

Digi ConnectCore 9C/Wi-9C
for Windows Embedded CE 6.0

User’s Guide

90000849_B

 2

© Digi International Inc. 2007. All Rights Reserved.
The Digi logo is a registered trademark of Digi International, Inc.
All other trademarks mentioned in this document are the property of their respective owners.
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International.
Digi provides this document “as is,” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of fitness or merchantability for a particular
purpose. Digi may make improvements and/or changes in this manual or in the product(s) and/or
the program(s) described in this manual at any time.
This product could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes may be incorporated in new editions of the
publication.

Digi International Inc.

11001 Bren Road East

Minnetonka, MN 55343 (USA)

 +1 877 912-3444 or +1 952 912-3444

http://www.digi.com

http://www.digi.com/

 3

Contents

1. Concepts..7
1.1. Windows Embedded CE concepts.. 7

1.1.1. Cross-compilation ...7
1.1.2. Boot loader..7
1.1.3. Kernel..8
1.1.4. File system..8
1.1.5. OS design ...8
1.1.6. Applications...8
1.1.7. Board Support Package (BSP)..8
1.1.8. Software Development Kit (SDK) ..8
1.1.9. Projects and Solutions ..8

1.2. Structure of Windows Embedded CE ... 9
1.2.1. Main directories...9

1.3. Platform Builder... 9
1.4. License background.. 9
1.5. Conventions .. 10
1.6. Abbreviations .. 11

2. Developing applications with Visual Studio 2005....................13
2.1. Create the project.. 13

2.1.1. Visual Basic application ..13
2.1.2. Visual C# application...16
2.1.3. Visual C++ application ..18

2.2. Build the solution... 20
2.3. Deploy and debug applications... 20

2.3.1. Device Transport configuration ...20
2.3.2. Set StartUp projects ..22
2.3.3. Connect to the device ...22
2.3.4. Start deploying and debugging the application ...23
2.3.5. Add a breakpoint ...23
2.3.6. Other debugging tools...24

2.4. Delete projects and solutions.. 24

3. Configure the Windows Embedded CE kernel25
3.1. Create a new Platform Builder project .. 25
3.2. Catalog view.. 29

3.2.1. Include and remove project components ..30
3.3. OS design properties .. 31

3.3.1. Environment variables...32
3.4. Registry entries ... 33
3.5. Adjusting the memory layout... 34
3.6. File system .. 35

3.6.1. Include files and folders ..35
3.7. Launch an application after start-up.. 37

3.7.1. Create a shortcut to the application...37
3.7.2. Add the shortcut to the OS design ..37
3.7.3. Create the Startup entry..38

4. Build the kernel ...39
4.1. Build the kernel (Release version) .. 39
4.2. Build the kernel (Debug version)... 40

5. Debug the kernel ...41
5.1. About debugging over Ethernet .. 41
5.2. Establish the connection to the target... 41

5.2.1. Target connectivity options ...41
5.2.2. Send BOOTME messages from target..43

 4

5.2.3. Attach the device...44
5.3. Debug the code ... 44
5.4. Remote Tools .. 45

6. Connect to a Release kernel ... 46
6.1. Use Remote Tools in a Release configuration.. 46

6.1.1. Add the Remote Tools component ..46
6.1.2. Connect with Manual server..47

7. Transfer the system to the target ... 51
7.1. TFTP server .. 51
7.2. Basic boot loader... 51
7.3. Environment variables... 52
7.4. Test the system... 52

7.4.1. Transfer the system using Platform Builder...52
7.4.2. Transfer the system by Ethernet ...52
7.4.3. Transfer the system by USB ...52

8. Update the flash memory .. 53
8.1. Structure of the flash ... 53
8.2. Update from a running Windows Embedded CE system.. 54
8.3. Update from U-Boot .. 55

8.3.1. Update the kernel ..55
8.3.2. Update EBOOT ...55
8.3.3. Update U-Boot ..56

9. SDK for the OS design... 57
9.1. Included SDK .. 57
9.2. Create an SDK .. 57
9.3. Build the SDK .. 58
9.4. Install the SDK... 58

10. Devices and Interfaces .. 60
10.1. Table of devices and their hardware resources .. 60
10.2. GPIO (General Purpose Input/Output) pins .. 61

10.2.1. Hardware resources used by the driver ..61
10.2.2. Enable the interface in the kernel..61
10.2.3. Manage the GPIOs from the user space...62

10.3. Ethernet interface .. 66
10.3.1. Hardware resources used by the driver ..66
10.3.2. Enable the Ethernet interface in the kernel ...67
10.3.3. The Ethernet interface in the system...68

10.4. Wireless... 68
10.4.1. Hardware resources used by the driver ..68
10.4.2. Enable the Wireless interface in the kernel ...69
10.4.3. The wireless interface in the system ...70

10.5. Flash memory device .. 70
10.5.1. Hardware resources used by the driver ..70
10.5.2. Enable the device in the kernel ...71

10.6. Serial port device drivers... 72
10.6.1. Hardware resources used by the driver ..72
10.6.2. Enable the serial ports in the kernel ..73
10.6.3. Identify the serial ports in the system..74
10.6.4. Manage the serial ports from the user space ..74

10.7. Touch screen... 79
10.7.1. Hardware resources used by the driver ..79
10.7.2. Enable the touch screen device in the kernel..80
10.7.3. The touch screen interface in the system..81

10.8. USB host interface .. 81
10.8.1. Hardware resources used by the driver ..81
10.8.2. Enable the interface in the kernel..82

 5

10.8.3. USB devices in the system ...84
10.9. I2C ... 84

10.9.1. Hardware resources used by the interface ...84
10.9.2. Enable the interface in the kernel..85
10.9.3. Manage the interface from user space..86

10.10. RTC... 90
10.10.1. Manage the device from user space..90

10.11. Video ... 91
10.11.1. Hardware resources used by the driver ...91
10.11.2. Include video support in the kernel ..92
10.11.3. Manage the display from the user space...92

10.12. Watchdog .. 93
10.12.1. Enable/Disable the watchdog in the kernel..93
10.12.2. Manage the watchdog from user space...93

11. Using the Wireless LAN adapter..96
11.1. Concepts ... 96
11.2. Features of the WLAN adapter ... 96
11.3. Include the wireless interface in the Windows CE kernel ... 96

11.3.1. Required components...97
11.3.2. Recommended catalog components...97

11.4. Wireless interface LEDs.. 98
11.5. Driver start... 99
11.6. WLAN network settings... 99
11.7. Connect to an access point (infrastructure mode) .. 100

11.7.1. Graphic mode ...100
11.7.2. Command line mode...102

11.8. Connect to a computer (ad hoc mode) ... 106
11.8.1. Graphic mode ...107
11.8.2. Command line mode...108

11.9. Authentication and encryption... 108
11.9.1. Supported methods...108
11.9.2. Authentication and encryption combinations...109
11.9.3. Open authentication without encryption ..110
11.9.4. Open authentication with WEP encryption..112
11.9.5. WPA-PSK authentication with TKIP encryption ..114
11.9.6. WPA2-PSK authentication with AES-CCMP encryption ...116
11.9.7. WPA Enterprise authentication ...118

11.10. APs supporting several authentication and encryption methods...................................... 123
11.11. Wireless configuration tool .. 124

11.11.1. Display wireless status information..125
11.11.2. Display transmission driver statistics ...125
11.11.3. Commands for configuring driver parameters..126
11.11.4. Store parameters to Registry...126
11.11.5. Preferred Network Configuration ...127
11.11.6. Source code for WifiConf...129

12. Persistent Registry ...131
12.1. Regtool application.. 131

13. Boot loader development ...132
13.1. Development environment .. 132
13.2. Platform specific source code ... 132
13.3. Customize U-Boot ... 132

13.3.1. Default environment variables ..132
13.4. Build U-Boot .. 133

13.4.1. Configure U-Boot for the target platform ...133
13.4.2. Compile U-Boot...134
13.4.3. Install U-Boot image..134

13.5. Updating U-Boot.. 134
13.5.1. Update from a running Windows Embedded CE system ..134
13.5.2. Update from U-Boot ..134

 6

14. Troubleshooting ... 135
14.1. Language settings ... 135
14.2. Monthly updates .. 136
14.3. Using native functions in managed applications ... 136
14.4. Using pointers and addresses in managed applications... 137
14.5. Including and launching debugging services .. 138
14.6. Writing large files to flash from U-Boot.. 138
14.7. Run-time licenses.. 139
14.8. CE 5.0 application compatibility on CE 6.0 ... 140
14.9. Finding source code for debugging... 140
14.10. Application and Device Debugging ... 141
14.11. Shorten build process.. 141
14.12. Windows CE Image Size... 141

15. Recovering a device... 142
15.1. JTAG tool and software... 142
15.2. Program a U-Boot into flash with the JTAG tool ... 143
15.3. Update the SPI loader ... 145

16. Uninstalling... 147

17. References.. 148

Index.. 149

 7

1. Concepts

Developing applications for embedded systems differs from developing them for a desktop
computer. Embedded-system applications involve several more elements than the applications
themselves, such as the operating system and any necessary customization of it, the hardware
drivers, the file system, and other elements. This topic introduces the software elements of an
embedded system and the development environment needed to create them.

This topic provides an overview of the software elements of an embedded system and the
development environment needed to create them.

1.1. Windows Embedded CE concepts
Embedded systems are ubiquitous. These dedicated small computers are present in
communications systems, transportation, manufacturing, detection systems, and many machines
that make our lives easier.

Windows Embedded CE is a componentized operating system designed to power small-footprint
devices and help get them to market fast. It provides a wide variety of technology components and
pre-existing templates for quickly building hard real-time commercial and consumer electronics
devices.

1.1.1. Cross-compilation
Whenever code is generated for an embedded target on a development system with a different
microprocessor architecture, a cross-development environment is needed. A cross-development
compiler is one that executes in the development system, for example, an x86 PC, but generates
code that executes in a different processor, for example, if the target is ARM.

Windows Embedded CE provides the cross-development toolchain for ARM architectures,
including the compiler, linker, assembler, and libraries needed to generate software for the
supported platforms.

1.1.2. Boot loader
A boot loader is a small piece of software that executes soon after a computer powers up. On a
desktop PC, the boot loader resides on the master boot record (MBR) of the hard drive and is
executed after the PC’s Basic Input Output System (BIOS) performs system initialization. The boot
loader passes system information to the kernel (for instance, which hard drive partition to mount as
root) and then executes the kernel.

In an embedded system, the boot loader’s role is more complicated because these systems do not
have a BIOS to perform the initial system configuration. While the low-level initialization of the
microprocessor, memory controllers, and other board-specific hardware varies from board to board
and CPU to CPU, the initialization must be performed before a kernel image can execute.

At a minimum, a boot loader for an embedded system performs these functions:

 Initializing the hardware, especially the memory controller

 Providing boot parameters for the operating system image

 Starting the operating system image

Most boot loaders also provide convenient features that simplify development and update of the
firmware, including:

 Reading and writing arbitrary memory locations

 Uploading new binary images to the board's RAM over a serial line or Ethernet

 Copying binary images from RAM to the flash memory

 8

1.1.3. Kernel
The kernel is the fundamental part of an operating system. It is responsible for managing the
resources and the communication between hardware and software components.

The kernel offers hardware abstraction to the applications and provides secure access to the
system memory. It also includes an interrupt handler, which handles all requests or completed I/O
operations.

1.1.4. File system
Operating systems rely on a hierarchical set of files and directories. The top of the hierarchical file
tree is the file system, which contains the files and directories critical for system operation and
programs for booting the system.

1.1.5. OS design
In Windows Embedded CE, the kernel and the file system form a whole. This unique element is
called “OS design”. Note that this documentation sometimes refers to the OS design simply as “the
kernel”.

1.1.6. Applications
Software applications are programs that use the capabilities and resources of a computer to do
tasks. Applications use hardware devices by communicating with device drivers, which are part of
the kernel.

1.1.7. Board Support Package (BSP)
In Windows Embedded CE, a BSP is a collection of files, drivers, OEM Adaptation Layers, and
hardware abstraction layers (HALs) that have been created for a specific hardware platform. The
BSP reduces the time to market phase for software, leveraging Microsoft Windows Embedded CE
6.0 running on Digi modules.

1.1.8. Software Development Kit (SDK)
An SDK is a collection of objects and methods that allow programmatic access to compiled and/or
proprietary software. An application that is based on a certain SDK runs on any device that
contains that SDK's components.

1.1.9. Projects and Solutions
In Windows Embedded CE, a project is a folder that contains all the software components for
specific functionality. A project, for example, can be an application or a kernel for a given platform.

Solutions are containers of several related projects. For example, a solution can contain a kernel
project and several applications projects.

 9

1.2. Structure of Windows Embedded CE
The Windows Embedded CE software package on the CD contains all the necessary software
components for developing applications with the Windows Embedded CE 6.0 hardware
platform.New software is developed using Visual Studio 2005 for Digi embedded modules. Here is
a review of the structure and software components of Windows Embedded CE.

1.2.1. Main directories
After installation, the Windows Embedded CE root folder (defined by an automatically defined
variable %_WINCEROOT%) has this directory tree:

Directory Description
%_WINCEROOT%\PLATFORM Board specific modules; for example:

DEVICEEMULATOR Samsung's emulator platform
MAINSTONEIII Intel MainStone III platform
CCX9C Digi ConnectCore 9C and Wi-9C platforms

%_WINCEROOT%\PLATFORM\COM
MON\SRC\SOC\ CPU common functions, such as OAL, drivers, etc.

%_WINCEROOT%\OSDesigns All project-specific parts; for example:
MyCCX9C One ConnectCore 9C/Wi-9C based project.

%_WINCEROOT%\PUBLIC\COMMON All common adjustments and drivers. Be careful with changes in
this directory and its subfolders. A change in one of the sources in
the common directory affects all platforms.

1.3. Platform Builder
Platform Builder is the environment for developing operating system designs based on the
available BSPs. Platform Builder integrates into Microsoft Visual Studio 2005 as a plug-in.

1.4. License background
The BSP includes the full source code for the BSP and all the drivers related to the ConnectCore
9C/Wi-9C platforms.

The source code can be used freely on Windows Embedded CE images created to run on
ConnectCore 9C/Wi-9C based products. The use, modification or distribution of the source
code on images created to run on other products is forbidden.

For detailed information about licensing and royalties, read the License Agreements
(License_Agreements.rtf) in the ConnectCore BSP for Windows Embedded CE 6.0 CD-ROM, or
contact your sales representative.

For information about which Windows Embedded CE run-time license is required, see topic 14.7.

 10

1.5. Conventions
This document uses these conventions, frames, and symbols to display information:

Convention Use
Style New terms and variables in commands, code, and other input.
Style In examples, to show the contents of files, the output from commands.

In text, the C code.

Variables to be replaced with actual values are shown in italics.

Style For menu items, dialogs, tabs, buttons, and other controls.

In examples, to show the text that should be entered literally.

$ A prompt that indicates the action is performed in the host computer.

\> A prompt that indicates the action is performed in the target device.
Menu name > option A menu followed by one or more options; for example, File > New.

This manual also uses these frames and symbols:

A warning that helps to solve or to avoid common mistakes or
problems.

A hint that contains useful information about a topic.

$ A host computer session.
 Bold text indicates what must be input.

\> A target session.
\> Bold text indicates what must be input.

