Application Note 73

How to configure Automatic Failover between two IPsec tunnels on Digi Transport WR Routers
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

5.2 Failover on Secondary Tunnel .. 30
5.3 Restore of Primary Tunnel .. 31

6 CONFIGURATION FILE .. 32

6.1 Primary Responder Configuration ... 32
6.2 Backup Responder Configuration ... 34
6.3 Initiator Configuration ... 36
1 INTRODUCTION

1.1 Outline

In some IPsec VPN scenarios, it can be useful to have a backup tunnel to failover in case of issues on the primary one, with automatic recovery on the primary once the issue is solved.

This document will describe how to configure this automatic failover between IPsec tunnels, considering the following scenario:

1.2 Assumptions

This guide has been written for use by technically competent personnel with a good understanding of the communications technologies used in the product and of the requirements for their specific application. It also assumes a basic ability to access and navigate a Digi Transport router and configure it with basic routing functions.

This application note applies to:

Model: Digi Transport WR21 and WR11

Other Compatible Models: All Digi WR Transpost models

Firmware versions: 5.077 and later

Configuration: This Application Note assumes the devices are set to their factory default configurations. Most configuration commands are only shown if they differ from the factory default.
1.3 Corrections

Requests for corrections or amendments to this application note are welcome and should be addressed to: tech.support@digi.com

Requests for new application notes can be sent to the same address.

1.4 Version

<table>
<thead>
<tr>
<th>Version Number</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Published</td>
</tr>
</tbody>
</table>
2 PRIMARY RESPONDER CONFIGURATION

2.1 WAN interface configuration

In this example the primary responder has the Mobile interface as the WAN interface and it is configured as follows:

Please note: Depending on provider, a SIM PIN or Username/Password may be required. If needed, enter them in the appropriate fields.
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Plan/APN</td>
<td>internet</td>
<td>Enter the APN of your mobile provider</td>
</tr>
<tr>
<td>Enable IPSec on this interface</td>
<td>✓</td>
<td>Enable IPSec on PPP 1 interface</td>
</tr>
</tbody>
</table>

2.2 Local Ethernet Interface configuration

In this example, the LAN interface is configured with a static address as follows:

CONFIGURATION - NETWORK > INTERFACES > ETHERNET > ETH 0

![Configuration interface](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>172.16.1.1</td>
<td>Enter the IP address of the LAN interface for the router</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.0</td>
<td>Enter the subnet mask</td>
</tr>
</tbody>
</table>
2.3 IPsec configuration

Note: Here will be shown a summary of the configuration on the primary responder, as it is not the main focus of this document. For details about those settings, please check the Application Note: AN 010 IPSec Over Cellular using Digi Transport Routers.pdf.

2.3.1 IPsec Tunnel

The IPsec tunnel is configured as site to site and with Preshared Key using IKE ID. As it is a responder, it is set to be brought up only on demand (so when receive a request from the initiator):

CONFIGURATION - NETWORK > VIRTUAL PRIVATE NETWORKING (VPN) > IPSEC > IPSEC TUNNELS > IPSEC 0
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local LAN IP Address</td>
<td>172.16.1.0</td>
<td>Use this IP address for the local LAN subnet. This is usually the IP address of the router’s Ethernet interface or that of a specific device on the local subnet</td>
</tr>
<tr>
<td>Local LAN Mask</td>
<td>255.255.255.0</td>
<td>Use this IP mask for the local LAN subnet. The mask sets the range of IP addresses that will be allowed to use the IPsec tunnel.</td>
</tr>
<tr>
<td>Remote LAN IP Address</td>
<td>192.168.1.0</td>
<td>Use this IP address for the remote LAN subnet. This is usually the IP address of the peer’s Ethernet interface or that of a specific device on the local subnet</td>
</tr>
<tr>
<td>Remote LAN Mask</td>
<td>255.255.255.0</td>
<td>Use this IP mask for the remote LAN subnet. The mask sets the range of IP addresses that will be allowed to use the IPsec tunnel.</td>
</tr>
<tr>
<td>Use the following security on this tunnel</td>
<td>Pre-shared Keys</td>
<td>Pre-shared keys will be used for authentication</td>
</tr>
<tr>
<td>Our ID</td>
<td>responder1</td>
<td>Parameter to identify the local peer</td>
</tr>
<tr>
<td>Our ID type</td>
<td>IKE ID</td>
<td>Defines how the remote peer is to process the Our ID configuration</td>
</tr>
<tr>
<td>Remote ID</td>
<td>initiator</td>
<td>Parameter used to identify the remote peer</td>
</tr>
<tr>
<td>Use () encryption on this tunnel</td>
<td>AES (128 bit keys)</td>
<td>The ESP encryption protocol to use with this IPsec tunnel</td>
</tr>
<tr>
<td>Use () Authentication on this tunnel</td>
<td>SHA1</td>
<td>The ESP authentication algorithm to use with this IPsec tunnel</td>
</tr>
<tr>
<td>Use Diffie Hellman group ()</td>
<td>2</td>
<td>The Diffie Hellman (DH) group to use when negotiating new IPsec SAs.</td>
</tr>
<tr>
<td>Use IKE n to negotiate this tunnel</td>
<td>v1</td>
<td>The IKE version to use to negotiate this IPsec tunnel.</td>
</tr>
<tr>
<td>Use IKE configuration</td>
<td>0</td>
<td>The IKE configuration instance to use with this Eroute when the router is configured as an Initiator (so left as default in this case, it makes no difference as this router will no act as initiator)</td>
</tr>
<tr>
<td>Bring this tunnel up</td>
<td>On Demand</td>
<td>Controls how the IPsec tunnel is brought up.</td>
</tr>
<tr>
<td>If this tunnel is down and a packet is ready to be sent</td>
<td>Drop the packet</td>
<td>Defines the action that is performed when the IPsec tunnel is down and a packet needs to be sent</td>
</tr>
</tbody>
</table>
2.3.2 IKE settings

