19
 IP Ver: 4
 Hdr Len: 20
 TOS: Routine
 Delay: Normal
 Throughput: Normal
 Reliability: Normal
 Length: 60
 ID: 15
 Frag Offset: 0
 Congestion: Normal
 May Fragment
 Last Fragment
 TTL: 249
 Proto: ICMP
 Checksum: 49749
 Src IP: 192.168.63.1
 Dst IP: 192.168.63.10
 ICMP:
 Type: ECHO REPLY
 Code: 0
 Checksum: 14421
4 TROUBLESHOOTING

4.1 Error 789 on the Windows PC client:

Possible cause #1: L2TP traffic may be blocked somewhere between the PC and the TransPort. Ensure that L2TP is not being filtered out.

Possible cause #2: Ensure that IPsec is enabled on the appropriate TransPort PPP instance of the WAN interface. Refer to page 5. The CLI command for this is "ppp n ipsec 1" where n is the proper instance, for example 1 for PPP 1.

4.2 Error 682 on the Windows PC client:
Possible cause: The “Load answering defaults” may not have been clicked, for the PPP instance in question. Ensure that this button is clicked for all related PPP instances. Otherwise, if copying the CLI settings from PPP 10, ensure no settings were missed.

NOTE: Clicking the “Load answering defaults” button sets some of the values in the Advanced PPP subsection to defaults. Depending on if non-default values were already entered, they may need to be re-entered.
5 CONFIGURATION FILES

5.1 TransPort configuration file

This is the configuration file from the WR44v2:

```
Command: type config.da0
Command result

[CFG]
config last_saved "14:21:38, 10 Jun 2016"
config last_saved_changes "9"
config last_saved_user "WEB 21"
eth 0 descr "AN21 Test LAN"
eth 0 IPaddr "192.168.63.194"
addp 0 enable ON
l2tp 0 listen ON
l2tp 0 swap_io ON
l2tp 1 listen ON
l2tp 1 swap_io ON
l2tp 2 listen ON
l2tp 2 swap_io ON
l2tp 3 listen ON
l2tp 3 swap_io ON
l2tp 4 listen ON
l2tp 4 swap_io ON
l2tp 5 listen ON
l2tp 5 swap_io ON
l2tp 6 listen ON
l2tp 6 swap_io ON
l2tp 7 listen ON
l2tp 7 swap_io ON
l2tp 8 listen ON
l2tp 8 swap_io ON
l2tp 9 listen ON
l2tp 9 swap_io ON
lapb 0 ans OFF
lapb 0 tinact 120
lapb 1 tinact 120
lapb 3 dtemode 0
lapb 4 dtemode 0
lapb 5 dtemode 0
lapb 6 dtemode 0
ip 0 cidr ON
def_route 0 ll_ent "ppp"
def_route 0 ll_add 1
eroute 0 descr "L2TP Eroute Vista and Win 7"
eroute 0 peerid "*
eroute 0 locipifent "PPP"
eroute 0 locipifadd 1
eroute 0 mode "Transport"
eroute 0 ESPauth "SHA1"
eroute 0 ESPenc "AES"
eroute 0 remport 1701
eroute 0 ltime 3600
eroute 0 lkbytes 250000
eroute 0 authmeth "PRESHARED"
eroute 0 enckeybits 128
dhcp 0 IPmin "192.168.63.195"
dhcp 0 respdelms 500
```
dhcp 0 mask "255.255.255.0"
dhcp 0 gateway "192.168.63.194"
dhcp 0 DNS "192.168.63.194"
sntp 0 server "time.devicecloud.com"

snmp 0 v1enable OFF
snmp 0 v2cenable OFF
snmp 0 v3enable OFF
services 0 telnet OFF
services 0 ssh OFF
services 0 ftp OFF
services 0 asytcp OFF