 11

1.6. Abbreviations

AES Advanced Encryption Standard

AP Access Point

API Application Program Interface

ASCII American Standard Code for Information Interchange

BIOS Basic Input Output System

CCMP Counter Mode with Cipher Block Chaining Message
Authentication Code Protocol

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

DSSS Direct-Sequence Spread Spectrum

EULA End-User License Agreement

FPGA Field-Programmable Gate Array

FTP File Transfer Protocol

GPIO General Purpose Input/Output

HAL Hardware Adaptation Layer

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

IEEE Institute for Electrical and Electronics Engineers

IOCTL I/O Control

IP Internet Protocol

JTAG Joint Test Action Group

LCD Liquid Crystal Display

LSB Less Significant Bit

MBR Master Boot Record

MSB Most Significant Bit

NVRAM Non-volatile RAM

OAL OEM Adaptation Layer

OEM Original Equipment Manufacturer

OHCI Open Host Controller Interface

OS Operating System

PC Personal Computer

PSK Pre-Shared Key

RAM Random Access Memory

RTC Real-Time Clock

SPI Serial Peripheral Interface

SSID Service set identifier

TFTP Trivial File Transfer Protocol

 12

TKIP Temporal Key Integrity Protocol

USB Universal Serial Bus

WEP Wired Equivalent Privacy

WLAN Wireless Local Area Network

WPA Wi-Fi Protected Access

WZCSAPI Wireless Zero Config Service API

WZCSVC Wireless Zero Config Service

 13

2. Developing applications with Visual Studio 2005

This topic describes how to create, build, transfer, and debug Windows Embedded CE applications
using Microsoft Visual Studio 2005 software. Application can also be developed using Visual C++,
Visual Basic, or Visual C#.

2.1. Create the project

2.1.1. Visual Basic application

2.1.1.1. Create the Visual Basic project
This topic, creates a sample Hello World application in Visual Basic and Visual C#. These projects
will be created within the bounds of one solution named SampleSolution.

1. In Visual Studio 2005 select File > New > Project.

The New Project dialog opens.

2. Under Project Types, expand Other Languages > Visual Basic > Smart Device >
Windows CE 5.0

Throughout this document, Visual Studio refers to Windows CE 5.0 instead of
version 6.0, but the 5.0 selection is fully compatible with 6.0.

3. From the Templates section, select Device Application.

4. At the bottom of the dialog, enter this information:

 The name of the Visual Basic project (VB_HelloWorld).

 The path to the location in which to store the solution.

 The name of the solution (SampleSolution) in which to store this project.

Then click OK. This creates a folder named SampleSolution in your location path with a
subfolder named VB_HelloWorld, which contains the Visual Basic project with an empty form
and some basic source files.

 14

2.1.1.2. Generate the interface
Now add some content to the form.

1. To open the toolbox, select View > Toolbox.

2. Drag and drop a button and two labels into the form.

The interface looks like this:

3. Right-click the button, select Properties, and change the text in the box to Press me.

Leave the labels with their default text.

 15

2.1.1.3. Generate the source code
Now put some code into the button’s click method.

To open the button’s click method source code, double-click the button on the form. Some code is
displayed:

Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 End Sub
End Class

Label1 should display “Hello World” and Label2 should display a counter’s value that increases
with each of the button. Add this code (in bold):

Public Class Form1
 Dim counter As Integer
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Label1.Text = "Hello World!"
 Label2.Text = counter.ToString
 counter = counter + 1
 End Sub
End Class

Save the file and close the editor.

2.1.1.4. Build the Visual Basic application
To build the sample application, select Build > Build VB_HelloWorld.

When the build finishes, the output window shows that the build was successful:

VB_HelloWorld ->
C:\samples\SampleSolution\VB_HelloWorld\bin\Debug\VB_HelloWorld.exe
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========

This output also shows where the executable image has been placed; in this example, the location
is:

C:\samples\SampleSolution\VB_HelloWorld\bin\Debug\VB_HelloWorld.exe

 16

2.1.2. Visual C# application

2.1.2.1. Create the C# project
1. Select File > New > Project.

The New Project dialog opens.

2. Expand Other Languages > Visual C# > Smart Device > Windows CE 5.0.

3. In the Templates section, select Device Application.

4. Enter the name of the Visual C# project (CS_HelloWorld).

5. In the Solution combo box, to add the new project to the solution you previously created
(SampleSolution), select Add to solution.

 This step populates the Location field with the path to SampleSolution.

6. Click OK.

2.1.2.2. Generate the interface
Generate a similar interface to the one created in topic 2.1.1.2.

 17

2.1.2.3. Generate the source code
Now put some code into the button’s click method:

1. Double-click the button on the form to open its click method source code. This code is
displayed:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace HelloWorld
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 }
 }
}

2. Label1 should display "Hello World" and Label2 should display a counter's value that
increases with each click of the button. Add this code (in bold):

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace HelloWorld
{
 public partial class Form1 : Form
 {
 int counter = 1;

 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 label1.Text = "Hello World!";
 label2.Text = counter.ToString ();
 counter++;
 }
 }
}

3. Save the file and close the editor.

 18

2.1.2.4. Build the C# application
To build the sample application, select Build > Build CS_HelloWorld.

When the build finishes, the output window shows that the build was successful.

Compile complete -- 0 errors, 0 warnings
CS_HelloWorld ->
C:\samples\SampleSolution\CS_HelloWorld\bin\Debug\CS_HelloWorld.exe
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========

This output also shows where the executable image has been placed; in this example:

C:\samples\SampleSolution\CS_HelloWorld\bin\Debug\CS_HelloWorld.exe

2.1.3. Visual C++ application

2.1.3.1. Create the C++ project
1. Select File > New > Project.

The New Project dialog opens.

2. Expand Visual C++ > Smart Device.

3. In the Templates section, select Win32 Smart Device Project.

4. Enter the name of the Visual C++ project (Cpp_HelloWorld).

5. In the Solution combo box, to add the new project to the solution you previously created
(SampleSolution), select Add to solution.

 This step populates the Location field with the path to SampleSolution.

6. Click OK.

7. In Platform window, select the platform SDK to be added to the project. Select Digi SDK
(CC9C_Wi-9C_SDK) or the custom SDK created for your platform.

 19

8. Click Finish.

2.1.3.2. Build the C++ application
To build the sample application, select Build > Build Cpp_HelloWorld.

When the build finishes, the output window shows that the build was successful.

Compile complete -- 0 errors, 0 warnings
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========

In this example, the executable image has been placed in this location:

C:\samples\SampleSolution\Cpp_HelloWorld\CC9C_Wi-9C_SDK
(ARMV4I)\Debug\Cpp_HelloWorld.exe

 20

2.2. Build the solution
Although each project can be built separately, all the projects of a solution can be built as a whole.

To do so, go to Build > Configuration Manager... The Configuration Manager dialog lists all the
projects of a solution. The projects that have the Build column checked for the active solution
platform will be built when selecting Build > Build solution.

2.3. Deploy and debug applications

2.3.1. Device Transport configuration
To transfer and debug the applications, a Device Transport configuration must be established:

1. Select Tools > Options.

The Options dialog opens.

2. Select Device Tools > Devices.

3. From the Show devices for platform pull-down menu, select Windows CE 5.0.

In the Devices list box, select Windows CE 5.0 Device. Under Default device, select
Windows CE 5.0 Device.

Visual Studio refers to Windows CE 5.0 instead of version 6.0, but the 5.0
selection is fully compatible with 6.0.

4. Click Properties.

The Windows CE 5.0 Device Properties dialog opens.

 21

5. Select these values:

 Default output location: Program Files Folder

 Transport: TCP Connect Transport

 Bootstrapper: ActiveSync Startup Provider

6. Click the Configure button to the right of the Transport method pull-down menu to open the
Configure TCP/IP Transport dialog.

7. Click Use specific IP address, enter the IP address of the target, and click OK.

8. To accept the device transportation configuration, click OK in the rest of the open dialogs.

Visual Studio 2005 is now ready to transfer and debug any Windows Embedded CE application to
the target board.

 22

2.3.2. Set StartUp projects
By default, the SampleSolution project that has been created selects one of the projects (which
appears in bold) as the one active for running and debugging.

To manually select a project to debug:

1. Right-click the SampleSolution item in the Solution Explorer and select Set StartUp Projects.

2. Select Current Selection, then click OK.

2.3.3. Connect to the device
Before applications can be debugged, two programs must be launched in the target to listen for
debug connections:

 conmanclient2.exe

 cmaccept.exe

If the OS design was created using the ConnectCore 9C or Wi-9C template, these two applications
are launched automatically. If the OS design was created using the Custom Device template, these
applications must be included into the OS design. Topic 14.5 explains how to include and launch
these applications.

To connect to the device:

1. In Visual Studio 2005, select Tools > Connect to Device.

2. Select Windows CE 5.0 Device, and click Connect.

 A dialog opens to show whether the connection was successful.

3. Close the dialog.

 23

2.3.4. Start deploying and debugging the application
1. Select one of the application projects.

2. Select Debug > Start debugging.

3. Select Windows CE 5.0 Device again.

To prevent the dialog from appearing again, deselect Show me this dialog every time I
deploy the application.

4. Click Deploy. This transfers the application to the target and runs it for debugging. The Visual
Studio perspective changes to Debug mode.

2.3.5. Add a breakpoint
To add a breakpoint, click the left border of the editor in any line of code. A red circle appears on
the line that was clicked.

If problems occur accessing breakpoints, symbols may not have been loaded
correctly. Stop debugging and try reloading the image.

To remove a breakpoint, click again in the left border of the editor.

 24

1. Add a breakpoint to any line within the button's click method.

2. Click the button on the application.

The code stops at the breakpoint. The yellow arrow indicates the line where the program
counter is.

2.3.6. Other debugging tools
There are other debugging tools used to watch variables, step over or into the code, modify
variable values, view and edit memory positions. These and many other debugging options are
accessible from the Debug menu.

2.4. Delete projects and solutions
To delete a project, right-click it and select Remove from the context menu.

To delete an entire solution, remove the solution folder manually.

 25

3. Configure the Windows Embedded CE kernel

This topic describes how to create a Windows Embedded CE kernel for your hardware platform
and how to customize the kernel. Customization allows for removing support for unneeded
hardware of software services, resulting in a smaller image.

3.1. Create a new Platform Builder project
This topic creates a Platform Builder project in the sample solution created in topic 2.

Either use a standard template or customize one by individually selecting the components desired
for the project. The components include communication services and networking; core OS
services; file systems and data store; and so on.

1. In Visual Studio 2005, select File > New > Project.

The New Project dialog opens.

2. Do these steps:

 Select Platform Builder for CE.

 Select OS Design as the template.

 Enter the name of the project; for example, Kernel.

 In the Solution combo box, select Add to Solution.

This step populates the Location field with the path to the currently open solution.

Then click OK.

 26

3. From the available Board Support Packages, BSPs, select ConnectCore 9C/Wi-9C: ARMV4I
and click Next.

4. On the next wizard page, either select a design template or custom device configuration for the
OS design:

 To create a standard project for the module being used, select ConnectCore Devices.

 To select every component individually, select Custom Device template project, and select
the desired components. Click Next, then click Finish.

Components can be added and removed later. If additional components are
needed because of dependencies, Platform Builder automatically resolves and
includes them in the build.

 27

5. On the next wizard page, select the template for the platform: either ConnectCore 9C or
ConnectCore Wi-9C or their headless versions ConnectCore 9C Headless or ConnectCore
Wi-9C Headless. Then click Finish.

Headless templates are designed for devices that have no user interface
components or peripherals and must be accessed remotely over a network or
serial connection. OS designs based in headless templates do not include
graphics support or input devices such as a keyboard or mouse, resulting in a
smaller image.

6. After clicking Finish, a catalog item notification warning may be displayed. This warning is
about security issues with the components that were selected. For example, if the FTP server

 28

element is included, the notification warns that this is a possible security hole. Read this
information carefully so you can solve any problems later. Then click Acknowledge.

 29

3.2. Catalog view
The catalog view displays the complete list of components that can be added to a Windows CE
kernel image. Each component is represented by a SYSGEN variable used during the build
process to identify the system parts that need to be included into the image.

To view the catalog, select View > Other Windows > Catalog Items View. To see only the
components that were selected, click Filter on the top of the view, and select User-selected
Catalog Items and Dependencies.

Each component type has an icon, as shown in this table

Sign Meaning
 Item selected by user (multiple choice)

 Item selected by user (one choice only)

 Item automatically included due to dependencies with other included
component

 Item excluded because of some incoherence between dependencies

 Item with an important warning notification

Items marked with a red exclamation mark have an important warning notification. These are the
same security warnings displayed when creating the OS design. To display a notification, right-click
the component and select Show Notification.

 30

3.2.1. Include and remove project components
To include additional components in a project, display the complete Catalog (Filter > All Catalog
Items in Catalog) and select components to include, To remove components from a project,
deselect them in the Catalog view.

Including or removing components from the catalog requires a Sysgen of the
Windows CE project.

For example, to include the Solitaire game:

1. Show all the items in the catalog.

2. Expand Core OS > CEBASE > Applications - End User > Games.

3. Click Solitaire.

 31

3.3. OS design properties
Before compiling the kernel, it is important to understand the settings that can be changed in the
OS design. Select View > Solution Explorer. Select the Kernel component, right-click and select
Properties.

The OS Design Property Pages dialog displays and configures options for an entire OS design,
and for individual configurations in the active OS design. By default, there are two configurations:
Debug and Release (active by default).

The Debug configuration creates a kernel with debug information and services
for enabling debug over Ethernet. The resultant image of this configuration is
heavy (in size) and slow in execution (due to debug information messages)

The Release version doesn't include any debug information and its resultant
image is light (in size) and quicker in execution.

This dialog configure many settings, such as the path to the OS build tree, the release directory for
the OS design, the target file name for the debugger, the localization settings of the system,
environment variables, and so on. To display online help for each group of settings, press F1 in
each page.

 32

3.3.1. Environment variables
The OS design has several environment variables used to configure the kernel and drivers.
Environment variables are useful for quickly including/excluding components, files or modules
during the creation of the final image rather than from the build process, as demonstrated later in
this document. Most of these variables are set or cleared when selecting or deselecting
components from the Catalog. Others are defined in the platform batch file in
%_WINCEROOT%\PLATFORM\PLATFORM\ccx9c.bat. Here are some of the variables in the
ccx9c.bat file:

Variable Default value Description
ENABLE_WATCH_DOG 1 (Release)

0 (Debug)
Enables the watchdog driver. Disabled in debug versions by default.

TFTPDIR C:\tftproot Folder exposed by the TFTP server. Images are copied here.
BSP_CONFIGOS 1 If set to 1, reconfigures the network settings of the target with the information

extracted from U-Boot environment variables
BSP_LANNS9XXX 1 (Release)

0 (Debug)
If set to 1, activates the Ethernet driver for the NS9XXX processor. Disabled in
debug versions by default.

Make sure the TFTPDIR environment variable matches the folder
exported by the TFTP server. The U-Boot bootable Windows
Embedded CE image is stored in this folder after building.

Environment variables added to the platform batch file apply to every project based in that platform.
To add environment variables for one project only, use the Environment section of the OS Design
Property pages.

To add a pair of variables to the sample project:

1, In the Solution Explorer, right-click the Kernel component, and select Properties.