The IKE responder settings are set as follows:

CONFIGURATION - NETWORK > VIRTUAL PRIVATE NETWORKING (VPN) > IPSEC > IKE > IKE RESPONDER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable IKE Responder</td>
<td>✓</td>
<td>Allows the router to respond to incoming IKE requests</td>
</tr>
<tr>
<td>Encryption</td>
<td>ALL ✓</td>
<td>The acceptable encryption algorithms</td>
</tr>
<tr>
<td>Authentication</td>
<td>ALL ✓</td>
<td>The acceptable authentication algorithms</td>
</tr>
<tr>
<td>MODP Group between x and y</td>
<td>1(768) and 14(1536)</td>
<td>The acceptable range for MODP group</td>
</tr>
<tr>
<td>Renegotiate after h hrs m mins s secs</td>
<td>8 hrs</td>
<td>How long the initial IKE Security Association will stay in force. When the IKE Security Association expires, any attempt to send packets to the remote system will result in IKE attempting to establish a new SA</td>
</tr>
</tbody>
</table>
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

2.3.3 Pre-Shared Key configuration

For the Pre-Shared key, a user needs to be configured with the Username as the ID of the initiator and the password as the Pre-Shared key:

CONFIGURATION – SECURITY > USERS > USER 10-14 > USER 10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>initiator</td>
<td>Name should match the Peer ID: value from Eroute 0</td>
</tr>
<tr>
<td>Password</td>
<td>****</td>
<td>Enter a password</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>****</td>
<td>Re-enter the password</td>
</tr>
<tr>
<td>Access Level</td>
<td>None</td>
<td>This user will not be granted any admin access as only used as a pre-shared key</td>
</tr>
</tbody>
</table>
3 BACKUP RESPONDER CONFIGURATION

3.1 WAN interface configuration

In this example the Initiator has the Mobile interface as the WAN interface and it is configured as follows:

CONFIGURATION - NETWORK > INTERFACES > MOBILE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Plan/APN</td>
<td>internet</td>
<td>Enter the APN of your mobile provider</td>
</tr>
<tr>
<td>Enable IPSec on this interface</td>
<td>✓</td>
<td>Enable IPSec on PPP 1 interface</td>
</tr>
</tbody>
</table>

Please note: Depending on provider, a SIM PIN or Username/Password may be required. If needed, enter them in the appropriate fields.
3.2 Local Ethernet Interface configuration

In this example, the LAN interface is configured with a static address as follows:

CONFIGURATION - NETWORK > INTERFACES > ETHERNET > ETH 0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>172.16.1.2</td>
<td>Enter the IP address of the LAN interface for the router</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.0</td>
<td>Enter the subnet mask</td>
</tr>
</tbody>
</table>

Where:
3.3 IPsec configuration

Note: Here will be shown a summary of the configuration on the backup responder, as it is not the main focus of this document. For details about those settings, please check the Application Note: AN 010 IPSec Over Cellular using Digi Transport Routers.pdf.

3.3.1 IPsec Tunnel

The IPsec tunnel is configured as site to site and with Preshared Key using IKE ID. As it is a responder, it is set to be brought up only on demand (so when receive a request from the initiator).

Some security parameters are different than the primary responder ones.

CONFIGURATION - NETWORK > VIRTUAL PRIVATE NETWORKING (VPN) > IPSEC > IPSEC TUNNELS > IPSEC 0
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local LAN IP Address</td>
<td>172.16.1.0</td>
<td>Use this IP address for the local LAN subnet. This is usually the IP address of the router’s Ethernet interface or that of a specific device on the local subnet.</td>
</tr>
<tr>
<td>Local LAN Mask</td>
<td>255.255.255.0</td>
<td>Use this IP mask for the local LAN subnet. The mask sets the range of IP addresses that will be allowed to use the IPsec tunnel.</td>
</tr>
<tr>
<td>Remote LAN IP Address</td>
<td>192.168.1.0</td>
<td>Use this IP address for the remote LAN subnet. This is usually the IP address of the peer’s Ethernet interface or that of a specific device on the local subnet.</td>
</tr>
<tr>
<td>Remote LAN Mask</td>
<td>255.255.255.0</td>
<td>Use this IP mask for the remote LAN subnet. The mask sets the range of IP addresses that will be allowed to use the IPsec tunnel.</td>
</tr>
<tr>
<td>Use the following security on this tunnel</td>
<td>Pre-shared Keys</td>
<td>Pre-shared keys will be used for authentication.</td>
</tr>
<tr>
<td>Our ID</td>
<td>responder2</td>
<td>Parameter to identify the local peer.</td>
</tr>
<tr>
<td>Our ID type</td>
<td>IKE ID</td>
<td>Defines how the remote peer is to process the Our ID configuration.</td>
</tr>
<tr>
<td>Remote ID</td>
<td>initiator</td>
<td>Parameter used to identify the remote peer.</td>
</tr>
<tr>
<td>Use () encryption on this tunnel</td>
<td>3DES</td>
<td>The ESP encryption protocol to use with this IPsec tunnel.</td>
</tr>
<tr>
<td>Use () Authentication on this tunnel</td>
<td>SHA1</td>
<td>The ESP authentication algorithm to use with this IPsec tunnel.</td>
</tr>
<tr>
<td>Use Diffie Hellman group ()</td>
<td>2</td>
<td>The Diffie Hellman (DH) group to use when negotiating new IPsec SAs.</td>
</tr>
<tr>
<td>Use IKE n to negotiate this tunnel</td>
<td>v1</td>
<td>The IKE version to use to negotiate this IPsec tunnel.</td>
</tr>
<tr>
<td>Use IKE configuration</td>
<td>0</td>
<td>The IKE configuration instance to use with this Eroute when the router is configured as an Initiator (so left as default in this case, it makes no difference as this router will no act as initiator).</td>
</tr>
<tr>
<td>Bring this tunnel up</td>
<td>On Demand</td>
<td>Controls how the IPsec tunnel is brought up.</td>
</tr>
<tr>
<td>If this tunnel is down and a packet is ready to be sent</td>
<td>Drop the packet</td>
<td>Defines the action that is performed when the IPsec tunnel is down and a packet needs to be sent.</td>
</tr>
</tbody>
</table>
3.3.2 IKE settings