ppp 0 timeout 300
ppp 1 name "W-WAN"
ppp 1 phonenum "*98*5#"
ppp 1 IPaddr "0.0.0.0"
ppp 1 timeout 0
ppp 1 do_nat 2
ppp 1 ipsec 1
ppp 1 use_modem 1
ppp 1 cdma_backoff ON
ppp 1 aodion 1
ppp 1 autoassert 1
ppp 1 pow_dly 40
ppp 1 r_chap OFF
ppp 2 cdma_backoff ON
ppp 3 defpak 16
ppp 4 defpak 16
ppp 10 name "L2TP 0 Dial in Interface"
ppp 10 lliface "L2TP"
ppp 10 r_addr ON
ppp 10 IPaddr "192.168.63.194"
ppp 10 mask "255.255.255.255"
ppp 10 DNSport 53
ppp 10 IPmin "192.168.63.100"
ppp 10 IPrange 1
ppp 10 ans ON
ppp 10 ndis ON
ppp 10 metric 1
ppp 10 netip "0.0.0.0"
ppp 10 ip2count 3
ppp 10 ripauth 1
ppp 10 inrip ON
ppp 10 maxneg 80
ppp 10 l_accm "0x00000000"
ppp 10 r_accm "0xffffffff"
ppp 10 l_mru 1400
ppp 10 r_mru 1400
ppp 10 l_acfc ON
ppp 10 l_pap ON
ppp 10 l_chap ON
ppp 10 l_comp ON
ppp 10 l_pfc ON
ppp 10 r_callb 1
ppp 10 l_md5 1
ppp 10 r_md5 ON
ppp 10 r_ms1 ON
ppp 10 r_ms2 ON
ppp 10 lcn 1027
ppp 10 defpak 128
ppp 10 baklcn 1027
ppp 10 radiuscfg 1
ppp 11 name "L2TP 1 Dial in Interface"
ppp 12 r_callb 1
ppp 12 l_md5 1
ppp 12 r_md5 ON
ppp 12 r_ms1 ON
ppp 12 r_ms2 ON
ppp 12 lcn 1027
ppp 12 defpak 128
ppp 12 baklcn 1027
ppp 12 radiuscfg 1
ppp 12 name "L2TP 3 Dial in Interface"
ppp 13 l1iface "L2TP"
ppp 13 l1nb 3
ppp 13 r_addr ON
ppp 13 IPaddr "192.168.63.194"
ppp 13 mask "255.255.255.255"
ppp 13 DNSport 53
ppp 13 IPmin "192.168.63.103"
ppp 13 IPrange 1
ppp 13 ans ON
ppp 13 timeout 60
ppp 13 ndis ON
ppp 13 metric 1
ppp 13 netip "0.0.0.0"
ppp 13 ip2count 3
ppp 13 ripauth 1
ppp 13 inrip ON
ppp 13 maxneg 80
ppp 13 l_accm "0x00000000"
ppp 13 r_accm "0xffffffff"
ppp 13 l_mru 1500
ppp 13 r_mru 1500
ppp 13 l_acfc ON
ppp 13 l_pap ON
ppp 13 l_chap ON
ppp 13 l_comp ON
ppp 13 l_pfc ON
ppp 13 r_callb 1
ppp 13 l_md5 1
ppp 13 r_md5 ON
ppp 13 r_ms1 ON
ppp 13 r_ms2 ON
ppp 13 lcn 1027
ppp 13 defpak 128
ppp 13 baklcn 1027
ppp 13 radiuscfg 1
ppp 14 name "L2TP 4 Dial in Interface"
ppp 14 l1iface "L2TP"
ppp 14 l1nb 4
ppp 14 r_addr ON
ppp 14 IPaddr "192.168.63.194"
ppp 14 mask "255.255.255.255"
ppp 14 DNSport 53
ppp 14 IPmin "192.168.63.104"
ppp 14 IPrange 1
ppp 14 ans ON
ppp 14 timeout 60
ppp 14 ndis ON
ppp 14 metric 1
ppp 14 netip "0.0.0.0"
ppp 14 ip2count 3
ppp 14 ripauth 1
ppp 14 inrip ON
ppp 14 maxneg 80
ppp 14 l_acm "0x00000000"
ppp 14 r_acm "0xffffffff"
ppp 14 l_mru 1500
ppp 14 r_mru 1500
ppp 14 l_acfc ON
ppp 14 l_pap ON
ppp 14 l_chap ON
ppp 14 l_comp ON
ppp 14 l_pfc ON
ppp 14 r_callb 1
ppp 14 l_md5 1