2. In the Configuration combo box select All Configurations.

3. Expand Configuration Properties and select Environment.

4. To add a new variable, click New. Add a variable with name IMG_NO_VBAPP and a value of 1.

 33

3.4. Registry entries
As in any other Windows OS, important information for the kernel is stored in the Registry. The
Registry of the kernel being created is generated during the build process by taking Registry entries
in many different *.reg files.

The two most important files that form the Registry are:

 platform.reg: contains Registry entries that affect all kernel projects based in the platform. This
file is located in %_WINCEROOT%\PLATFORM\PLATFORM_NAME \FILES\.

 project.reg: contains Registry entries that affect only the current project. This file is located in
your_solution_path\kernel_name\Wince600\platform_architecture\OAK\files\.

For the sample solution, these files are in these locations:

C:\WINCE600\PLATFORM\CCX9C\FILES\platform.reg

C:\samples\SampleSolution\Kernel\Wince600\CCX9C_ARMV4I\OAK\files\project.reg

These files can be browsed from the Solution Explorer.

For example, some Registry information has been included for the FTP and the TELNET servers in
Platform.reg. Double-click it to access the Registry information. Then expand
HKEY_LOCAL_MACHINE > Comm and select FTPD and TELNETD.

 34

These Registry keys provide complete access to the target using
TELNET and FTP, for demonstration purposes. To preserve the
security of targets, change these Registry keys by enabling the
UseAuthentication key (enter a 1) and adding a list of allowed
users.

For more information about security, read the topics Telnet Server
Security and FTP Server Security of Windows CE on-line help.

3.5. Adjusting the memory layout
Depending on the size of the RAM memory of target module, it may be necessary to adjust the
memory layout in the settings file of the OS design named config.bib. This is required for the
modules with lower memories, because the default configurations are defined for modules with
larger RAMs to include more features on the design templates.

To adjust the memory layout, edit the file config.bib located under:

%_WINCEROOT%\PLATFORM\CCX9C\FILES\

Then adjust the value of the macro NKRAM_SIZE. The config.bib file includes configuration
examples for the different module variants. Comment/uncomment the macro value according to the
RAM size of the used module.

 35

3.6. File system
The OS design you have made creates a set of directories and files that form the file system of the
target. The typical directory tree contains several files and folders, such as Application Data,
Documents and Settings, or Windows.

All the files of the target file system are located in the Windows folder.

3.6.1. Include files and folders
When the OS design is built, all programs, Registry files, libraries, and so on are placed in a
directory on the host named Flat Release Directory. The path of this directory is:

your_solution_path\kernel_name\RelDir\platform_architecture_configuration

In the sample solution, the files are in this location (release configuration version):

C:\samples\SampleSolution\Kernel\RelDir\ConnectCore_9C_Wi-9C_ARMV4I_Release\

The build process generates the contents of this directory and creates the final image with the files
in it. For this reason the build tools must be instructed to copy any file(s) desired to be included to
the flat release directory. This is done in the binary image builder (.bib) files. A binary image
builder file defines which modules and files are included in a run-time image. The makeimg.exe file
uses .bib files to determine how to load modules and files into the memory of a target device.

There are many binary image files, but the most important are these two:

 platform.bib: Changes in this file apply to every OS design based in the ConnectCore 9C/Wi-
9C platforms.

 project.bib: Changes in this file apply only to the current project.

Because including files for the current project is usually desired, use project.bib, located at:

your_solution_path\kernel_name\Wince600\platform_architecture\OAK\files\

In the example solution, the file is located at:

C:\samples\SampleSolution\Kernel\Wince600\CCX9C_ARMV4I\OAK\files\project.bib

The file can also be accessed from the Solution Explorer:

For example, to include the executable applications developed in topic 2, depending on the
environment variables created in topic 3.3.1, edit project.bib and add these lines to the FILES
section:

 36

FILES
; Name Path Memory Type
; -------------- ------------------------------- -----------
IF IMG_NO_VBAPP !
 vb_hello.exe PathToTheFile\VB_HelloWorld.exe NK
ENDIF

IF IMG_NO_CSAPP !
 cs_hello.exe PathToTheFile\CS_HelloWorld.exe NK
ENDIF

IF IMG_NO_CPPAPP !
 cpp_hello.exe PathToTheFile\Cpp_HelloWorld.exe NK
ENDIF

Substitute PathToTheFile with the path where the executable file is. n the example, the paths are
C:\samples\SampleSolution\CS_HelloWorld\bin\Debug\ ,
C:\samples\SampleSolution\VB_HelloWorld\bin\Debug\ and
C:\samples\SampleSolution\Cpp_HelloWorld\CC9C_Wi-9C_SDK (ARMV4I)\Debug\.

With these lines, unless a user-defined environment variable, IMG_NO_xxAPP, exists,
makeimg.exe includes the xx_HelloWorld.exe input file as the xx_hello.exe output file. It then
loads the output file in a MEMORY region named NK as a normal file with no special attributes. For
more information on the memory types, see the Visual Studio 2005 online help’s topics FILES
Section and MODULES Section.

In the example, because IMG_NO_VBAPP is set to 1, the Visual Basic application is not included
in the image. But because IMG_NO_CSAPP and IMG_NO_CPPAPP are not defined, the C#
application and the C++ application are included.

 37

3.7. Launch an application after start-up
When the Windows Embedded CE kernel starts, several services are launched (such as the FTP,
HTTP and Telnet servers), and the Windows Desktop is displayed.

If you want an application to launch automatically after start-up, you need to create a shortcut to the
application in the Startup menu entry.

3.7.1. Create a shortcut to the application
Shortcuts to applications are plain text files with the path to the executable preceded by the number
of characters of the shortcut path. To create a shortcut to the CS_HelloWorld application:

1. Go to the folder that contains the CS_HelloWorld.exe binary file.

2. Create a plain text file with the name CS_HelloWorld.lnk.

3. In the text file, write the path to the executable file in the target's file system
(\windows\cs_hello.exe), preceded by the number of characters of the path and filename (21)
and the hash symbol (#), like this:

21#\windows\cs_hello.exe

4. Save the file.

3.7.2. Add the shortcut to the OS design
Shortcuts, like normal files, must be added to the OS design to have them available in the target's
file system:

1. Open the file project.bib as done in topic 3.6.1 and add an entry for the shortcut, under the
entry of the program itself:

FILES
; Name Path Memory Type
; -------------- ------------------------------- -----------
IF IMG_NO_VBAPP !
 vb_hello.exe PathToTheFile\VB_HelloWorld.exe NK
ENDIF

IF IMG_NO_CSAPP !
 cs_hello.exe PathToTheFile\CS_HelloWorld.exe NK
 cs_hello.lnk PathToTheFile\CS_HelloWorld.lnk NK
ENDIF

2. Substitute PathToTheFile with the path where the executable file is (in the example
C:\samples\SampleSolution\CS_HelloWorld\bin\Debug\

This adds a file called cs_hello.lnk to the OS design, which is a copy of the shortcut
CS_HelloWorld.lnk created in the previous topic.

 38

3.7.3. Create the Startup entry
The shortcut file is placed in the \windows folder, like the rest of files of the target's file system. DAT
files are used to place copies of files in a different place of the file system.

Normally, startup entries are added to the OS design project.dat, so that the changes affect only
the current project.

1. In the Solution Explorer, expand Kernel > Parameter Files > ConnectCore 9C/Wi-9C:
ARMV4I (Active).

2. Double-click project.dat file.

3. Add this entry:

Directory("\Windows\Startup"):-File("cs_hello.lnk","\Windows\cs_hello.lnk")

where:

 The first entry (Directory) is the directory where the copy will be placed.

 The second entry (File) contains the name for the copy (for example "cs_hello.lnk") and the
path to the file to be copied (the shortcut file).

4. Save the project.dat file.

The .DAT files define the folder structure of an image. The filesystem parses
information provided by .DAT files to create and populate the RAM directory
structure.

 39

4. Build the kernel

Now that the kernel is configured, it can be compiled.

4.1. Build the kernel (Release version)
1. Select Build > Configuration Manager and select the Release configuration. Then close the

Configuration Manager.

When the active solution platform is Any CPU, the Build column of the Kernel
project is not checked. This means that it will not be built as part of the solution.

Because this configuration has no debug information, the resulting image is smaller and faster
than a debug release. Use this configuration when debugging the kernel is unnecessary, either
because the kernel sources have not been modified or a stable version of the kernel exists.

2. Select the Kernel component in the Solution Explorer view. Then select
Build > Build Kernel. The first time, the build process can take between 20 and 40 minutes to
complete, depending on the speed of the development computer. At the end, the Output view
shows something like this:

Directory of C:\samples\SampleSolution\Kernel\RelDir\CCX9C_ARMV4I_Release

16/01/2007 10:52 13.784.627 NK.bin
 1 File(s) 13.784.627 bytes
 0 Dir(s) 10.020.663.296 bytes free

BLDDEMO: Kernel build complete.

Kernel - 0 error(s), 29 warning(s)
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========

Some warnings may appear because Platform Builder postpones
the importing of some Microsoft DLLs functions.

 40

The build process generates an image called NK.bin which is placed into the Flat Release
Directory, in the example:
C:\samples\SampleSolution\Kernel\RelDir\CCX9C_ARMV4I_Release.

4.2. Build the kernel (Debug version)
1. Select Build > Configuration Manager.

2. Under Active solution configuration, select the Debug configuration.

 Because this configuration has debug information, the resultant image will be bigger than the
Release version. This version uses the Ethernet interface for debugging, and for this reason, it
uses a standard driver for the Ethernet communication, instead of the NS9XXX driver. This
configuration is useful when changing kernel sources, implementing custom drivers, or
debugging the kernel step-by-step.

3. In the Solution Explorer view, select the Kernel component. Then select
Build > Build Kernel. The first time, the build process can take between 20 and 40 minutes to
complete, depending on the speed of the development computer. At the end, the Output view
shows something like this:

Directory of C:\samples\SampleSolution\Kernel\RelDir\CCX9C_ARMV4I_Debug

16/01/2007 11:23 26.649.139 NK.bin
 1 File(s) 26.649.139 bytes
 0 Dir(s) 9.103.732.736 bytes free

BLDDEMO: Kernel build complete.

Kernel - 0 error(s), 29 warning(s)
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========

The build process generates an image called NK.bin which has been placed into the Flat
Release Directory, in the example:
C:\samples\SampleSolution\Kernel\RelDir\ConnectCore_9C_Wi-9C_ARMV4I_Debug.

 41

5. Debug the kernel

Sometimes, modifying some kernel elements to adapt the OS to a specific hardware platform is
desired. Other times, a new driver may need to be added into the kernel to support a hardware
device. In these cases, the kernel must be tested and debugged to make sure that the final OS will
be stable in the hardware platform.

Debugging the kernel requires building a debug version of it, as shown in topic 4.2.

5.1. About debugging over Ethernet
Debugging occurs over the Ethernet interface. Although the Ethernet interface is used for this
purpose, it can share common network functionality using Vmini, a special network driver that
handles both debug and standard frames.

For this reason, the behavior of Ethernet in the Debug version could differ from that of the Release
version.

5.2. Establish the connection to the target

5.2.1. Target connectivity options
1. Select Target > Connectivity options, and click Add Device to add a connection profile to the

target device.

2. In the Name field, enter the name of the profile; for example: MyTarget_Debug. Click Add.

The new profile is displayed, with predefined options for download, transport and debugging.
Make sure these options are, respectively: Ethernet / Ethernet / KdStub.

 42

3. Click the Settings button next to the Download combo box. The Ethernet Download Settings
dialog opens:

Do not close this window. The target will appear here soon.

 43

5.2.2. Send BOOTME messages from target
The U-Boot boot loader can send BOOTME messages through Ethernet to the Platform Builder
interface. The Platform Builder catches these messages to establish the connection to the target.

1. Switch to the Serial Terminal program.

2. Power up the target board.

3. When boot loader messages are displayed, press any key to stop the auto boot process.

4. Enter this command:

dboot eboot

 This command runs the EBOOT program stored in flash, which sends Ethernet messages to
the Platform Builder. The Download Settings window in Visual Studio shows that the target
has been detected.

5. Select the target. The target’s IP address is displayed.

6. Click OK.

The Target Device Connectivity options dialog is displayed.

7. Click Apply and then Close.

 44

5.2.3. Attach the device
Select Target > Attach Device. This step catches the BOOTME messages from the target and
establishes the connection. The kernel will begin to be downloaded.

The ‘dboot eboot’ command in U-Boot sends BOOTME messages for
approximately 30 seconds. If the device is not attached within this
period, the command cancels, and it must be launched again.

After downloading the kernel, the services CESH (Console Debug Shell tool) and CETerm (Target
Messages) are initiated on the target. Windows Embedded CE starts without additional tools.

5.3. Debug the code
Now stop the target and debug the kernel. The debugging windows and menu items in the Platform
Builder IDE allow review of processes, threads, and other target debugging information such as
watch variables and memory dumps.

1. To stop the target, select Debug > Break All.

When the target stops, a source file is opened where the system halted. If the source file
doesn’t exist (for example because it is internal code of Microsoft) the Find executable dialog
may appear. Click Cancel to continue. If the source code cannot be opened, the Disassembly
window opens with the assembler code.

2. If a breakpoint is set in a driver or kernel source file, the target stops when it reaches the
breakpoint.

3. Select Debug > Windows and open the required debug views: Variables, Call Stack,
Registers, Memory, etc.

 45

4. To step through the code and see the behavior of a driver or an application, press <F10>.

5. To resume execution, press <F5> (Go). Try other typical debugging actions such as modifying
a variable, editing the memory, jumping to certain instructions, etc.

5.4. Remote Tools
Remote Tools allow monitoring a target from a desktop development environment, including editing
the target's Registry, viewing running processes, taking screen captures of the target's screen, etc.
Remote Tools are in Target >Remote Tools. They are executed through the debug connection
opened for kernel debugging. They can also be executed in a Release version if the connection is
established by other means, as seen in topic 6. Descriptions of the remote tools follow:

Remote Tool Description
Call Profiler Profiling and analysis tools within a graphical user interface (GUI) for identifying algorithmic

bottlenecks in applications.
File Viewer Displays a hierarchical view of the file system on a target device.
Heap Walker Displays information about heap identifiers and flags for processes running on a target device.
Kernel Tracker Provides a visual representation of OS and application events occurring on a target device.
Performance Monitor Measures performance of a target device.
Process Viewer Displays a list of processes and threads running on a target device.
Registry Editor For viewing and managing the Registry for a target device.
Spy Displays a list of windows opened on a target device and messages generated by those

windows
System Information Displays system settings and properties for a target device
Zoom-in Displays an image from the screen of a target device

 46

6. Connect to a Release kernel

6.1. Use Remote Tools in a Release configuration

6.1.1. Add the Remote Tools component
To use the Remote Tools in a Release version:

1. Add the Remote Tools component to the project. This component is in the Catalog view of the
Platform Builder. Find the component under Third Party > BSP > ConnectCore 9C/Wi-9C:
ARMV4I > Remote Tools and check it to add it to the OS design.

2. Build the Release version again.

 47

6.1.2. Connect with Manual server
1. Select Target > Remote Tools and select the desired remote tool, for example,

Registry Editor. The Registry Editor and a Select Windows CE Device dialog open:

2. Click Cancel to close this dialog, because the connection cannot be established yet.

3. In the Windows CE Remote Registry Editor window, select Connection >
Configure Windows CE Platform Manager. The Windows CE Platform Manager
Configuration dialog opens:

 48

4. Select Default Device and click Properties.

5. In the dialog that opens, select:

 Transport: TCP/IP Transport for Windows CE

 Startup Server: Manual Server

 Then click OK in this and the previous dialog to accept the configuration.