The IKE responder settings are set as follows:

CONFIGURATION - NETWORK > VIRTUAL PRIVATE NETWORKING (VPN) > IPSEC > IKE > IKE RESPONDER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable IKE Responder</td>
<td>✓</td>
<td>Allows the router to respond to incoming IKE requests</td>
</tr>
<tr>
<td>Encryption</td>
<td>ALL ✓</td>
<td>The acceptable encryption algorithms</td>
</tr>
<tr>
<td>Authentication</td>
<td>ALL ✓</td>
<td>The acceptable authentication algorithms</td>
</tr>
<tr>
<td>MODP Group between x and y</td>
<td>1(768) and 5(1536)</td>
<td>The acceptable range for MODP group</td>
</tr>
<tr>
<td>Renegotiate after h hrs m mins s secs</td>
<td>8 hrs</td>
<td>How long the initial IKE Security Association will stay in force. When the IKE Security Association expires, any attempt to send packets to the remote system will result in IKE attempting to establish a new SA</td>
</tr>
</tbody>
</table>
3.3.3 Pre-Shared Key configuration

For the Pre-Shared key, a user needs to be configured with the Username as the ID of the initiator and the password as the Pre-Shared key:

CONFIGURATION - SECURITY > USERS > USER 10-14 > USER 10

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>initiator</td>
<td>Name should match the Peer ID: value from Eroute 0</td>
</tr>
<tr>
<td>Password</td>
<td>****</td>
<td>Enter a password</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>****</td>
<td>Re-enter the password</td>
</tr>
<tr>
<td>Access Level</td>
<td>None</td>
<td>This user will not be granted any admin access as only used as a pre-shared key</td>
</tr>
</tbody>
</table>
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

4 INITIATOR CONFIGURATION

4.1 WAN Interface configuration

In this example the Initiator has the Mobile interface as WAN and it is configured as follows, with an APN set and IPsec enabled:

CONFIGURATION - NETWORK > INTERFACES > MOBILE

![Configuration Interface screenshot]

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Plan/APN</td>
<td>internet</td>
<td>Enter the APN of your mobile provider</td>
</tr>
<tr>
<td>Enable IPSec on this interface</td>
<td>✓</td>
<td>Enable IPSec on PPP 1 interface</td>
</tr>
</tbody>
</table>
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

4.2 Local Ethernet Interface configuration

In this example, the LAN interface is configured with a static address as follows:

CONFIGURATION - NETWORK > INTERFACES > ETHERNET > ETH 0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>192.168.1.1</td>
<td>Enter the IP address of the LAN interface for the router</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.0</td>
<td>Enter the subnet mask</td>
</tr>
</tbody>
</table>

Where:
4.3 IPsec configuration

On the initiator two tunnels will be configured, one to the Primary responder and one to the Backup one.

4.3.1 IPsec Tunnel to Primary Responder

4.3.1.1 IPsec Tunnel

The IPsec tunnel is configured as site to site and with Preshared Key using IKE ID. As it is the initiator, it is set to be brought up whenever a route is available to the destination:

CONFIGURATION - NETWORK > VIRTUAL PRIVATE NETWORKING (VPN) > IPSEC > IPSEC TUNNELS > IPSEC 0
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The IP address or hostname of the remote unit</td>
<td>37.81.134.207</td>
<td>The IP address or hostname of the remote IPsec peer that a VPN will be initiated to. In this case, is the responder 1 WAN address.</td>
</tr>
<tr>
<td>Local LAN IP Address</td>
<td>192.168.1.0</td>
<td>Use this IP address for the local LAN subnet. This is usually the IP address of the router’s Ethernet interface or that of a specific device on the local subnet.</td>
</tr>
<tr>
<td>Local LAN Mask</td>
<td>255.255.255.0</td>
<td>Use this IP mask for the local LAN subnet. The mask sets the range of IP addresses that will be allowed to use the IPsec tunnel.</td>
</tr>
<tr>
<td>Remote LAN IP Address</td>
<td>172.16.1.0</td>
<td>Use this IP address for the remote LAN subnet. This is usually the IP address of the peer’s Ethernet interface or that of a specific device on the local subnet.</td>
</tr>
<tr>
<td>Remote LAN Mask</td>
<td>255.255.255.0</td>
<td>Use this IP mask for the remote LAN subnet. The mask sets the range of IP addresses that will be allowed to use the IPsec tunnel.</td>
</tr>
<tr>
<td>Use the following security on this tunnel</td>
<td>Pre-shared Keys</td>
<td>Pre-shared keys will be used for authentication.</td>
</tr>
<tr>
<td>Our ID</td>
<td>initiator</td>
<td>Parameter to identify the local peer.</td>
</tr>
<tr>
<td>Our ID type</td>
<td>IKE ID</td>
<td>Defines how the remote peer is to process the Our ID configuration.</td>
</tr>
<tr>
<td>Remote ID</td>
<td>responder1</td>
<td>Parameter used to identify the remote peer.</td>
</tr>
<tr>
<td>Use () encryption on this tunnel</td>
<td>AES 128</td>
<td>The ESP encryption protocol to use with this IPsec tunnel.</td>
</tr>
<tr>
<td>Use () Authentication on this tunnel</td>
<td>SHA1</td>
<td>The ESP authentication algorithm to use with this IPsec tunnel.</td>
</tr>
<tr>
<td>Use Diffie Hellman group ()</td>
<td>2</td>
<td>The Diffie Hellman (DH) group to use when negotiating new IPsec SAs.</td>
</tr>
<tr>
<td>Use IKE n to negotiate this tunnel</td>
<td>v1</td>
<td>The IKE version to use to negotiate this IPsec tunnel.</td>
</tr>
<tr>
<td>Use IKE configuration</td>
<td>0</td>
<td>The IKE configuration instance to use with this Eroute when the router is configured as an Initiator (so left as default in this case, it makes no difference as this router will no act as initiator).</td>
</tr>
<tr>
<td>Bring this tunnel up</td>
<td>Whenever a route to the destination is available</td>
<td>Controls how the IPsec tunnel is brought up.</td>
</tr>
<tr>
<td>If this tunnel is down and a packet is ready to be sent</td>
<td>Bring the tunnel Up</td>
<td>Defines the action that is performed when the IPsec tunnel is down and a packet needs to be sent.</td>
</tr>
</tbody>
</table>
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

For the automatic failover to work, the primary tunnel needs to be set as Out Of Service when the automatic establishment fails. This setting can be configured in the Advanced section of the tunnel section:

CONFIGURATION - NETWORK > VIRTUAL PRIVATE NETWORKING (VPN) > IPSEC > IPSEC TUNNELS > IPSEC 0 > ADVANCED

![Configuration - Network > Virtual Private Networking (VPN) > IPsec > IPsec Tunnels](image)

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go out of service if automatic establishment fails</td>
<td>✓</td>
<td>The router will take the IPsec tunnel out of service if the automatic establishment fails. Selecting this will allow the tunnel 1 to be brought up when tunnel 0 goes OOS</td>
</tr>
</tbody>
</table>
4.3.1.2 IKE settings

The IKE settings are set as follows (note that for the secondary tunnel, a different IKE configuration will be used):

CONFIGURATION - NETWORK > VIRTUAL PRIVATE NETWORKING (VPN) > IPSEC > IKE 0

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption</td>
<td>AES (128 bit)</td>
<td>The encryption algorithm to be used for IKE exchanges over the IP connection</td>
</tr>
<tr>
<td>Authentication</td>
<td>SHA1</td>
<td>The algorithm used to authenticate the IKE session</td>
</tr>
<tr>
<td>Mode</td>
<td>Aggressive</td>
<td>Aggressive mode is used in this example</td>
</tr>
<tr>
<td>MODP Group for Phase 1</td>
<td>2 (1024)</td>
<td>The key length used in the IKE Diffie-Hellman exchange</td>
</tr>
<tr>
<td>MODP Group for Phase 2</td>
<td>2 (1024)</td>
<td>The minimum width of the numeric field used in the calculations for phase 2 of the security exchange.</td>
</tr>
</tbody>
</table>
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

4.3.1.3 Pre-Shared Key configuration

For the Pre-Shared key, a user needs to be configured with the Username as the ID of the primary responder and the password as the Pre-Shared key:

CONFIGURATION – SECURITY > USERS > USER 10-14 > USER 10

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>responder1</td>
<td>Name should match the Peer ID: value from Eroute 0</td>
</tr>
<tr>
<td>Password</td>
<td>****</td>
<td>Enter a password</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>****</td>
<td>Re-enter the password</td>
</tr>
<tr>
<td>Access Level</td>
<td>None</td>
<td>This user will not be granted any admin access as only used as a pre-shared key</td>
</tr>
</tbody>
</table>
4.3.2 IPsec Tunnel to Secondary Responder

4.3.2.1 IPsec Tunnel

The IPsec tunnel is configured as site to site and with Preshared Key using IKE ID. Even if this will be the backup tunnel, it needs to be set as brought up ALL the time. That means that, thanks to another parameter in the advanced section explained later on this section, this tunnel will try to go UP all the time but only when the primary one is detected as Out of Service.

Please also note that in this case, a different IKE configuration is used (“Use IKE configuration 1”).