ppp 14 r_md5 ON
ppp 14 r_ms1 ON
ppp 14 r_ms2 ON
ppp 14 lcn 1027
ppp 14 defpak 128
ppp 14 baklcn 1027
ppp 14 radiuscfg 1
ppp 15 name "L2TP 5 Dial in Interface"
ppp 15 liiface "L2TP"
ppp 15 li1nb 5
ppp 15 r_addr ON
ppp 15 IPaddr "192.168.63.194"
ppp 15 mask "255.255.255.255"
ppp 15 DNSport 53
ppp 15 IPmin "192.168.63.105"
ppp 15 IPrange 1
ppp 15 ans ON
ppp 15 timeout 60
ppp 15 ndis ON
ppp 15 metric 1
ppp 15 netip "0.0.0.0"
ppp 15 ip2count 3
ppp 15 ripauth 1
ppp 15 inrip ON
ppp 15 maxneg 80
ppp 15 l_acm "0x00000000"
ppp 15 r_acm "0xffffffff"
ppp 15 l_mru 1500
ppp 15 r_mru 1500
ppp 15 l_acfc ON
ppp 15 l_pap ON
ppp 15 l_chap ON
ppp 15 l_comp ON
ppp 15 l_pfc ON
ppp 15 r_callb 1
ppp 15 l_md5 1
ppp 15 r_md5 ON
ppp 15 r_ms1 ON
ppp 15 r_ms2 ON
ppp 15 lcn 1027
ppp 15 defpak 128
ppp 15 baklcn 1027
ppp 15 radiuscfg 1
ppp 16 name "L2TP 6 Dial in Interface"
ppp 16 liiface "L2TP"
ppp 16 li1nb 6
ppp 16 r_addr ON
ppp 16 IPaddr "192.168.63.194"
ppp 16 mask "255.255.255.255"
ppp 16 DNSport 53
ppp 16 IPmin "192.168.63.106"
ppp 16 IPrange 1
ppp 16 ans ON
ppp 16 timeout 60
ppp 16 ndis ON
ppp 16 metric 1
ppp 16 netip "0.0.0.0"
ppp 16 ip2count 3
ppp 16 ripauth 1
ppp 16 inrip ON
ppp 16 maxneg 80
ppp 16 l_acccm "0x00000000"
ppp 16 r_acccm "0xffffffff"
ppp 16 l_mru 1500
ppp 16 r_mru 1500
ppp 16 l_acfc ON
ppp 16 l_pap ON
ppp 16 l_chap ON
ppp 16 l_comp ON
ppp 16 l_pfc ON
ppp 16 r_callb 1
ppp 16 l_mds 1
ppp 16 r_mds ON
ppp 16 r_ms1 ON
ppp 16 r_ms2 ON
ppp 16 lcn 1027
ppp 16 defpak 128
ppp 16 baklcn 1027
ppp 16 radiuscfg 1
ppp 17 name "L2TP 7 Dial in Interface"
ppp 17 l1iface "L2TP"
ppp 17 l1nb 7
ppp 17 r_addr ON
ppp 17 IPaddr "192.168.63.194"
ppp 17 mask "255.255.255.255"
ppp 17 DNSport 53
ppp 17 IPmin "192.168.63.107"
ppp 17 IPrange 1
ppp 17 ans ON
ppp 17 timeout 60
ppp 17 ndis ON
ppp 17 metric 1
ppp 17 netip "0.0.0.0"
ppp 17 ip2count 3
ppp 17 ripauth 1
ppp 17 inrip ON
ppp 17 maxneg 80
ppp 17 l_acccm "0x00000000"
ppp 17 r_acccm "0xffffffff"
ppp 17 l_mru 1500
ppp 17 r_mru 1500
ppp 17 l_acfc ON
ppp 17 l_pap ON
ppp 17 l_chap ON
ppp 17 l_comp ON
ppp 17 l_pfc ON
ppp 17 r_callb 1
ppp 17 l_mds 1
ppp 17 r_mds ON
ppp 17 r_ms1 ON
ppp 17 r_ms2 ON
ppp 17 lcn 1027
ppp 17 defpak 128
ppp 17 baklcn 1027
ppp 17 radiuscfg 1
ppp 18 name "L2TP 8 Dial in Interface"
ppp 18 l1iface "L2TP"
ppp 18 l1nb 8
ppp 18 r_addr ON
ppp 18 IPAddr "192.168.63.194"
ppp 18 mask "255.255.255.255"
ppp 18 DNSport 53
ppp 18 IPmin "192.168.63.108"