If the development system has more than one Ethernet interface, verify that the
correct interface is used for the connecting between the target and the host.

 49

6. In the Windows CE Remote Registry Editor window, select Connection > Add connection.
The Windows CE device selection dialog opens again.

7. This time select Default Device and click OK. The Manual Server - Action dialog opens:

The files that the dialog requests to be in the target are included by default in the kernel. If
using a custom OS design, these files can be included in the OS design by including the
Platform Manager element from the Catalog, under Third Party > BSP > ConnectCore
9C/Wi-9C:ARMV4I > Platform Manager and recompiling the OS design.

8. Select the CEMGRC.EXE command line and copy it to the Clipboard. Do not close this dialog
yet.

9. Open a DOS box and connect to the target's IP using telnet:

C:\telnet 192.168.42.30

10. Paste the CEMGRC.EXE command line from the Clipboard and press ENTER to execute the
command:

Welcome to the Windows CE Telnet Service on <target>

Pocket CMD v 6.00
\> CEMGRC.EXE /T:TCPIPC.DLL /Q /D:192.168.42.1:4898

11. Return to the Manual Server - Action dialog and click OK to establish the connection. Now the
Remote Registry Editor shows the target's Registry.

 50

After the connection has been established, the rest of Remote Tools (Zoom, System Information,
and so on) can be opened directly. There is no need to repeat the previous steps.

 51

7. Transfer the system to the target

Applications can be easily transferred to a running target, by means of network services like FTP.
This topic shows how to transfer the kernel image for testing before updating the firmware in the
flash memory.

7.1. TFTP server
The U-Boot boot loader running in the target board can write files to the flash memory of the
module. A TFTP server is required to transport these files from the host computer to the target.

If a TFTP server is not available, Digi's TFTP server (tftpd.exe) can be used. This server can be
installed from the ConnectCore BSP for Windows Embedded CE 6.0 CD-ROM; it is installed in
C:\tftproot by default.

A shortcut to the TFTP server is located at Start > Programs > Digi ConnectCore > TFTP
Server. Another shortcut is on the Desktop.

The TFTP server exposes the folder where the program itself is located. For this
reason, using the default path C:\tftproot is recommended.

If the TFTP server is installed in a different location, variable TFTPDIR must be
changed accordingly in file ccx9c.bat, as seen in topic 3.3.1.

7.2. Basic boot loader
To test the recently created kernel, it is useful to experiment with the boot loader commands. This
topic explains the basic commands to download and boot a new system. For more information
about U-Boot commands, see the U-Boot Reference Manual.

Power up the target board. When boot loader messages are displayed in the console, press a key
to stop the auto boot process.

U-Boot 1.1.4 (Apr 20 2007 - 21:47:39) DUB-RevA
for Digi ConnectCore Wi-9C on Development Board

DRAM: 64 MB
NAND: 128 MiB
In: serial
Out: serial
Err: serial
CPU: NS9360 @ 154.828800MHz
Strap: 0x03
SPI ID:2007/02/21 V1_4, CC9C/CCW9C, SDRAM 64MByte, CL2, 7.8us, LE
FPGA: wifi.ncd, 2007/01/25, 17:49:41, V2.01
Hit any key to stop autoboot: 0
CCW9C #

These U-Boot commands will be used:

Command Description
printenv [variable] Displays all (or one) current variables values.
setenv <variable> <value> Sets a U-Boot variable with a given value.
saveenv Saves all U-Boot variables into NVRAM memory for

permanent storage.
dboot <os> <type> [partition] Boots an image.

 52

7.3. Environment variables
The U-Boot boot loader contains variables that configure its behavior. Some of these variables
configure the network settings (IP address of the target and the host computer), as described in the
Building Your First Application document.

7.4. Test the system
This section describes how to transfer the system to the target and boot it from RAM memory. This
way the system can be tested without having to update the flash memory.

7.4.1. Transfer the system using Platform Builder
As shown in topic 5.2, a connection can be established between Visual Studio’s Platform Builder and
the target device for downloading a kernel. This is the normal way to transfer a Debug kernel. This
method creates a permanent link between the target device and the development system.

7.4.2. Transfer the system by Ethernet
U-Boot can also download the binary image of the kernel and boot it from RAM.

When the kernel was created, a binary file named wce-CCX9C was automatically placed into the
TFTP exposed folder if the TFTPDIR variable was set in ccx9c.bat, as seen in topic 3.3.1.

This wce-CCX9C image can be based on the Release version or on the Debug
version, depending on the last configuration compiled.

Start the TFTP server. Then, from the U-Boot prompt, launch this command:

dboot wce tftp

The wce-CCX9C image is downloaded and booted by U-Boot. After a few seconds the Windows
desktop is displayed and the cs_hello.exe application automatically starts. With this method, the
system runs, but there is no link between the target device and the development computer.

7.4.3. Transfer the system by USB
U-Boot can also read the kernel from a USB flash disk. In this case, copy the kernel image
wce-CCX9C to a USB flash disk formatted with FAT file system. Then, plug the USB to the target
and power up the board.

Stop the U-Boot auto boot and tell U-Boot to read the kernel from the USB disk and boot it with this
command:

dboot wce usb

The wce-CCX9C image is downloaded and booted by U-Boot. After a few seconds the Windows
desktop is displayed, and the cs_hello.exe application automatically starts.

With this method, the system runs but no link exists between the target device and the
development computer.

 53

8. Update the flash memory

The kernel built in previous topics has been tested. This system was dependent on Ethernet/USB
to download the kernel.

If the tested system behaves correctly meets requirements, consider writing it to the flash memory
to permanently save the system.

There are several ways to update the flash memory, depending on what needs to be updated.
Applications or simple files, for example, can be simply copied to a file system that resides in a
flash partition.

Learning how to update flash memory requires an overview of its structure.

8.1. Structure of the flash
The flash memory is programmable non-volatile memory containing the whole operating system.

The flash memory is partitioned (logically divided) to contain the boot loader, the FPGA program,
the Windows CE kernel, the EBOOT program, the persistent Registry, and some system
configuration parameters.

The number, size, and position of these partitions can be modified as needed. This table shows the
factory default partitioning structure:

Partition
number

Name Flash start
address

Flash end
address

Length Description

0 U-Boot 0x00000000 0x000c0000 768 KiB Stores the U-Boot boot loader image
1 NVRAM 0x000c0000 0x00140000 512 KiB Stores permanent configuration parameters like

the MAC address of the network interfaces, the
serial number of the module, environment
variables of U-Boot, and so on

2 FPGA 0x00140000 0x00240000 1 MiB Stores the FPGA firmware
3 EBoot 0x00240000 0x00340000 1 MiB Stores the EBOOT program for connecting with

Platform Builder
4 Registry 0x00340000 0x00440000 1 MiB Stores the Windows CE Registry
5 Kernel 0x00440000 0x01840000 20 MiB Stores the Windows CE kernel image

For information about modifying the default flash partition table, see ”Using NVRAM” in the
U-Boot Reference Manual.

 54

8.2. Update from a running Windows Embedded CE system
The ConnectCore 9C/Wi-9C BSP provides an application that can directly write image files to the
flash memory. To see the syntax of this application, open a telnet session to the target and execute
update_flash –h:

C:\> telnet 192.168.42.30
Welcome to the Windows CE Telnet Service on <target>

Pocket CMD v 6.00
\> update_flash -h
Application to read, write and list
the flash partitions. Revision 1.0
Copyright(c) 2007 Digi International Inc.

 Usage: update_flash <options>

 Where options are:
 -r Reads the specified partition
 -w Writes the specified partition
 -p <partition> Selects partition (<partition> must be a number)
 -f <filename> File name to write/read the partition data
 -l Lists the partition table
 -h Shows this help

 Examples:
 update_flash -r -p 3 -f image1.bin
 update_flash -w -p 4 -f image3.bin
\>

For updating the flash, the files first need to be transmitted to the target, for example using FTP.

The source code of update_flash is in %PROGRAM_FILES%\Digi\ConnectCore\ConnectCore
9C and Wi-9C\Apps\Source Code\Update_Flash.

The installation procedure allows selecting where source code is installed. The default location is:
 %PROGRAM_FILES%\Digi\ConncectCore\ConnectCore 9C and Wi-9C\Apps\Source Code\
If the source code was installed in another folder during the installation process, for example
my_folder, the source code is in:
my_folder\Digi\ConncectCore\ConnectCore 9C and Wi-9C\Apps\Source Code\

 55

8.3. Update from U-Boot
U-Boot also can write to flash memory. This way, even if the target is not running Windows
Embedded CE, the flash memory can be reprogrammed.

To update flash memory in U-Boot, use the update command. This is the update command
syntax:

help update
update partition source [file]
 - updates 'partition' via 'source'
 values for 'partition': uboot, linux, rootfs, userfs, eboot, wce
 or any partition name
 values for 'source': tftp, usb
 values for 'file': the file to be used for updating

The update command gets the file either from either a USB flash disk or a TFTP exposed folder in
the host, depending on the source parameter. For that, it uses the file given as parameter or, if no
filename is provided, it uses the names stored in these U-Boot environment variables:

 Windows Embedded CE Kernel image filename: wimg

 U-Boot image filename: uimg

 EBOOT image filename: eimg

The default values for these variables correspond to the default image filenames generated during
compilation of the system. If the image filenames were changed, provide the parameter file with the
new name to the update command.

The U-Boot update command takes care of transferring the image file to RAM, erasing the flash
sectors, and writing the new image.

There are some restrictions for updating large image files. See topic 14.6 for
more information.

8.3.1. Update the kernel
For example, if the wce-CCX9C image is placed in the TFTP exposed folder on the development
computer, the update command is:

update wce tftp

8.3.2. Update EBOOT
Normally, there is no need to update EBOOT. The original EBOOT program comes with Platform
Builder embedded in Visual Studio and works fine.

The EBOOT program needs to be updated only if the flash memory or the EBOOT partition is
accidentally erased.

In that case, copy the EBOOT program image (located in
%PROGRAM_FILES%\Digi\ConnectCore\ConnectCore 9C and Wi-
9C\Images\wince\platform\eboot-ccx9c, where platform is substituted with the platform name)
to the TFTP exposed folder, and run this command in U-Boot shell:

update eboot tftp

 56

The installation procedure allows selecting where images are installed. The default location is:
 %PROGRAM_FILES%\Digi\ConncectCore\ConnectCore 9C and Wi-9C\Images\
If the images were installed in another folder during the installation process, for example,
my_folder, the images are in:
my_folder\Digi\ConncectCore\ConnectCore 9C and Wi-9C\Images\

8.3.3. Update U-Boot
Updating the U-Boot boot loader is covered in topic 13.5.

 57

9. SDK for the OS design

After creating a custom OS design, an SDK based on that OS design can be created for distribution
to other developers. An SDK is a set of headers, libraries, connectivity files, run-time files, OS
design extensions, and documentation that developers use to write applications for a specific OS
design. The contents of an SDK allow developers to create and debug a C++ application on the
run-time image built from the OS design.

The SDK is needed only for native code (C++). Managed code
developed in C# or Visual Basic runs in any OS design that
contains the .NET Compact Framework.

9.1. Included SDK
The ConnectCore BSP for Windows Embedded CE 6.0 CD-ROM includes an SDK for the factory
default OS design that is running in the target. If this default kernel will be used and only
applications will be developed, install this SDK, which supports all components of the default
image.

The included SDK is installed by default unless it is deselected during the installation process.

If a different OS design has been created with support for other drivers, the SDK must be created
based on this kernel for distribution to C++ developers.

Platform Builder (embedded in Visual Studio 2005) can be used to develop an SDK based on a
custom OS design for installation on another development workstation.

9.2. Create an SDK
1. In the Solution Explorer, select the Kernel component of the solution.

2. Select Project > Add New SDK...

3. In the dialog that opens, enter the SDK name, Product name, Company name, and product version:

 58

4. In the Install section, enter the name of the installer file, including the .msi extension.

5. In the remaining sections include a license file, a README text file with information about the
SDK, additional folders and files, etc., as needed.

6. When finished, click OK.

9.3. Build the SDK
To build the SDK, select Build > Build All SDKs.

The SDK build process collects the headers and libraries associated with the modules and
components in the OS design, additional files and folders, and text documents into a folder named
obj/. It then compresses them all into an installable .msi file, and the file is placed at the path
established during the creation of the SDK, which in this example is
C:\samples\SampleSolution\Kernel\SDKs\SDK1\MSI. This is the file to distribute or install in the
development PC for creating unmanaged C++ applications for the OS design.

9.4. Install the SDK
The Visual Studio Service Pack 1 must be installed first before installing the new created SDK.
Otherwise unexpected behavior may occur, or the SDK may not be usable.

For information about obtaining Visual Studio 2005 Service Pack 1, visit
http://go.microsoft.com/fwlink/?LinkID=70648

http://go.microsoft.com/fwlink/?LinkID=70648

 59

1. Double-click the SDK’s .msi file to install it.

2. When the End-User License Agreement appears, click Accept and then click Next.

3. Enter your user and company names.

4. Select Complete to do a full installation. Then navigate to where the SDK should be installed–
accept the default path.

After the SDK is installed, begin to develop Visual Studio 2005 native applications for the OS
design. When changing the Kernel image by including or removing components, make a new SDK
for secure application development.

 60

10. Devices and Interfaces

This topic describes the devices and interfaces in the hardware platform, the hardware resources
they use, and how to configure, enable disable, and manage them from user application space.

10.1. Table of devices and their hardware resources
This table shows each device/interface with its driver name and the hardware resources it uses:

Device Driver IRQ GPIO Physical
Memory

Timer Chip
Select

GPIO nx9xxx_gpio 0-72
(muxed)

Ethernet LANNS9xxx 50-64
NAND ccx9c_nfd 0x50xxxxxx static 1
Serial A
(UART)

ccx9c_serial 8,9
(10-15)1

Serial B
(UART)

ccx9c_serial 0,1
(2-7)1

Serial C
(UART)

ccx9c_serial 40,41
(42,43, 20-23)1)

Serial D
(UART)

ccx9c_serial 44,45
(46,47, 24-27)1

Serial A (SPI
mode)

ccx9c_spi 8,9,14,15

Serial B (SPI
mode)

ccx9c_spi 0,1,6,7

Serial C (SPI
mode)

ccx9c_spi 40,41,22,23

Serial D (SPI
mode)

ccx9c_spi 44,45,26,27

Touch
screen (SPI
Port B)

Touch Ext 3 0,1,6,7 2

I2C ns9xxx_i2c 46,47
I2C I/O port
PCA9554

RTC
USB ccx9c_usb
Wireless ccw9cwifi 58,65-67 0x6xxxxxxx static 2
Display ns9xxx_disp 15,18-41
Watchdog

1 Only when HW Handshaking is enabled

 61

10.2. GPIO (General Purpose Input/Output) pins
The NS9360 processor has 73 programmable GPIO pins (multiplexed with other functions). A
custom driver has been developed for configuring and managing the GPIO pins. The sources are
located in %_WINCEROOT%\PLATFORM\COMMON\SRC\SOC\NS9XXX_DIGI_V1\Gpio\.