CONFIGURATION - NETWORK > VIRTUAL PRIVATE NETWORKING (VPN) > IPSEC > IPSEC TUNNELS > IPSEC 1
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The IP address or hostname of the remote unit</td>
<td>37.82.252.241</td>
<td>The IP address or hostname of the remote IPsec peer that a VPN will be initiated to. In this case, is the responder 1 WAN address</td>
</tr>
<tr>
<td>Local LAN IP Address</td>
<td>192.168.1.0</td>
<td>Use this IP address for the local LAN subnet. This is usually the IP address of the router’s Ethernet interface or that of a specific device on the local subnet</td>
</tr>
<tr>
<td>Local LAN Mask</td>
<td>255.255.255.0</td>
<td>Use this IP mask for the local LAN subnet. The mask sets the range of IP addresses that will be allowed to use the IPsec tunnel.</td>
</tr>
<tr>
<td>Remote LAN IP Address</td>
<td>172.16.1.0</td>
<td>Use this IP address for the remote LAN subnet. This is usually the IP address of the peer’s Ethernet interface or that of a specific device on the local subnet</td>
</tr>
<tr>
<td>Remote LAN Mask</td>
<td>255.255.255.0</td>
<td>Use this IP mask for the remote LAN subnet. The mask sets the range of IP addresses that will be allowed to use the IPsec tunnel.</td>
</tr>
<tr>
<td>Use the following security on this tunnel</td>
<td>Pre-shared Keys</td>
<td>Pre-shared keys will be used for authentication</td>
</tr>
<tr>
<td>Our ID</td>
<td>initiator</td>
<td>Parameter to identify the local peer</td>
</tr>
<tr>
<td>Our ID type</td>
<td>IKE ID</td>
<td>Defines how the remote peer is to process the Our ID configuration</td>
</tr>
<tr>
<td>Remote ID</td>
<td>responder2</td>
<td>Parameter used to identify the remote peer</td>
</tr>
<tr>
<td>Use () encryption on this tunnel</td>
<td>3DES</td>
<td>The ESP encryption protocol to use with this IPsec tunnel</td>
</tr>
<tr>
<td>Use () Authentication on this tunnel</td>
<td>SHA1</td>
<td>The ESP authentication algorithm to use with this IPsec tunnel</td>
</tr>
<tr>
<td>Use Diffie Hellman group ()</td>
<td>2</td>
<td>The Diffie Hellman (DH) group to use when negotiating new IPsec SAs.</td>
</tr>
<tr>
<td>Use IKE n to negotiate this tunnel</td>
<td>v1</td>
<td>The IKE version to use to negotiate this IPsec tunnel.</td>
</tr>
<tr>
<td>Use IKE configuration</td>
<td>1</td>
<td>The IKE configuration instance to use with this Eroute when the router is configured as an Initiator. In this case, the inititaor will use the configuration instance 1 (and not the default 0) for the tunnel to the responder 2</td>
</tr>
<tr>
<td>Bring this tunnel up</td>
<td>All the time</td>
<td>Controls how the IPsec tunnel is brought up.</td>
</tr>
<tr>
<td>If this tunnel is down and a packet is ready to be sent</td>
<td>Bring the tunnel Up</td>
<td>Defines the action that is performed when the IPsec tunnel is down and a packet needs to be sent</td>
</tr>
</tbody>
</table>
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

As noted before, in order to have the automatic failover working, in the advanced section of the tunnel, a parameter needs to be configured so that the secondary tunnel is inhibited when the primary one is UP:

CONFIGURATION - NETWORK > VIRTUAL PRIVATE NETWORKING (VPN) > IPSEC > IPSEC TUNNELS > IPSEC 0 > ADVANCED

![Configuration Screen](image)

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibit this IPsec tunnel when IPsec tunnels n are up</td>
<td>0</td>
<td>A list of IPsec tunnels that can inhibit this IPsec tunnel from being used as long as they are up. In this case, the primary tunnel is the number “0”</td>
</tr>
</tbody>
</table>
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

4.3.2.2 IKE settings

For the backup tunnel, IKE1 configuration section will be configured, as this is the one used in the tunnel.

CONFIGURATION - NETWORK > VIRTUAL PRIVATE NETWORKING (VPN) > IPSEC > IKE > IKE 1

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption</td>
<td>3DES</td>
<td>The encryption algorithm to be used for IKE exchanges over the IP connection</td>
</tr>
<tr>
<td>Authentication</td>
<td>SHA1</td>
<td>The algorithm used to authenticate the IKE session</td>
</tr>
<tr>
<td>Mode</td>
<td>Aggressive</td>
<td>Aggressive mode is used in this example</td>
</tr>
<tr>
<td>MODP Group for Phase 1</td>
<td>2 (1024)</td>
<td>The key length used in the IKE Diffie-Hellman exchange</td>
</tr>
<tr>
<td>MODP Group for Phase 2</td>
<td>2 (1024)</td>
<td>The minimum width of the numeric field used in the calculations for phase 2 of the security exchange.</td>
</tr>
</tbody>
</table>
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

4.3.2.3 Pre-Shared Key configuration

For the Pre-Shared key, another user needs to be configured with the Username as the ID of the backup responder and the password as the Pre-Shared key:

CONFIGURATION – SECURITY > USERS > USER 10-14 > USER 11

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>responder2</td>
<td>Name should match the Peer ID: value from Eroute 0</td>
</tr>
<tr>
<td>Password</td>
<td>****</td>
<td>Enter a password</td>
</tr>
<tr>
<td>Confirm Password</td>
<td>****</td>
<td>Re-enter the password</td>
</tr>
<tr>
<td>Access Level</td>
<td>None</td>
<td>This user will not be granted any admin access as only used as a pre-shared key</td>
</tr>
</tbody>
</table>
5 TESTING THE AUTOMATIC FAILOVER BETWEEN IPSEC TUNNELS

In this section will be explained how to test the automatic failover between IPsec tunnel functionality. In order to see what happens, the events from the eventlog section will be shown.