ppp 18 IPrange 1
ppp 18 ans ON
ppp 18 timeout 60
ppp 18 ndis ON
ppp 18 metric 1
ppp 18 netip "0.0.0.0"
ppp 18 ip2count 3
ppp 18 ripauth 1
ppp 18 inrip ON
ppp 18 maxneg 80
ppp 18 l_accm "0x00000000"
ppp 18 r_accm "0xffffffff"
ppp 18 l_mru 1500
ppp 18 r_mru 1500
ppp 18 l_acfc ON
ppp 18 l_pap ON
ppp 18 l_chap ON
ppp 18 l_comp ON
ppp 18 l_pfc ON
ppp 18 r_callb 1
ppp 18 l_md5 1
ppp 18 r_md5 ON
ppp 18 r_ms1 ON
ppp 18 r_ms2 ON
ppp 18 lcn 1027
ppp 18 defpak 128
ppp 18 baklcn 1027
ppp 18 radiuscfg 1
ppp 19 name "L2TP 9 Dial in Interface"
ppp 19 l1iface "L2TP"
ppp 19 l1nb 9
ppp 19 r_addr ON
ppp 19 IPAddr "192.168.63.194"
ppp 19 mask "255.255.255.255"
ppp 19 DNSport 53
ppp 19 IPmin "192.168.63.109"
ppp 19 IPrange 1
ppp 19 ans ON
ppp 19 ndis ON
ppp 19 metric 1
ppp 19 netip "0.0.0.0"
ppp 19 ip2count 3
ppp 19 ripauth 1
ppp 19 inrip ON
ppp 19 maxneg 80
ppp 19 l_accm "0x00000000"
ppp 19 r_accm "0xffffffff"
ppp 19 l_mru 1500
ppp 19 r_mru 1500
ppp 19 l_acfc ON
ppp 19 l_pap ON
ppp 19 l_chap ON
ppp 19 l_comp ON
ppp 19 l_pfc ON
ppp 19 r_callb 1
ppp 19 l_md5 1
ppp 19 r_md5 ON
ppp 19 r_ms1 ON
ppp 19 r_ms2 ON
ppp 19 lcn 1027
ppp 19 defpak 128
ppp 19 baklcn 1027
ppp 19 radiuscfg 1
web 0 prelogin_info ON
web 0 showgswiz ON
ftpcli 0 hostname "ftp1.digi.com"
ftpcli 0 directory "support/firmware/transport/MC7354_carrier_firmware"
modemcc 0 info_asy_add 7
modemcc 0 apn "mw01.vzwstatic"
modemcc 0 link_retries 30
modemcc 0 stat_retries 30
modemcc 0 sms_interval 1
modemcc 0 sms_access 1
modemcc 0 sms_concat 0
modemcc 0 apn_2 "none"
modemcc 0 link_retries_2 30
modemcc 0 stat_retries_2 30
modemcc 0 sms_interval_2 1
modemcc 0 sms_access_2 1
modemcc 0 sms_concat_2 0
ana 0 l2on OFF
ana 0 l3on OFF
ana 0 xoton OFF
ana 0 lapdon 0
ana 0 lapbon 0
ana 0 maxdata 1500
ana 0 logsize 180
cmd 0 unitid "ss%s>"
cmd 0 cmdnua "99"
cmd 0 hostname "digi.router"
cmd 0 tremto 1200
user 0 access 0
user 1 name "AN21AdminUser"
user 1 access 0
user 2 name "Remote_User_Static"
user 2 access 4
user 2 fieldip "192.168.63.10"
user 2 IPaddr "255.255.255.255"
user 3 access 0
user 4 access 0
user 5 access 0
user 6 access 0
user 7 access 0
user 8 access 0
user 9 name "Remote_User_1"
user 9 access 4
user 14 name "*"
user 14 access 4
user 14 dun_en OFF
local 0 transaccess 2
sslcli 0 verify 10
sslsvr 0 certfile "cert01.pem"
sslsvr 0 keyfile "privrsa.pem"
ssh 0 hostkey1 "privSSH.pem"
ssh 0 nb.listen 5
ssh 0 v1 OFF
cloud 0 ssl ON
[ENDCFG]