10.2.1. Hardware resources used by the driver

Device Driver IRQ GPIO Physical
memory

Timer Chip
select

GPIO ns9xxx_gpio 0-72
(muxed)

10.2.2. Enable the interface in the kernel
To include this device driver in the OS design, select it in the Catalog view, under
Third Party > BSP > ConnectCore 9C/Wi-9C: ARMV4I > Device Drivers > GPIO.

 62

10.2.3. Manage the GPIOs from the user space
GPIOs can be managed from the applications using the standard Win32 API.

To use native functions from a C# application, the functions of
some DLLs must be imported (see topic 14.3).

To use pointers and addresses in a C# application, the project
must be configured for unsafe code (see topic 14.4).

10.2.3.1. Create the handle
To use the GPIOs, a device handle is needed. To create a handle, call the CreateFile function with
the name of the device as first argument (lpFileName).

The GPIO device name is PIOn: where n is the index of the instance. Because there is only one
instance of this device, the name is PIO1:.

This code opens a handle to the NS9360 internal GPIOs:

IntPtr hGPIO;

hGPIO = CreateFile("PIO1:", GENERIC_READ | GENERIC_WRITE,
 0, 0, OPEN_EXISTING, 0, 0);
if(hGPIO == INVALID_HANDLE_VALUE)
{
 /* ERROR */
}

10.2.3.2. GPIO Message structure
The handle grants access to all GPIOs. To manage a specific GPIO pin, use the GPIOMessage
structure. This structure is an argument to the functions of the API (DeviceIoControl, ReadFile
and WriteFile). The GPIOMessage structure contains these fields:

public struct GPIOMessage
{
 public uint unPinNumber;
 public uint mode;
 public bool Block;
 public uint ulFlags;
 public uint unValue;
}

Type Field Description Values
uint unPinNumber The pin number of the GPIO to use 0 to 72
uint mode GPIO working mode GPIO_INPUT for input

GPIO_OUTPUT for output
GPIO_IRQ for interrupt

bool Block Define whether GPIO is blocked False | true
uint ulFlags Configure the GPIO if working as

IRQ
EXT_INTR_REG_BIT_LVEDG for
Level sensitive IRQ (default is Edge
sensitive)
EXT_INTR_REG_BIT_PLTY for IRQ
active low level or falling edge (default
is active high level or rising edge)

uint unValue Value of the GPIO 0 | 1

For a native code example, the header files pkfuncs.h, ns9xxx_ioctl.h, and ns9xxx_gpio_pdd.h
need to be included to the source files.

 63

10.2.3.3. Device IO controls
The driver supports this IOTCL:

IOCTL Description Parameter
IOCTL_GPIO_CONFIG Configures the behavior of the GPIO GPIOMessage

10.2.3.4. Configure GPIO behavior
GPIO pins can be configured to have these behaviors:

 Input
 Output
 IRQ

This example code shows how to configure a GPIO as input, output or IRQ:

GPIOMessage GPIO;
uint uiBytesTransferred;

GPIO.unPinNumber = PIN_NUMBER; /* Set the GPIO number here */

/* Configure GPIO as INPUT */
GPIO.mode = GPIO_INPUT;
GPIO.Block = false;
if(!DeviceIoControl (hGPIO, IOCTL_GPIO_CONFIG, &GPIO,
 sizeof(GPIOMessage), 0, 0, &uiBytesTransferred, 0))
{
 /* ERROR */
}

/* Configure GPIO as OUTPUT */
GPIO.mode = GPIO_OUTPUT;
GPIO.Block = false;
if(!DeviceIoControl (hGPIO, IOCTL_GPIO_CONFIG, &GPIO,
 sizeof(GPIOMessage), 0, 0, &uiBytesTransferred, 0))
{
 /* ERROR */
}

/* Configure GPIO as IRQ low level sensitive */
GPIO.mode = GPIO_IRQ;
GPIO.Block = false;
GPIO.ulFlags = GPIO.ulFlags & EXT_INTR_REG_BIT_LVEDG & EXT_INTR_REG_BIT_PLTY;
if(!DeviceIoControl (hGPIO, IOCTL_GPIO_CONFIG, &GPIO,
 sizeof(GPIOMessage), 0, 0, &uiBytesTransferred, 0))
{
 /* ERROR */
}

 64

10.2.3.5. Read GPIO inputs
GPIOs working as inputs can be read using the ReadFile function, passing as arguments the
handle and the GPIOMessage structure. This function fills the unValue field inside GPIOMessage
structure, with the current value of the GPIO selected in unPinNumber field.

For reading an input value, the number of bytes to read (one) must be provided.

uint uiBytesToRead = 1;
uint uiBytesTransferred;
GPIOMessage GPIO;

/* Read an input value */
GPIO.unPinNumber = PIN_NUMBER; /* Set the GPIO number here */
ReadFile(hGPIO, &GPIOMEssage, uiBytesToRead, &uiBytesTransferred, 0)
if(uiBytesTranferred != uiBytesToRead)
{
 /* ERROR */
}

10.2.3.6. Set GPIO outputs
GPIOs working as outputs can be written using the WriteFile function, passing as argument the
handle and the GPIOMessages structure. This function sets the GPIO selected in unPinNumber
field to the value selected in unValue field.

For writing an output value, the number of bytes to write (one) must be provided:

uint uiBytesToWrite = 1;
uint uiBytesTransferred;
GPIOMessage GPIO;

/* Set an output to a certain value */
GPIO.unPinNumber = PIN_NUMBER; /* Set the GPIO number here */
GPIO.ulFlags = 0;
GPIO.unValue = VALUE; /* Set the value here */
WriteFile(hGPIO, &GPIOMEssage, uiBytesToWrite, &uiBytesTransferred, 0)
if(uiBytesTranferred != uiBytesToWrite)
{
 /* ERROR */
}

10.2.3.7. GPIO wait for IRQ on interrupt
GPIOs working as external interrupt can use the DeviceIOControl function, passing as arguments
the handle and the GPIOMessages structure. The IOCTL IOCTL_GPIO_WAIT_FOR_IRQ waits
until the condition defined for the GPIO IRQ occurs.

uint uiBytesTransferred;
GPIOMessage GPIO;

/* Configure GPIO to wait IRQ */
if(DeviceIoControl (hGPIO, IOCTL_GPIO_WAIT_FOR_IRQ, &GPIO,
 sizeof(GPIOMessage), 0, 0, &uiBytesTransferred, 0))
{
 /* ERROR */
}

 65

10.2.3.8. Close the handle
When done working with a GPIO, its handle must be closed to free the resources. This is done with
the CloseHandle function:

CloseHandle(hGPIO);

10.2.3.9. Test application
The ConnectCore 9C/Wi-9C BSP contains a test application of the GPIOS that uses two buttons
and two LEDs of the development board. This application is included in the ConnectCore 9C and
Wi-9C templates by default. The source code is in
%PROGRAM_FILES%\Digi\ConnectCore\ConnectCore 9C and Wi-9C\Apps\Source
Code\Test_GPIO.

The Test_GPIO is a C# application that assigns GPIO48 and GPIO49 to LED1 and LED2
respectively, and GPIO72 and GPIO69 to BUTTON1 and BUTTON2 respectively. The GPIOs
assigned to LEDs are configured as outputs and the ones assigned to buttons are configured as
inputs.

The Test_GPIO is in the Windows\ folder (in the target) and it works like this: The buttons work
like switches. When BUTTON1 is pressed, LED1 inverts its state; when BUTTON2 is pressed,
LED2 inverts its state.

 66

The application interface shows an image of the development board with the status of the buttons
and LEDs.

10.3. Ethernet interface
The NS9XX0 processor contains a high performance 10/100 Ethernet controller. This interface is
extracted to the ConnectCore 9C/Wi-9C module in the form of an RJ45 network connector.

10.3.1. Hardware resources used by the driver

Interface Driver IRQ GPIO Physical
Memory

Timer Chip
Select

Ethernet LANNS9xxx 50-64

 67

10.3.2. Enable the Ethernet interface in the kernel
To include this device driver into the OS design, select it in the Catalog view, under
Third Party > BSP > ConnectCore 9C/Wi-9C: ARMV4I > Device Drivers > Networking > Local
Area Networking (LAN) devices.

 68

10.3.3. The Ethernet interface in the system
The Ethernet interface can be accessed in Windows Embedded CE using the Control Panel > Network
and Dial-up connections > LANNS9XX01, where settings like the IP can be modified. A network icon
can also be seen in the taskbar (with a red X if a connection has not been established).

10.4. Wireless
The ConnectCore Wi-9C module contains a Field-Programmable Gate Array (FPGA) which
implements an IEEE 802. 11ab/g-compatible wireless network interface. Extensive information
about the WLAN adapter is given in topic 11.

10.4.1. Hardware resources used by the driver

Interface Driver IRQ GPIO Physical memory Timer Chip
Select

WLAN ccw9cwifi 58,65-67 0x6xxxxxxx static 2

 69

10.4.2. Enable the Wireless interface in the kernel
To include this device driver into the OS design, select it in the Catalog view, under
Third Party > BSP > ConnectCore 9C/Wi-9C: ARMV4I > Device Drivers > Networking > Local
Area Networking (LAN) devices.

 70

10.4.3. The wireless interface in the system
The Wireless interface can be accessed in Windows Embedded CE using the Control Panel >
Network and Dial-up connections > CCW9CWIFI1, where settings like the IP can be modified. A
network icon can also be seen in the taskbar.

10.5. Flash memory device
The ConnectCore 9C/Wi-9C modules contain a flash memory device for permanent storage of user
data, the boot loader, the kernel, the wireless FPGA program, and the persistent NVRAM settings.

The memory chip is a NAND flash chip which is offered in different size configurations. A driver is
implemented to be able to read and write to the flash.

10.5.1. Hardware resources used by the driver

Device Driver IRQ GPIO Physical memory Timer Chip
Select

Flash Ccx9c_nfd 0x50xxxxxx static 1

 71

10.5.2. Enable the device in the kernel
The nandflash driver grants raw access to the flash memory device by means of the standard
stream interface (CreateFile, ReadFile, WriteFile, DeviceIoControl). The regtool application for
example, explained in topic 12.1, uses this interface to save the Registry in a flash partition; for
more information see topics 11.11.4 and 11.11.5. To include the nandflash driver into the OS
design, select it in the Catalog view, under Third Party > BSP > ConnectCore 9C/Wi-9C: ARMV4I
> Device Drivers > Nand Flash.

 72

10.6. Serial port device drivers
The NS9XX0 microprocessor contains four serial ports that can operate in UART or SPI
master/slave modes. Two serial drivers control the internal serial ports: one for UART mode and
another for SPI master mode.

10.6.1. Hardware resources used by the driver

Device Driver IRQ GPIO Physical
Memory

Timer Chip
Select

Serial A (UART
mode)

ccx9c_serial 36,37 8,9
(10-15)1

Serial B (UART
mode)

ccx9c_serial 34,35 0,1
(2-7)1

Serial C (UART
mode)

ccx9c_serial 38,39 40,41
(42,43, 20-23)1

Serial D (UART
mode)

ccx9c_serial 40,41 44,45
(46,47, 24-27)1

Serial A (SPI mode) ccx9c_spi 60,61 8,9,14,15
Serial B (SPI mode) ccx9c_spi 58,59 0,1,6,7
Serial C (SPI mode) ccx9c_spi 62,63 40,41,22,23
Serial D (SPI mode) ccx9c_spi 64,65 44,45,26,27

1 Only when HW Handshaking is enabled (default)

 73

10.6.2. Enable the serial ports in the kernel
Support in UART or SPI modes can be separately enabled for each of the four serial ports. To
enable support for a serial port into the OS design, select the corresponding mode (UART or SPI)
in the Catalog view, under Third Party > BSP > ConnectCore 9C/Wi-9C: ARMV4I > Device
Drivers > Serial Port.

If Port B is enabled in UART mode, the touch screen cannot be
used (it uses port B in SPI mode).

Serial Ports C and D cannot be used in combination with a display
driver (as they share GPIOs).

 74

10.6.3. Identify the serial ports in the system
Windows Embedded CE enumerates the serial UART ports as COMn, where n is a number from 1
to 4, depending on the number of ports enabled. For example, if only portB and portD are
enabled, portB will be numbered as COM1 and portD as COM2.

Windows Embedded CE enumerates the serial SPI ports as SPIn, where n is a number from 1 to 4,
depending on the number of ports enabled. For example, if only portB and portD are enabled,
portB is enumerated as SPI1 and portD as SPI2.

10.6.4. Manage the serial ports from the user space
Serial ports and SPI ports can be managed from the applications using the standard Win32 API.
The API is identical, except the name for the serial port, which is COMx, where x is the
enumeration number of the port that should be used.

To use native functions from a C# application, some DLLs’
functions must be imported (see topic 14.3).

To use pointers and addresses in a C# application, configure the
project for unsafe code (see topic 14.4).

10.6.4.1. Create the handle (SPI)
To use an SPI port, a device handle is needed. This handle is created by calling the CreateFile
function with the name of the device as first argument (lpFileName). The SPI device name is SPIn:
where n is the index of the instance. For example, if only portB and portD are enabled, portB will
be named SPI1: and portD as SPI2:.

This code opens a handle to the first instance of an SPI port:

IntPtr hSPI;

hSPI = CreateFile("SPI1:", GENERIC_READ | GENERIC_WRITE,
 0, 0, OPEN_EXISTING, 0, 0);
if(hSPI == INVALID_HANDLE_VALUE)
{
 /* ERROR */
}

10.6.4.2. SPI Device IO controls
The driver supports these IOTCLs:

IOCTL Description Parameter
IOCTL_SERIAL_SET_CLOCK_MODE Configures mode of the SPI 0 (Mode0), 1 (Mode1),

2 (Mode2), 3 (Mode3)
IOCTL_SERIAL_SET_CSPOL Configures chip select polarity 0 (LOW) 1 (HIGH)
IOCTL_SERIAL_SET_BIT_ORDER Configures bit order 0(MSB) 1 (LSB)

 75

10.6.4.3. Configure SPI behavior
Serial ports working in SPI mode have some configurable parameters:

 Mode: Combination of clock polarity and clock phase (see the processor's hardware reference
manual for more information about the four available modes).

 Chip select polarity: Active low | Active high.

 Bit order: MSB | LSB

This code configures the SPI behavior:

byte parameter;
uint uiBytesTransferred;

/* Configure mode */
parameter = MODE; /* Set the mode here */
if(!DeviceIoControl (hSPI, IOCTL_SERIAL_SET_CLOCK_MODE, ¶meter,
 sizeof(byte), 0, 0, &uiBytesTransferred, 0))
{
 /* ERROR */
}

/* Configure Chip select polarity */
parameter = CS_POLARITY; /* Set the chip select polarity here */
if(!DeviceIoControl (hSPI, IOCTL_SERIAL_SET_CSPOL, ¶meter,
 sizeof(byte), 0, 0, &uiBytesTransferred, 0))
{
 /* ERROR */
}

/* Configure bit order*/
parameter = BIT_ORDER; /* Set the bit order here */
if(!DeviceIoControl (hSPI, IOCTL_SERIAL_SET_BITORDER, ¶meter,
 sizeof(byte), 0, 0, &uiBytesTransferred, 0))
{
 /* ERROR */
}

10.6.4.4. Read data (SPI)
The MISO (Master Input Slave Output) line supplies the output data from the slave to the input of
the master. Data can be read using ReadFile function, passing as arguments the handle and a
buffer where to place the data. The number of bytes to read also must be supplied.

uint uiBytesToRead;
uint uiBytesTransferred;
byte[] buffer;

fixed (byte* p = &buffer)
{
 if (!ReadFile (hSPI, p, uiBytesToRead, &uiBytesTransferred, 0))
 {
 /* ERROR */
 }
}

 76

10.6.4.5. Written data (SPI)
The MOSI (Master Output Slave Input) line supplies the output data from the master to the input of
the slave. Data can be written using WriteFile function, passing the handle and the buffer with the
data. The number of bytes to write must also be supplied.

uint uiBytesToWrite;
uint uiBytesTransferred;
byte[] buffer;

fixed (byte* p = &buffer)
{
 if (!WriteFile (hSPI, p, uiBytesToWrite, &uiBytesTransferred, 0))
 {
 /* ERROR*/
 }
}

10.6.4.6. Close the handle (SPI)
When done working with an SPI port, close its handle to free the resources. This is done with the
CloseHandle function:

CloseHandle(hSPI);

10.6.4.7. SPI port test application
The ConnectCore 9C/Wi-9C BSP includes a test application of the SPI ports. This application is
included in the ConnectCore 9C and Wi-9C templates by default. The source code is in
%PROGRAM_FILES%\Digi\ConnectCore\ConnectCore 9C and Wi-9C\Apps\Source
Code\Test_SPI.