5.1 Failure on the primary tunnel (OOS)

Having the primary tunnel correctly established:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:56:04</td>
<td>12 May 2017, (2) IKE SA Removed. Peer: responder1, Successful Negotiation</td>
</tr>
<tr>
<td>09:55:37</td>
<td>12 May 2017, Eroute 0 VPN up peer: responder1</td>
</tr>
<tr>
<td>09:55:37</td>
<td>12 May 2017, New IPSec SA created by responder1</td>
</tr>
<tr>
<td>09:55:37</td>
<td>12 May 2017, (2) IKE Notification: Initial Contact, RX</td>
</tr>
<tr>
<td>09:55:37</td>
<td>12 May 2017, (3) IKE Notification: Responder Lifetime, RX</td>
</tr>
<tr>
<td>09:55:37</td>
<td>12 May 2017, (2) New Phase 2 IKE Session 37.81.134.207, Initiator</td>
</tr>
<tr>
<td>09:55:34</td>
<td>12 May 2017, IKE Request Received From Eroute 0</td>
</tr>
</tbody>
</table>

A failure needs to be simulated on the primary responder (for example a WAN disconnection) so that the tunnel can be set as OOS:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:57:49</td>
<td>12 May 2017, Eroute 0 Out Of Service, No SAs</td>
</tr>
<tr>
<td>09:57:49</td>
<td>12 May 2017, Eroute 0 VPN down peer: responder1</td>
</tr>
<tr>
<td>09:57:49</td>
<td>12 May 2017, IPSec SA Deleted ID responder1, Dead Peer Detected</td>
</tr>
</tbody>
</table>

5.2 Failover on Secondary Tunnel

Once the primary tunnel is marked as OOS, the secondary on will immediately start to try the establishment and will go UP:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:57:50</td>
<td>12 May 2017, Eroute 1 VPN up peer: responder2</td>
</tr>
<tr>
<td>09:57:50</td>
<td>12 May 2017, New IPSec SA created by responder2</td>
</tr>
<tr>
<td>09:57:50</td>
<td>12 May 2017, (11) IKE Notification: Initial Contact, RX</td>
</tr>
<tr>
<td>09:57:50</td>
<td>12 May 2017, (12) IKE Notification: Responder Lifetime, RX</td>
</tr>
<tr>
<td>09:57:50</td>
<td>12 May 2017, (11) New Phase 2 IKE Session 37.82.252.241, Initiator</td>
</tr>
<tr>
<td>09:57:49</td>
<td>12 May 2017, (1) IKE SA Removed. Peer: responder1, Dead Peer Detected</td>
</tr>
<tr>
<td>09:57:49</td>
<td>12 May 2017, (9) New Phase 1 IKE Session 37.82.252.241, Initiator</td>
</tr>
<tr>
<td>09:57:49</td>
<td>12 May 2017, IKE Request Received From Eroute 1</td>
</tr>
</tbody>
</table>
5.3 Restore of Primary Tunnel

As the primary tunnel is configured to be always brought up, it will continue to try the establishment even if the tunnel 1 is UP. Once the failure on the primary responder is solved (so for example, reconnecting the WAN interface), the primary Tunnel will be correctly established:

09:59:21, 12 May 2017, Eroute 0 VPN up peer: responder1
09:59:21, 12 May 2017, New IPSec SA created by responder1
09:59:21, 12 May 2017, (15) IKE Notification: Initial Contact, RX
09:59:21, 12 May 2017, (16) IKE Notification: Responder Lifetime, RX
09:59:19, 12 May 2017, IKE Request Received From Eroute 0
09:59:09, 12 May 2017, IKE Request Received From Eroute 0
09:58:59, 12 May 2017, (14) New Phase 1 IKE Session 37.81.134.207, Initiator
09:58:59, 12 May 2017, IKE Request Received From Eroute 0
09:58:39, 12 May 2017, IKE Request Received From Eroute 0
09:58:29, 12 May 2017, IKE Request Received From Eroute 0
09:58:19, 12 May 2017, IKE Request Received From Eroute 0
09:58:09, 12 May 2017, IKE Request Received From Eroute 0
09:57:59, 12 May 2017, IKE Request Received From Eroute 0

At the same time, due to the “inhibit” setting, the secondary one will be brought down:

09:59:21, 12 May 2017, Eroute 1 VPN down peer: responder2
09:59:21, 12 May 2017, IPSec SA Deleted ID responder2, Eroute inhibited
6 CONFIGURATION FILE