OK

5.2 TransPort firmware version

Command: ati5
Command result

Digi TransPort WR44-L500-NE1-SU Ser#:524627 HW Revision: 2202a
Software Build Ver5.2.14.5. Apr 26 2016 11:51:34 LW
ARM Bios Ver 7.56u v45 800MHz B995-M1003-F80-01,0 MAC:00042d080153
Power Up Profile: 0
Async Driver Revision: 1.19 Int clk
Wi-Fi Revision: 2.0
Ethernet Hub Driver Revision: 1.11
Firewall Revision: 1.0
EventEdit Revision: 1.0
Timer Module Revision: 1.1
(B)USBHOST Revision: 1.0
L2TP Revision: 1.10
PPTP Revision: 1.00
TACPLUS Revision: 1.00
MODBUS Revision: 0.00
MySQL Revision: 0.01
RealPort Revision: 0.00
MultiTX Revision: 1.00
LAPB Revision: 1.12
X25 Layer Revision: 1.19
MACRO Revision: 1.0
PAD Revision: 1.4
X25 Switch Revision: 1.7
V120 Revision: 1.16
TPAD Interface Revision: 1.12
GPS Revision: 1.0
TELITUPD Revision: 1.0
SCRIBATSK Revision: 1.0
BASTSK Revision: 1.0
PYTHON Revision: 1.0
CLOUDSMS Revision: 1.0
ARM Sync Driver Revision: 1.18
TCP (HASH mode) Revision: 1.14
TCP Utils Revision: 1.13
PPP Revision: 5.2
WEB Revision: 1.5
SMTP Revision: 1.1
FTP Client Revision: 1.5
FTP Revision: 1.4
IKE Revision: 1.0
PollANS Revision: 1.2
PPPOE Revision: 1.0
BRIDGE Revision: 1.1
MODEM CC (SIERRA LTE) Revision: 5.2
FLASH Write Revision: 1.2
Command Interpreter Revision: 1.38
SSLCLI Revision: 1.0
OSPF Revision: 1.0
BGP Revision: 1.0
<table>
<thead>
<tr>
<th>QoS</th>
<th>Revision: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWRCTRL</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>RADIUS Client</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>SSH Server</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>SCP</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>SSH Client</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>CERT</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>LowPrio</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>Tunnel</td>
<td>Revision: 1.2</td>
</tr>
<tr>
<td>OVPN</td>
<td>Revision: 1.2</td>
</tr>
<tr>
<td>TEMPLOG</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>QDL</td>
<td>Revision: 1.0</td>
</tr>
<tr>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>