 77

The Test_SPI is a C# application that works with the SPI driver. It is in the Windows\ folder. The
application opens the SPI port instance selected on the Port dropdown list, which lists all the SPI
ports available on the OS design. The port instances may vary depending on the ports included in
the OS design. For example, if only two ports are available in the OS design, there will be two
instances SPI1 and SPI2, regardless of whether the available ports were PORTA and PORTC,
PORTC and PORTD, or any other combination.

In the default kernel that is running in the target, the only SPI port available is serial port B,
accessible at pin header P7 on the development board.

This test transmits and receives data using the same port. For this purpose, the lines SPI_DOUT
and SPI_DIN of the SPI port must be interconnected. In the development board, these port B lines
are accessible in connector P7, pins 2 and 3.

To use Serial Port B as an SPI, turn off microswitch SW2.2 on the development board.

 78

SW2 ON OFF
SW2.2 UART mode SPI mode

The Test_SPI application has two windows in a tab control. The first window contains some
controls for modifying SPI parameters: mode, chip select polarity, bit order, and clock frequency. To
apply the new settings, click Set configuration.

 79

The other window is the transmit-receive window, which contains two text boxes. In the top one,
text to be transmitted can be typed. The lower one represents data received, in ASCII.

Additional controls in the window include:

 Transfer button: sends the transmit text over the port.

 Clear button: clears the transmit and receive text boxes.

 Repeat checkbox: repeats the transmission several times.

 Infinite checkbox: transmits the data in an infinite loop.

 Enable receive checkbox: enables reception of data.

If lines SPI_DOUT and SPI_DIN of the port are not interconnected,
0xFF bytes are received (they might look like ASCII symbols).

10.7. Touch screen
If an LCD Application Kit was purchased, the provided TFT LCD contains a touch screen sensor
and an SPI touch screen controller (ADS 7846). The touch screen lines come together with the
LCD lines in a single cable. Internally, the touch screen lines are connected to Serial Port B.

To use Serial Port B as a Serial Peripheral Interface (SPI), turn off microswitch SW2.2 on the
development board.

SW2 ON OFF
SW2.2 UART mode SPI mode

A driver implements support for the ADS 7846 touch screen controller.

10.7.1. Hardware resources used by the driver

Device Driver IRQ GPIO Physical
memory

Timer Chip
Select

Touch
screen
ADS7846

touch EXT 3 0,1,6,7

 80

10.7.2. Enable the touch screen device in the kernel
To include support for the touch screen controller in the OS design, select it in Catalog view, under
Third Party > BSP > ConnectCore 9C/Wi-9C: ARMV4I > Device Drivers > Touch.

To enable the touch screen device:

A TFT must be selected as display.

Serial port B must be selected in SPI mode.

If a device listed under Touch is marked with a red cross, review
the SerialB component in the catalog to make that SerialB has
been selected as SPI, not both SPI and Serial.

 81

10.7.3. The touch screen interface in the system
Windows Embedded CE automatically recognizes the touch screen as an input device.

When support for the touch screen is included into the OS design, the touchcal.exe calibration
application is automatically included too.

10.7.3.1. Calibrating the touch screen
The touchcal.exe application is launched automatically when the system starts, if no calibration
information is found in the Registry. The application requests the user to press at certain places to
calibrate the touch screen.

The source code is in %PROGRAM_FILES%\Digi\ConnectCore\ConnectCore 9C and Wi-
9C\Apps\Source Code\TouchCal.

Once calibrated, the information can optionally be saved in the Registry with the regtool.exe
application (explained in topic 12.1).

10.8. USB host interface
The NS9360 processor contains a USB 2.0 host interface that supports full-speed (12 Mbps) and
low-speed (1.5 Mbps). The interface is extracted to the ConnectCore 9C/Wi-9C module in the form
of two USB host ports.

10.8.1. Hardware resources used by the driver

Device Driver IRQ GPIO Physical Memory Timer Chip
Select

USB Host ccx9c_usb

 82

10.8.2. Enable the interface in the kernel
To include this device driver into the OS design, select it in the Catalog view, under
Third Party > BSP > ConnectCore 9C/Wi-9C: ARMV4I > Device Drivers > USB Host > USB
Host Controllers.

The USB host (OHCI) driver supports only the interface. Specific USB devices are supported by
USB class drivers, like Human Input Devices (HID) class driver (for mice and keyboards), the
Storage class driver (for USB flash disks), and so on.

 83

Support for USB class drivers can be included from the catalog view, under
Core OS > CEBASE > Core OS Services > USB Host Support.

 84

10.8.3. USB devices in the system
USB host devices can be plugged directly to the module's USB connectors. If the corresponding
class driver was included in the kernel, the device is automatically recognized by the system thus
becoming ready to be used.

10.8.3.1. USB memory sticks
USB memory sticks formatted with FAT file system are recognized as storage units and are
therefore populated with the name Hard Disk n. Windows Embedded CE also recognizes the
different partitions on USB memory sticks, and populates each partition with a new storage unit
entry.

This is how a USB memory stick with three partitions would look:

10.9. I2C
The NS9XX0 processor contains an I2C v.1.0 port, which can be configured in both master and
slave modes. A custom driver has been developed for this interface in master mode.

Additionally, the development board contains an I2C 8-bit I/O device (Philips PCA9554). This
device is managed by the I2C interface.

10.9.1. Hardware resources used by the interface

Device Driver IRQ GPIO Physical
Memory

Timer Chip
Select

I2C ns9xxx_i2c 46,47
I2C I/O port
PCA9554

 85

10.9.2. Enable the interface in the kernel
To include this device driver into the OS design, select it in the Catalog view, under Third Party >
BSP > ConnectCore 9C/Wi-9C: ARMV4I > Device Drivers > I2C.

 86

10.9.3. Manage the interface from user space
I2C devices can be managed from the applications using the standard Win32 API.

To use native functions from a C# application, the functions of
some DLLs must be imported (see topic 14.3).

To use pointers and addresses in a C# application, the project
must be configured for unsafe code (see topic 14.4).

10.9.3.1. Create the handle
To use the I2C port a device handle is needed. This handle is created by calling the CreateFile
function with the name of the device as first argument (lpFileName). The SPI device name is SPIn:
where n is the index of the instance. Because there is only one port, the name is I2C1.

This code opens a handle to the I2C port:

IntPtr hGPIO;

hGPIO = CreateFile("I2C1:", GENERIC_READ | GENERIC_WRITE,
 0, 0, OPEN_EXISTING, 0, 0);
if(hGPIO == INVALID_HANDLE_VALUE)
{
 /* ERROR*/
}

10.9.3.2. I2CMessage structure
The handle grants access to all I2C devices. To manage a specific I2C device the I2CMessage
structure must be used. This structure is an argument to the functions of the API (DeviceIoControl,
ReadFile and WriteFile). The structure contains these fields:

public struct I2CMessage
{
 public uint chip;
 public uint addr;
 public uint alen;
 public byte *buffer;
 public int count;
}

Type Field Description Values
uint chip Address of the I2C device 0 to 128 (LSB of address byte is used

as read/write toggle in I2C protocol)
uint addr Command byte to the I2C device

(can be an inner address or
register)

0 to max uint.

uint alen Number of bytes of field addr (can
be more than one if addr exceeds
value 255)

1 to sizeof(uint)

byte * buffer Buffer with data to write and where
data read are stored

int count Size of buffer field

 87

10.9.3.3. Device IO controls
The driver supports these IOTCLs:

IOCTL Description Parameter
IOCTL_I2C_READ Reads register value I2CMessage
IOCTL_I2C_WRITE Writes register value I2CMessage

10.9.3.4. PCA9554 8-bit I/O port
This I2C device has four inner registers (Input port, Output port, Polarity inversion and
Configuration). The base address and the inner registers addresses are defined with constants in
the application.

Constant Description Value
CFG_I2C_GPIO_EXP_ADDR Base address of PCA9554 device 0x20
I2C_READ_INPUTS Input port register address 0
I2C_RW_OUTPUTS Output port register address 1
I2C_RW_POL_INVERT Polarity inversion register address 2
I2C_RW_CONFIG Configuration register address 3

The buffer field of the I2CMessage structure is used for referring to the specific GPIOs. This buffer
will be only one byte, where the LSB refers to I2C-GPIO0 and the MSB to I2C-GPIO7.

10.9.3.5. Configure PCA9554 I/O behavior
The eight I/Os of the PCA9554 device can be configured as inputs or outputs independently. The
behavior is configured using IOCTL_I2C_WRITE to write to the I2C_RW_CONFIG register. Setting
a bit to 1 configures that pin as input. Clearing the bit configures it as output.

This example code configures I2C-GPIO0 to I2C-GPIO3 as inputs and the rest as outputs:

I2CMessage I2C;
uint uiBytesTransferred;
byte buffer;

/* Configure I2C-GPIO0 to I2C-GPIO3 as INPUTS and
 I2C-GPIO4 to I2C-GPIO7 as OUTPUTS */
buffer= 0x0F;
I2C.buffer = &buffer;
I2C.addr = I2C_RW_CONFIG;
if(!DeviceIoControl (hI2C, IOCTL_I2C_WRITE, &I2C,
 sizeof(GPIOMessage), 0, 0, &uiBytesTransferred, 0))
{
 /* ERROR */
}

 88

10.9.3.6. Read the inputs
I2C-GPIOs working as inputs can be read using the IOCTL_I2C_READ, passing as argument the
handle and the I2CMessage structure. The value of the Input Port Register is returned in the buffer
field of the I2CMessage structure:

I2CMessage I2C;
uint uiBytesTransferred;

I2C.addr = I2C_READ_INPUT;
if(!DeviceIoControl (hI2C, IOCTL_I2C_READ, &I2C,
 sizeof(I2CMessage), 0, 0, &uiBytesTransferred, 0))
{
 /* ERROR */
}

10.9.3.7. Set the outputs
I2C-GPIOs working as outputs can be written using the IOCTL_I2C_WRITE, passing as argument
the handle and the I2CMessages structure. Before calling the DeviceIoControl function, the
Output Port Register value must be set in the buffer field:

I2CMessage I2C;
byte data;
uint uiBytesTransferred;

data = OUTPUT_VALUE;
I2C.buffer = &data;
I2C.addr = I2C_RW_OUTPUT;
if(!DeviceIoControl (hI2C, IOCTL_I2C_WRITE, &I2C,
 sizeof(I2CMessage), 0, 0, &uiBytesTransferred, 0))
{
 /* ERROR */
}

10.9.3.8. Close the handle
When done working with the I2C port, its handle must be closed to free the resources. This is done
with the CloseHandle function:

CloseHandle(hI2C);

 89

10.9.3.9. I2C test application
The ConnectCore 9C/Wi-9C BSP includes a test application of the I2C-GPIOS, which uses the
eight general purpose input-output working of PCA9554 device. This application is included in the
ConnectCore 9C and Wi-9C templates by default. The source code is in
%PROGRAM_FILES%\Digi\ConnectCore\ConnectCore 9C and Wi-9C\Apps\Source
Code\Test_I2C-GPIO.

The Test_I2C-GPIO is a C# application that works with some of the I2C registers (input port, output
port and configuration). It is in the Windows\ folder.

The application contains eight buttons with labels going from I/O0 to I/O7. Each button allows
changing the behavior of the pin between input or output. Depending on their behavior, the I/Os are
represented as a switch (output) or as a LED (input). A label under each button also tells whether
the I/O is an input or an output, and its value.

The I/Os are accessible in connector P19 in the development board.

 90

To change the status of an output, click the switch drawing in the Test_I2C-GPIO application. To
change the value of an input, force it by hardware to ground (0V) or to Vcc (5V).

10.10. RTC
The NS9XXX processor contains a real time clock module that tracks the time of the day to an
accuracy of 10 milliseconds and provides calendar functionality that tracks day, month, and year.

Support for the RTC is provided by an OAL kernel layer.

Because the RTC is internal to the processor, no battery maintains
the date/time. This device is mainly intended for triggering alarms
and scheduled jobs.

10.10.1. Manage the device from user space
To manage the RTC, use the standard Time Functions of the Win32 API. Search for "Time
Functions" in the Windows Embedded CE online help.

 91

10.11. Video
Two options are available for video/graphics support using the ConnectCore 9C/Wi-9C modules:
TFT LCD display or VGA monitor.

The NS9360 microprocessor contains a flexible LCD controller for TFT LCD displays. The
development board contains a VGA DAC (external to the module) that converts the digital signal to
analog, for VGA monitors.

Only one video configuration can be used at a time on the development board: either TFT LCD
display or VGA monitor. Micro switch SW7 on the development board configures this setting.

SW7 ON OFF
SW7.1 VGA disabled VGA enabled
SW7.2 not used

10.11.1. Hardware resources used by the driver

Device Driver IRQ GPIO Physical memory Timer Chip
Select

Display ns9xxx_disp 15,18-41

 92

10.11.2. Include video support in the kernel
When using the ConnectCore 9C/Wi-9C templates for creating an OS design, the NetSilicon VGA
display driver is included by default into the kernel.

To include it by hand or substitute it with a TFT display go to the Catalog view of the OS design and
select Third Party > BSP > ConnectCore 9C/Wi-9C: ARMV4I > Device Drivers > Display

The catalog allows the choice of a VGA or TFT driver.

Depending on the display selection, remember to set micro switch
SW7.1 in the development board accordingly.

A wrong combination of the selected driver and SW7.1 could lead
to a kernel crash while booting.

10.11.3. Manage the display from the user space
The display drivers work with the Windows Embedded CE display API. For more information about
the structures, methods, and functions, see these Windows Embedded CE 6.0 online help topics:

 Display Driver Functions

 Display Driver IOCTLs

 Display Driver Methods

 Display Driver Structures

 93

10.12. Watchdog
The NS9XX0 processor contains a watchdog timer that can produce a reset signal if not refreshed on
time. This mechanism is useful for preventing an uncontrolled kernel from blocking the system forever.