6.1 Primary Responder Configuration

This is the config.da0 file used on the primary responder for the purpose of this Application Note

```
eth 0 IPaddr "172.16.1.1"
lapb 0 ans OFF
lapb 0 tinact 120
lapb 1 tinact 120
lapb 3 dtemode 0
lapb 4 dtemode 0
lapb 5 dtemode 0
lapb 6 dtemode 0
ip 0 cidr ON
def_route 0 ll_ent "ppp"
def_route 0 ll_add 1
eroute 0 descr "IP Sec Tunnel"
eroute 0 peerid "initiator"
eroute 0 ourid "responder1"
eroute 0 locip "172.16.1.0"
eroute 0 locmsk "255.255.255.0"
eroute 0 remip "192.168.1.0"
eroute 0 remmsk "255.255.255.0"
eroute 0 ESPauth "SHA1"
eroute 0 ESPenc "AES"
eroute 0 authmeth "PRESHARED"
eroute 0 dhgroup 2
eroute 0 enckeybits 128
dhcp 0 IPmin "192.168.1.100"
dhcp 0 respdelms 500
dhcp 0 mask "255.255.255.0"
dhcp 0 gateway "192.168.1.1"
dhcp 0 DNS "192.168.1.1"
sntp 0 server "time.devicecloud.com"
ppp 0 timeout 300
ppp 1 name "W-WAN"
ppp 1 phonenum "*98*1#"
ppp 1 IPaddr "0.0.0.0"
ppp 1 timeout 0
ppp 1 ipsec 1
ppp 1 use_modem 1
ppp 1 aodion 1
ppp 1 autoassert 1
ppp 1 r_chap OFF
ppp 3 defpak 16
ppp 4 defpak 16
web 0 prelogin_info ON
modemcc 0 asy_add 4
modemcc 0 info_asy_add 2
modemcc 0 init_str "+CGQREQ=1"
modemcc 0 init_str1 "+CGQMIN=1"
```
modemcc 0 apn "internet.t-d1.de"
modemcc 0 link_retries 10
modemcc 0 stat_retries 30
modemcc 0 sms_interval 1
modemcc 0 sms_access 1
modemcc 0 sms_concat 0
modemcc 0 init_str_2 "+CGQREQ=1"
modemcc 0 init_str1_2 "+CGQMIN=1"
modemcc 0 apn_2 "Your.APN.goes.here"
modemcc 0 link_retries_2 10
modemcc 0 stat_retries_2 30
modemcc 0 sms_access_2 1
modemcc 0 sms_concat_2 0
ana 0 llon ON
ana 0 lapdon 0
ana 0 asyon 1
ana 0 logsize 45
cmd 0 unitid "ss%s>"
cmd 0 cmdnua "99"
cmd 0 hostname "digi.router"
cmd 0 asyled_mode 2
cmd 0 tremto 1200
cmd 0 rcihttp ON
user 0 access 0
user 1 name "username"
user 1 epassword "KD5lSVJDVVg="
user 1 access 0
user 2 access 0
user 3 access 0
user 4 access 0
user 5 access 0
user 6 access 0
user 7 access 0
user 8 access 0
user 9 access 0
user 10 name "initiator"
user 10 epassword "PDZxU0FFQFU="
user 10 access 4
local 0 transaccess 2
sslcli 0 verify 10
sslsvr 0 certfile "cert01.pem"
sslsvr 0 keyfile "privrsa.pem"
ssh 0 hostkey1 "privSSH.pem"
ssh 0 nb_listen 5
ssh 0 v1 OFF
templog 0 mo_autooff ON
cloud 0 ssl ON
6.2 Backup Responder Configuration

This is the config.da0 file used on the backup responder for the purpose of this Application Note

```
eth 0 IPaddr "172.16.1.2"
lapb 0 ans OFF
lapb 0 tinact 120
lapb 1 tinact 120
lapb 3 dtemode 0
lapb 4 dtemode 0
lapb 5 dtemode 0
lapb 6 dtemode 0
ip 0 cidr ON
def_route 0 ll_ent "ppp"
def_route 0 ll_add 1
eroute 0 descr "IP Sec Tunnel"
eroute 0 peerid "initiator"
eroute 0 ourid "responder2"
eroute 0 locip "172.16.1.0"
eroute 0 locmsk "255.255.255.0"
eroute 0 remip "192.168.1.0"
eroute 0 remmsk "255.255.255.0"
eroute 0 ESPauth "SHA1"
eroute 0 ESPenc "3DES"
eroute 0 authmeth "PRESHARED"
eroute 0 dhgroup 2
eroute 0 enckeybits 128
dhcp 0 IPmin "192.168.1.100"
dhcp 0 respdelms 500
dhcp 0 mask "255.255.255.0"
dhcp 0 gateway "192.168.1.1"
dhcp 0 DNS "192.168.1.1"
sntp 0 server "time.devicecloud.com"
dyndns 0 ifent "default"
ppp 0 timeout 300
ppp 1 name "W-WAN (LTE)"
ppp 1 phonenum "*98*1#"
ppp 1 IPaddr "0.0.0.0"
ppp 1 timeout 0
ppp 1 ipsec 1
ppp 1 firewall ON
ppp 1 use_modem 1
ppp 1 aodion 1
ppp 1 autoassert 1
ppp 1 r_chap OFF
ppp 3 defpak 16
ppp 4 defpak 16
web 0 prelogin_info ON
web 0 showgswiz ON
modemcc 0 info_asy_add 4
modemcc 0 init_str "+CGQREQ=1"
modemcc 0 init_str1 "+CGQMIN=1"
modemcc 0 apn "internet.t-d1.de"
modemcc 0 link_retries 10
```
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

modemcc 0 stat_retries 30
modemcc 0 sms_interval 1
modemcc 0 sms_access 1
modemcc 0 sms_concat 0
modemcc 0 init_str_2 "+CGQREQ=1"
modemcc 0 init_str1_2 "+CGQM1N=1"
modemcc 0 apn_2 "Your.APN.goes.here"
modemcc 0 link_retries_2 10
modemcc 0 stat_retries_2 30
modemcc 0 sms_access_2 1
modemcc 0 sms_concat_2 0
ana 0 l1on ON
ana 0 lapdon 0
ana 0 asyon 1
ana 0 logsize 45
cmd 0 unitid "ss%ss>"
cmd 0 cmdnua "99"
cmd 0 hostname "digi.router"
cmd 0 asyled_mode 2
cmd 0 tremto 1200
cmd 0 rcihttp ON
user 0 access 0
user 1 name "username"
user 1 epassword "KD5lSVJDVg="
user 1 access 0
user 2 access 0
user 3 access 0
user 4 access 0
user 5 access 0
user 6 access 0
user 7 access 0
user 8 access 0
user 9 access 0
user 10 name "initiator"
user 10 epassword "PDZxUQFFQFU="
user 10 access 4
local 0 transaccess 2
sslcli 0 verify 10
sslsvr 0 certfile "cert01.pem"
sslsvr 0 keyfile "privrsa.pem"
ssh 0 hostkey1 "privSSH.pem"
ssh 0 nb_listen 5
ssh 0 v1 OFF
temlog 0 mo_autooff ON
cloud 0 ssl ON
6.3 Initiator Configuration