10.12.1. Enable/Disable the watchdog in the kernel
The kernel scheduler is the responsible for refreshing the watchdog. In Debug versions, where the
debug information slows down the system, the watchdog is disabled to avoid system resets. This is
done by setting or unsetting the variable ENABLE_WATCH_DOG (see topic 3.3.1) in the batch file
of the platform, at %_WINCEROOT%\PLATFORM\CCX9C\ccx9c.bat, as seen in this excerpt:

REM
REM If you enable the Watchdog it will be enabled directly at
REM the beginning when the kernel starts. When enabling the watchdog you
need to verify
REM watchdog refresh time to adjust it to your platform needs.
REM
IF /I "%WINCEDEBUG%"=="retail" set ENABLE_WATCH_DOG=1
IF /I "%WINCEDEBUG%"=="debug" set ENABLE_WATCH_DOG=

This code enables the watchdog in Release versions and disables it in Debug versions, but its use
can be changed as needed.

10.12.2. Manage the watchdog from user space
The processor watchdog is entirely managed by the kernel. Applications can use the Win32
watchdog API for creating their own software watchdog timers.

To use native functions from a C# application, the functions of
some DLLs must be imported (see topic 14.3).

To use pointers and addresses in a C# application, the project
must be configured for unsafe code (see topic 14.4).

10.12.2.1. Create the handle
To use a software watchdog timer, a device handle is needed. This handle is created by calling the
CreateWatchDogTimer function, which has six arguments:

Type Argument Description
string lpFileName Name of the watchdog timer to be created.
uint dwPeriod Watchdog period (in milliseconds).
uint dwWait Time to wait (in milliseconds) after the watchdog timer has expired, before the

default action is executed.
uint dwDfltAction Default action to execute when the watchdog timer expires. Possible values

are:
WDG_NO_DFLT_ACTION: do nothing
WDG_KILL_PROCESS: terminate the process
WDG_RESET_DEVICE: reset the device by calling IOCTL_HAL_REBOOT

uint dwPara Parameter to pass to IOCTL_HAL_REBOOT
uint dwFlags Reserved, must be set to 0

If the default action is WDG_RESET_DEVICE, the standard IO Control IOCTL_HAL_REBOOT is
called. This IO Control uses the hardware watchdog to produce a software reset.

 94

10.12.2.2. Start the watchdog timer
After creating the handle, the watchdog timer is started by calling the StartWatchDogTimer
function:

if (!StartWatchDogTimer(hWatchDog, 0))
{
 /* ERROR */
}

10.12.2.3. Refresh the watchdog timer
The watchdog timer needs to be refreshed before the watchdog period expires; otherwise, the default
action is triggered. The watchdog is refreshed by calling the RefreshWatchDogTimer function:

if (!RefreshWatchDogTimer(hWatchDog, 0))
{
 /* ERROR */
}

10.12.2.4. Close the handle
When done working with the watchdog, close its handle to free the resources using the
CloseHandle function:

CloseHandle(hWatchDog);

10.12.2.5. Watchdog test application
The ConnectCore 9C/Wi-9C BSP includes a test application that uses a software watchdog. This
application is included in the ConnectCore 9C and Wi-9C templates by default. The source code is
in %PROGRAM_FILES%\Digi\ConnectCore\ConnectCore 9C and Wi-9C\Apps\Source
Code\Test_WatchDog.

 95

Test_WatchDog is a C# multi-thread application that uses some functions to handle and refresh a
watchdog timer.

The application contains a combo box for selecting the default action to execute when the software
watchdog expires. The possible values are:

 No default action: take no default action.

 Kill process: terminate the process.

 Device reset: reset the device by calling IOCTL_HAL_REBOOT.

The thread priority combo box is used to assign the thread one out of these priorities:

 Highest

 Above normal

 Normal

 Below normal

 Lowest

Two additional controls are used for assigning the watchdog period and the refresh period (in
milliseconds).

When Test_WatchDog is selected, a Watchdog timer is created and started. If Enable WatchDog
refresh is checked and the refresh period is smaller than the watchdog period, the software
watchdog timer is refreshed in time, and nothing happens.

On the other hand, if Enable WatchDog refresh is not checked or the refresh period is bigger than
the watchdog period, as soon as the watchdog timer expires without the proper refreshment, the
action selected is executed.

 96

11. Using the Wireless LAN adapter

If your module does not have a WLAN adapter, disregard this topic.

The ConnectCore Wi-9C embedded module includes a Wireless LAN adapter integrated in the
module. This adapter complies with IEEE 802.11b/g Wireless LAN standard. This topic explains the
configuration and security details of the WLAN adapter.

For your network to work and communicate with the ConnectCore Wi-9C using the wireless
interface, a wireless Access Point (AP) must be installed and configured.

11.1. Concepts
One of the most important concerns in wireless communications is the security and integrity of the
data. For this reason, it is necessary to introduce two concepts: encryption and authentication.

Encryption makes data unreadable without a certain deciphering key.

Authentication confirms the identity or origin of something or someone.

11.2. Features of the WLAN adapter
 Complies with the IEEE 802.11b and IEEE 802.11g 2.4Ghz (DSSS) standards

 High data transfer rate – up to 54Mbps.

 Supports 64/128-bit WEP, TKIP and AES encryption.

 Supports open, shared, WPA, WPA-PSK, WPA2 and WPA2-PSK authentication.

 Driver complies with the NDIS 5.0 standard

The card supports 64/128-bit WEP data encryption, which protects a wireless network from
eavesdropping. It also supports the WPA (Wi-Fi Protected Access) feature, which combines IEEE
802.1x, PSK (Pre-Shared Key), and TKIP (Temporal Key Integrity Protocol) technologies. Client
users are required to authorize before accessing to APs or AP Routers, and the data transmitted is
encrypted/decrypted by a dynamically changed secret key. Furthermore, this adaptor supports
WPA2 function, which provides a stronger encryption mechanism through AES (Advanced
Encryption Standard), which is a requirement for some corporate and government users.

11.3. Include the wireless interface in the Windows CE kernel
If an OS design was created using the ConnectCore Wi-9C template (as seen in topic 3.1), all the
necessary components will be included to support the wireless interface in the kernel.

On the other hand, if the OS design was not based in ConnectCore Wi-9C template and the
components were selected by hand, the required components shown in the next topic must be
included from the catalog:

 97

11.3.1. Required components
Go to the Catalog and expand Core OS > CEBASE. Then include these elements:

 Communication Services and Networking

o Networking - General

 Extensible Authentication Protocol

o Networking – Local Area Network (LAN)

 Wireless LAN (802.11) STA - Automatic Configuration 802.1x

 Security

o Authentication Services

 Schannel (SSL/TLS)

Now expand Third Party > BSP > ConnectCore 9C/Wi-9C: ARMV4I and select this element:

 Device Drivers

o Networking

 Local Area Networking (LAN) devices

• ConnectCore Wi-9C Wireless

11.3.2. Recommended catalog components
Other recommended networking utilities and services are:

 Communication Services and Networking

o Networking - General

 Network utilities (ipconfig, ping, route)

o Servers

 FTP Server

 Telnet Server

 Shell and User Interface

o User Interface

 Network User Interface

If using a WPA Enterprise configuration, the following component may also be needed for
certificate management:

 Security

o Microsoft Certificate Enrollment Tool Sample

 98

11.4. Wireless interface LEDs
The ConnectCore Wi-9C module has two LEDs (one green, one yellow) between the Ethernet and
USB host connectors, related with the wireless interface.

The green LED, which implements the Wireless Status, can represent three states:

 Solid ON: Connected to an access point

 Slow Blinking: Connected to an ad-hoc computer

 Fast Blinking: Scanning

 Solid OFF: Not connected

The yellow LED implements the network activity and blinks when packets are being received or
transmitted.

 99

11.5. Driver start
If the wireless interface is included in the kernel, the driver starts automatically when the Windows
Embedded CE system starts.

If running a debug version, the Output view displays this output:

[ccw9cWifi]: Loading Wireless Driver Version 1.1 ... OK

If a display is available, the first time, a window opens showing the Access Points in range, from
which an access point to connect to can be selected. Also, a small connection icon with a red cross
appears in the taskbar. The red cross means that the ConnectCore Wi-9C is not yet connected to
any access point.

If a preferred network is saved in the Registry, the target automatically connects to it. The preferred
network is managed with the WifiConf tool, covered in topic 11.11.

To prevent this dialog from showing, uncheck Notify me when new wireless
networks are available. This setting is stored in the Registry in RAM. To save
the Registry permanently into NVRAM, you need to execute the regtool utility,
covered in topic 12.

11.6. WLAN network settings
The network settings for the WLAN adapter are taken from these U-Boot variables:

 ipaddr_wlan: IP address of the WLAN interface

 netmask_wlan: Network mask for WLAN interface

To modify the WLAN network settings in Windows Embedded CE, go to the Control Panel in the
target device: Start > Settings > Control Panel > Network > Dial-up Connections.

 100

Network settings modified in Windows Embedded CE are stored in RAM memory and remain valid
until the target is reset. To save these settings permanently in NVRAM, the regtool utility must be
used. See topic 12 for more information.

11.7. Connect to an access point (infrastructure mode)
The ConnectCore Wi-9C wireless interface can be connected to an Access Point (AP) in several
ways. All of them go through the WZCSAPI (see official Microsoft Windows CE online help
documentation for more information about the API).

11.7.1. Graphic mode
Double-clicking the wireless icon on the taskbar shows the window with a list of the wireless APs in
range.

If the wireless icon is selected shortly after the driver was loaded,
the AP list might be empty because the ConnectCore Wi-9C
wireless interface is still scanning for APs.

Click the desired AP, and click Connect. The Wireless Network Properties window opens.
Depending on the AP authentication and encryption configuration, different information may need
to be entered.

 101

The virtual keyboard can be used for introducing characters.

After clicking OK, the Properties window closes and previous window is displayed again.

The status text beside the selected AP passes through several states (depending on the
authentication): Scanning, Associating, Associated, Authenticating, Authenticated…, and
finishes with Connected.

Then, the WiFi Taskbar icon changes to blue and the red cross disappears.

Now the target can be accessed from any device on the network segment. For example, attempt a
ping from a wireless PC to the ConnectCore Wi-9C.

If a simple ping does not work, it is probable that the AP and the IP of the wireless interface are not
within the same network segment. Check the network settings of WLAN, as seen in topic 11.6.

 102

11.7.2. Command line mode
If a graphic display is not available, there is a command line application named wzctool for
connecting to an AP. Execute the wzctool application with /help option to learn its syntax:

\> wzctool /help
wzctool usage:
options:
 -e Enumerate wireless cards.
 -q <Card Name> Query wireless card.
 -c <Card Name> -ssid AP-SSID -auth open -encr wep -key 1/0x1234567890
 connect to AP-SSID with given parameters. Use -c -? for detail.
 -reset Reset WZC configuration data. Wireless card will disconnect
 if it was connected.
 -set <Card Name> <parameter> Set WZC variables.
 Use -set -? for detail.
 -refresh Refresh entries.
 -registry configure as registry.
 Use -registry -? for detail.
 -enablewzcsvc enable WZC service.
 -disablewzcsvc disable WZC service.
 -? shows help message
if no arg is given, wzctool will reads and set as settings in the registry.
Use '-registry -?' for detail
if no <Card Name> is given, wzctool will find the first WiFi card and use
this card.
\>

11.7.2.1. wzctool syntax
To get information about the available wireless interfaces, execute wzctool –q. This example
shows that two networks are available and one of them is a preferred network.

\> wzctool -q
wireless card found: CCW9CWIFI1
WZCQueryInterfaceEx() for CCW9CWIFI1
In flags used = [0x7FFFFFFF]
Returned out flags = [0x07EFFFFF]
wzcGuid = [CCW9CWIFI1]
wzcDescr = [ccw9cWifi1]
BSSID = 00:17:94:FD:99:C0 (this wifi card is associated state)
Media Type = [0]
Configuration Mode = [0000A002]
 zero conf enabled for this interface
 802.11 OIDs are supported by the driver/firmware
Infrastructure Mode = [1] Infrastructure net (connected to an Access Point)
Authentication Mode = [4] Ndis802_11AuthModeWPAPSK
rdNicCapabilities = 96 bytes
 dwNumOfPMKIDs : [3]
 dwNumOfAuthEncryptPairs : [11]
 Pair[1]
 AuthmodeSupported [Ndis802_11AuthModeOpen]
 EncryptStatusSupported [Ndis802_11WEPDisabled]
 Pair[2]
 AuthmodeSupported [Ndis802_11AuthModeOpen]
 EncryptStatusSupported [Ndis802_11WEPEnabled]
 Pair[3]
 AuthmodeSupported [Ndis802_11AuthModeShared]
 EncryptStatusSupported [Ndis802_11WEPEnabled]
 Pair[4]
 AuthmodeSupported [Ndis802_11AuthModeWPA]
 EncryptStatusSupported [Ndis802_11Encryption2Enabled]
 Pair[5]
 AuthmodeSupported [Ndis802_11AuthModeWPA]
 EncryptStatusSupported [Ndis802_11Encryption3Enabled]

 103

 Pair[6]
 AuthmodeSupported [Ndis802_11AuthModeWPAPSK]
 EncryptStatusSupported [Ndis802_11Encryption2Enabled]
 Pair[7]
 AuthmodeSupported [Ndis802_11AuthModeWPAPSK]
 EncryptStatusSupported [Ndis802_11Encryption3Enabled]
 Pair[8]
 AuthmodeSupported [Ndis802_11AuthModeWPA2]
 EncryptStatusSupported [Ndis802_11Encryption2Enabled]
 Pair[9]
 AuthmodeSupported [Ndis802_11AuthModeWPA2]
 EncryptStatusSupported [Ndis802_11Encryption3Enabled]
 Pair[10]
 AuthmodeSupported [Ndis802_11AuthModeWPA2PSK]
 EncryptStatusSupported [Ndis802_11Encryption2Enabled]
 Pair[11]
 AuthmodeSupported [Ndis802_11AuthModeWPA2PSK]
 EncryptStatusSupported [Ndis802_11Encryption3Enabled]
rdPMKCache = 0 bytes
WEP Status = [4] <unknown value>
SSID = sa_test_c
Capabilities =
 WPA/TKIP capable
 WPA2/AES capable

[Available Networks] SSID List [2] entries.

******** List Entry Number [0] ********
 Length = 196 bytes.
 dwCtlFlags = 0x00000010
 MacAddress = 00:17:94:FD:99:C0
 SSID = sa_test_c
 Privacy = 4 Privacy enabled (encrypted with
 [Ndis802_11Encyption2Enabled])
 RSSI = -37 dBm (0=excellent, -100=weak signal)
 NetworkTypeInUse = NDIS802_11FH
 Configuration:
 Struct Length = 32
 BeaconPeriod = 90 kusec
 ATIMWindow = 0 kusec
 DSConfig = 2437000 kHz (ch-6)
 FHConfig:
 Struct Length = 0
 HopPattern = 0
 HopSet = 0
 DwellTime = 0
 Infrastructure = Ndis802_11Infrastructure
 SupportedRates = 1.0,2.0,5.5,11.0,6.0,12.0,18.0,24.0, (Mbit/s)
 KeyIndex = <not available> (beaconing packets don't have
 this info)
 KeyLength = <not available> (beaconing packets don't have
 this info)
 KeyMaterial = <not available> (beaconing packets don't have
 this info)
 Authentication = 4 Ndis802_11AuthModeWPAPSK
 rdUserData length = 0 bytes.
******** List Entry Number [1] ********
 Length = 196 bytes.
 dwCtlFlags = 0x00000010
 MacAddress = 00:13:46:9B:A8:55
 SSID = sa_test_d
 Privacy = 6 Privacy enabled (encrypted with
 [Ndis802_11Encyption3Enabled])
 RSSI = -46 dBm (0=excellent, -100=weak signal)
 NetworkTypeInUse = NDIS802_11FH
 Configuration:
 Struct Length = 32

 104

 BeaconPeriod = 100 kusec
 ATIMWindow = 0 kusec
 DSConfig = 2472000 kHz (ch-13)
 FHConfig:
 Struct Length = 0
 HopPattern = 0
 HopSet = 0
 DwellTime = 0
 Infrastructure = Ndis802_11Infrastructure
 SupportedRates = 1.0,2.0,5.5,11.0,6.0,9.0,12.0,18.0, (Mbit/s)
 KeyIndex = <not available> (beaconing packets don't have
 this info)
 KeyLength = <not available> (beaconing packets don't have
 this info)
 KeyMaterial = <not available> (beaconing packets don't have
 this info)
 Authentication = 7 Ndis802_11AuthModeWPA2PSK
 rdUserData length = 0 bytes.