This is the config.da0 file used on the initiator for the purpose of this Application Note

```
eth 0 IPaddr "192.168.1.1"
lapb 0 ans OFF
lapb 0 tinact 120
lapb 1 tinact 120
lapb 3 dtmode 0
lapb 4 dtmode 0
lapb 5 dtmode 0
lapb 6 dtmode 0
ip 0 cidr ON
def_route 0 ll_ent "ppp"
def_route 0 ll_add 1
eroute 0 descr "IP Sec Tunnel - Primary"
eroute 0 peerip "37.81.134.207"
eroute 0 peerid "responder1"
eroute 0 ourid "initiator"
eroute 0 locip "192.168.1.0"
eroute 0 locmsk "255.255.255.0"
eroute 0 remip "172.16.1.0"
eroute 0 remmsk "255.255.255.0"
eroute 0 ESPauth "SHA1"
eroute 0 ESPenc "AES"
eroute 0 authmeth "PRESHARED"
eroute 0 nosa "TRY"
eroute 0 autosa 1
eroute 0 nosaaoos ON
eroute 0 dhgroup 2
eroute 0 enckeybits 128
eroute 1 descr "IP Sec Tunnel - Backup"
eroute 1 peerip "37.82.252.241"
eroute 1 peerid "responder2"
eroute 1 ourid "initiator"
eroute 1 locip "192.168.1.0"
eroute 1 locmsk "255.255.255.0"
eroute 1 remip "172.16.1.0"
eroute 1 remmsk "255.255.255.0"
eroute 1 ESPauth "SHA1"
eroute 1 ESPenc "3DES"
eroute 1 authmeth "PRESHARED"
eroute 1 nosa "TRY"
eroute 1 autosa 2
eroute 1 ikecfg 1
eroute 1 dhgroup 2
eroute 1 inhibitno "0"
dhcp 0 IPmin "192.168.1.100"
dhcp 0 respdelms 500
dhcp 0 mask "255.255.255.0"
dhcp 0 gateway "192.168.1.1"
dhcp 0 DNS "192.168.1.1"
sntp 0 server "time.devicecloud.com"
dyndns 0 ifent "default"
```
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

```
ppp 0 timeout 300
ppp 1 name "W-WAN (HSPA 3G)"
ppp 1 phonenum "*98*1#"
ppp 1 IPaddr "0.0.0.0"
ppp 1 timeout 0
ppp 1 ipsec 1
ppp 1 use_modem 1
ppp 1 aodion 1
ppp 1 autoassert 1
ppp 1 r_chap OFF
ppp 3 defpak 16
ppp 4 defpak 16
web 0 prelogin_info ON
ftpcl1i 0 hostname "ftp1.digi.com"
ftpcl1i 0 username "anonymous"
ftpcl1i 0 epassword "OTF5VFxBSElB"
ftpcl1i 0 directory "support/firmware/transport/radio_module_firmware/he910d"
ike 0 encalg "AES"
ike 0 keybits 128
ike 0 authalg "SHA1"
ike 0 aggressive ON
ike 0 ikegroup 2
ike 0 ipseccgroup 2
ike 1 encalg "3DES"
ike 1 authalg "SHA1"
ike 1 aggressive ON
ike 1 ikegroup 2
ike 1 ipseccgroup 2
modemcc 0 info_asy_add 3
modemcc 0 init_str "+CGQREQ=1"
modemcc 0 init_str1 "+CGQMIN=1"
modemcc 0 apn "internet.t-d1.de"
modemcc 0 link_retries 10
modemcc 0 stat_retries 30
modemcc 0 sms_interval 1
modemcc 0 sms_access 1
modemcc 0 sms_concat 0
modemcc 0 init_str_2 "+CGQREQ=1"
modemcc 0 init_str1_2 "+CGQMIN=1"
modemcc 0 apn_2 "Your.APN.goes.here"
modemcc 0 link_retries_2 10
modemcc 0 stat_retries_2 30
modemcc 0 sms_access_2 1
modemcc 0 sms_concat_2 0
ana 0 l1on ON
ana 0 lapdon 0
ana 0 asyon 1
ana 0 logsize 45
cmd 0 unitid "ss%s>"
cmd 0 cmdnua "99"
cmd 0 hostname "digi.router"
cmd 0 tremto 1200
cmd 0 rcihttp ON
user 0 access 0
```
How to configure Automatic Failover between two IPsec tunnels on Digi Transport Routers

user 1 name "username"
user 1 epassword "KD5lSVJDVwng="
user 1 access 0
user 2 access 0
user 3 access 0
user 4 access 0
user 5 access 0
user 6 access 0
user 7 access 0
user 8 access 0
user 9 access 0
user 10 name "responder1"
user 10 epassword "PDZxU0FFQFU="
user 10 access 4
user 11 name "responder2"
user 11 epassword "PDZxU0FFQFU="
user 11 access 4
local 0 transaccess 2
sslcli 0 verify 10
sslsvr 0 certfile "cert01.pem"
sslsvr 0 keyfile "privrsa.pem"
ssh 0 hostkey1 "privSSH.pem"
ssh 0 nb_listen 5
ssh 0 v1 OFF
templog 0 mo_autooff ON
cloud 0 ssl ON