[Preferred Networks] SSID List [1] entries.

******** List Entry Number [0] ********
 Length = 196 bytes.
 dwCtlFlags = 0x00000013
 MacAddress = 00:17:94:FD:99:C0
 SSID = sa_test_c
 Privacy = 4 Privacy enabled (encrypted with
 [Ndis802_11Encyption2Enabled])
 RSSI = -37 dBm (0=excellent, -100=weak signal)
 NetworkTypeInUse = NDIS802_11FH
 Configuration:
 Struct Length = 32
 BeaconPeriod = 90 kusec
 ATIMWindow = 0 kusec
 DSConfig = 2437000 kHz (ch-6)
 FHConfig:
 Struct Length = 0
 HopPattern = 0
 HopSet = 0
 DwellTime = 0
 Infrastructure = Ndis802_11Infrastructure
 SupportedRates = 1.0,2.0,5.5,11.0,6.0,12.0,18.0,24.0, (Mbit/s)
 KeyIndex = <not available> (beaconing packets don't have
 this info)
 KeyLength = <not available> (beaconing packets don't have
 this info)
 KeyMaterial = <not available> (beaconing packets don't have
 this info)
 Authentication = 4 Ndis802_11AuthModeWPAPSK
 rdUserData length = 0 bytes.

rdCtrlData length = 0 bytes

parameter setting in Zero Config
tmTr = 3000 mili-seconds (Scan time out)
tmTp = 2000 mili-seconds (Association time out)
tmTc = 60000 mili-seconds (Periodic scan when connected)
tmTf = 60000 mili-seconds (Periodic scan when disconnected)
\>

 105

11.7.2.2. Connect to an AP
To connect to a specific AP, use the –c option. For example, to connect to an AP with SSID
myAPname with WPA-PSK authentication with TKIP encryption and password fY5jHot6, execute:

\> wzctool -c ccw9cwifi1 -ssid myAPname -auth wpa-psk -encr tkip -key
fY5jHot6

If connecting to an AP with SSID myAPname open authentication and no encryption, the
command is:

\> wzctool -c ccw9cwifi1 -ssid myAPname -auth open -encr disabled

11.7.2.3. Registry information
Executing wzctool with the –registry option, or with no option, causes the tool to connect with the
default Registry values established in this Registry key:

[HKEY_CURRENT_USER\Comm\WZCTOOL]
 "SSID" = "myAPname"
 "authentication" = dword:4 ;WPA-PSK (Ndis802_11AuthModeWPAPSK)
 "encryption" = dword:4 ;TKIP (Ndis802_11Encryption2Enabled)
 "key" = "fY5jHot6"
 "adhoc" = dword:0 ;CE8021X is an infrastructure network

This Registry key can be configured to quickly create a connection to a default AP .The encryption
and authentication fields are written with numbers, according to these tables:

Authentication Value
Ndis802_11AuthModeOpen 0
Ndis802_11AuthModeShared 1
Ndis802_11AuthModeAutoSwitch 2
Ndis802_11AuthModeWPA 3
Ndis802_11AuthModeWPAPSK 4
Ndis802_11AuthModeWPANone 5
Ndis802_11AuthModeWPA2 6
Ndis802_11AuthModeWPA2PSK 7

Encryption Value
Ndis802_11WEPEnabled 0
Ndis802_11EncryptionDisabled 1
Ndis802_11Encryption2Enabled (TKIP) 4
Ndis802_11Encryption3Enabled (AES-CCMP) 6

 106

Also, the adhoc field is a numeric entry that accepts two values:

adhoc Value
Infrastructure (AP-connection) 0
Ad hoc (computer-to-computer) 1

The WZCTOOL Registry entry exposes the encryption key. If
access to the target’s Registry is not secure, this would be a
security hole.

11.7.2.4. Source code
The source code of the wzctool utility is available in the directory
%_WINCEROOT%\PUBLIC\COMMON\OAK\DRIVERS\NETSAMP\WZCTOOL\. It can be used as
an example for controlling and configuring the ConnectCore Wi-9C wireless interface.

11.8. Connect to a computer (ad hoc mode)
Connecting to a peer computer in ad hoc mode requires the same steps shown in previous topic,
connecting to an AP in infrastructure mode.

When queried with wzctool –q, a device configured as ad hoc reports something like this:

Length = 196 bytes.
 dwCtlFlags = 0x00000000
 MacAddress = 66:3E:C2:49:AF:60
 SSID = sa_test_f
 Privacy = 0 Privacy enabled (encrypted with
 [Ndis802_11WEPEnabled])
 RSSI = -55 dBm (0=excellent, -100=weak signal)
 NetworkTypeInUse = NDIS802_11FH
 Configuration:
 Struct Length = 32
 BeaconPeriod = 90 kusec
 ATIMWindow = 0 kusec
 DSConfig = 2442000 kHz (ch-7)
 FHConfig:
 Struct Length = 0
 HopPattern = 0
 HopSet = 0
 DwellTime = 0
 Infrastructure = NDIS802_11IBSS
 SupportedRates = 1.0,2.0,5.5,11.0,6.0,9.0,12.0,18.0, (Mbit/s)
 KeyIndex = <not available> (beaconing packets don't have
 this info)
 KeyLength = <not available> (beaconing packets don't have
 this info)
 KeyMaterial = <not available> (beaconing packets don't have
 this info)
 Authentication = 0 Ndis802_11AuthModeOpen
 rdUserData length = 0 bytes.

 107

11.8.1. Graphic mode
The only difference from connecting in infrastructure mode is that ad hoc devices have a different
icon than APs. In the Properties window, the check box This is a computer-to-computer (ad
hoc) network is automatically selected, and the Encryption and Authentication combo boxes are
preconfigured, depending on the ad hoc device configuration.

 108

11.8.2. Command line mode
If a graphic display is not available, use the wzctool application to connect to an ad hoc device For
example, to connect to an ad hoc device configured with SSID=sa_test_f with open authentication
and wep128 encryption with index 1 and password pass7ujH, the command is:

\> wzctool -c ccw9cwifi1 -adhoc -ssid sa_test_f -auth open -encr wep -key
1/pass7ujH

11.9. Authentication and encryption
As mentioned previously, authentication is the process of confirming the identity, and encryption is
the process that makes information unreadable for unauthorized users. Here are the methods
supported by the ConnectCore Wi-9C WLAN interface Windows CE 6.0 driver:

11.9.1. Supported methods

Authentication Infrastructure mode Ad hoc mode
open X X
shared X X
WPA-PSK (WPA Personal) X
WPA2-PSK (WPA2 Personal) X
WPA (WPA Enterprise) X
WPA2 (WPA2 Enterprise) X

Encryption Infrastructure mode Ad hoc mode
no encryption X X
WEP 64/128 bits X X
TKIP X
AES-CCMP X

 109

11.9.2. Authentication and encryption combinations
There are several combinations of authentication and encryption methods. When queried with the
wzctool the driver reports them as follows:

\> wzctool –q
wireless card found: CCW9CWIFI1
 dwNumOfAuthEncryptPairs : [11]
 Pair[1]
 AuthmodeSupported [Ndis802_11AuthModeOpen]
 EncryptStatusSupported [Ndis802_11WEPDisabled]
 Pair[2]
 AuthmodeSupported [Ndis802_11AuthModeOpen]
 EncryptStatusSupported [Ndis802_11WEPEnabled]
 Pair[3]
 AuthmodeSupported [Ndis802_11AuthModeShared]
 EncryptStatusSupported [Ndis802_11WEPEnabled]
 Pair[4]
 AuthmodeSupported [Ndis802_11AuthModeWPA]
 EncryptStatusSupported [Ndis802_11Encryption2Enabled]
 Pair[5]
 AuthmodeSupported [Ndis802_11AuthModeWPA]
 EncryptStatusSupported [Ndis802_11Encryption3Enabled]
 Pair[6]
 AuthmodeSupported [Ndis802_11AuthModeWPAPSK]
 EncryptStatusSupported [Ndis802_11Encryption2Enabled]
 Pair[7]
 AuthmodeSupported [Ndis802_11AuthModeWPAPSK]
 EncryptStatusSupported [Ndis802_11Encryption3Enabled]
 Pair[8]
 AuthmodeSupported [Ndis802_11AuthModeWPA2]
 EncryptStatusSupported [Ndis802_11Encryption2Enabled]
 Pair[9]
 AuthmodeSupported [Ndis802_11AuthModeWPA2]
 EncryptStatusSupported [Ndis802_11Encryption3Enabled]
 Pair[10]
 AuthmodeSupported [Ndis802_11AuthModeWPA2PSK]
 EncryptStatusSupported [Ndis802_11Encryption2Enabled]
 Pair[11]
 AuthmodeSupported [Ndis802_11AuthModeWPA2PSK]
 EncryptStatusSupported [Ndis802_11Encryption3Enabled]

Encryption2 is TKIP and Encryption3 is AES-CCMP.

For explaining the connection process, these combinations can be grouped as follows:

 Open authentication and encryption.

 Open authentication with WEP encryption.

 WPA-PSK or WPA2-PSK authentication with TKIP or AES-CCMP encryption.

 WPA and WPA2 Enterprise authentication.

 110

11.9.3. Open authentication without encryption
When queried with wzctool –q, an AP configured as previously described displays this information:

Length = 196 bytes.
 dwCtlFlags = 0x00000000
 MacAddress = 00:13:46:9B:A8:53
 SSID = sa_test_a
 Privacy = 1 Privacy disabled (wireless data is not encrypted)
 RSSI = -54 dBm (0=excellent, -100=weak signal)
 NetworkTypeInUse = NDIS802_11FH
 Configuration:
 Struct Length = 32
 BeaconPeriod = 100 kusec
 ATIMWindow = 0 kusec
 DSConfig = 2472000 kHz (ch-13)
 FHConfig:
 Struct Length = 0
 HopPattern = 0
 HopSet = 0
 DwellTime = 0
 Infrastructure = Ndis802_11Infrastructure
 SupportedRates = 1.0,2.0,5.5,11.0,6.0,9.0,12.0,18.0, (Mbit/s)
 KeyIndex = <not available> (beaconing packets don't have this
 info)
 KeyLength = <not available> (beaconing packets don't have this
 info)
 KeyMaterial = <not available> (beaconing packets don't have this
 info)
 Authentication = 0 Ndis802_11AuthModeOpen
 rdUserData length = 0 bytes.

11.9.3.1. Connect in graphic mode
To connect to an AP in graphic mode, select the AP and click Connect. Because the AP
configuration is automatically recognized, these fields are already filled in:

 Encryption: disabled
 Authentication: Open

 111

11.9.3.2. Connect in command line mode
To connect in command line mode, use the wzctool command, specifying only the SSID of the AP,
which in the example, is sa_test_a:

\> wzctool –c CCW9CWIFI1 -ssid sa_test_a -auth open -encr disabled

 112

11.9.4. Open authentication with WEP encryption
When queried with wzctool –q, an AP configured with open authentication with WEP encryption
with this configuration displays this information:

Length = 196 bytes.
 dwCtlFlags = 0x00000000
 MacAddress = 00:13:46:9B:A8:54
 SSID = sa_test_b
 Privacy = 0 Privacy enabled (encrypted with
[Ndis802_11WEPEnabled])
 RSSI = -59 dBm (0=excellent, -100=weak signal)
 NetworkTypeInUse = NDIS802_11FH
 Configuration:
 Struct Length = 32
 BeaconPeriod = 100 kusec
 ATIMWindow = 0 kusec
 DSConfig = 2472000 kHz (ch-13)
 FHConfig:
 Struct Length = 0
 HopPattern = 0
 HopSet = 0
 DwellTime = 0
 Infrastructure = Ndis802_11Infrastructure
 SupportedRates = 1.0,2.0,5.5,11.0,6.0,9.0,12.0,18.0, (Mbit/s)
 KeyIndex = <not available> (beaconing packets don't have this
 info)
 KeyLength = <not available> (beaconing packets don't have this
 info)
 KeyMaterial = <not available> (beaconing packets don't have this
 info)
 Authentication = 0 Ndis802_11AuthModeOpen
 rdUserData length = 0 bytes.

11.9.4.1. Connect in graphic mode
To connect in graphic mode, select the AP and click Connect. Because the AP configuration is
automatically recognized, these fields are already filled:

 Encryption: WEP

 Authentication: Open

The check box The key is provided automatically is selected by default. Deselect it and enter
Network Key and the Key index values as needed for the AP. Use the virtual keyboard to
introduce the password.

 113

11.9.4.2. Connect in command line mode
To connect in command line mode, provide the SSID of the AP (in the example, sa_test_a) and the
WEP password and password index (in the example, index=1 and password=testb:

\> wzctool -c CCW9CWIFI1 -ssid sa_test_b -auth open -encr wep -key 1/testb

The password can also be specified in hexadecimal format (testb = 0x7465737462):

\> wzctool -c ccw9cwifi1 -ssid sa_test_b -auth open -encr wep -key
1/0x7465737462

 114

11.9.5. WPA-PSK authentication with TKIP encryption
This topic shows connecting to an AP configured with WPA-PSK authentication with TKIP
encryption. The connection method for other combinations of authentication (WPA-PSK or WPA2-
PSK)and encryption (TKIP or AES-CCMP) vary only in the parameters specified.

When queried with wzctool –q, an AP configured with WPA-PSK + TKIP displays this information:

Length = 196 bytes.
 dwCtlFlags = 0x00000010
 MacAddress = 00:17:94:FD:99:C0
 SSID = sa_test_c
 Privacy = 4 Privacy enabled (encrypted with
[Ndis802_11Encryption2Enabled])
 RSSI = -44 dBm (0=excellent, -100=weak signal)
 NetworkTypeInUse = NDIS802_11FH
 Configuration:
 Struct Length = 32
 BeaconPeriod = 90 kusec
 ATIMWindow = 0 kusec
 DSConfig = 2437000 kHz (ch-6)
 FHConfig:
 Struct Length = 0
 HopPattern = 0
 HopSet = 0
 DwellTime = 0
 Infrastructure = Ndis802_11Infrastructure
 SupportedRates = 1.0,2.0,5.5,11.0,6.0,12.0,18.0,24.0, (Mbit/s)
 KeyIndex = <not available> (beaconing packets don't have this
 info)
 KeyLength = <not available> (beaconing packets don't have this
 info)
 KeyMaterial = <not available> (beaconing packets don't have this
 info)
 Authentication = 4 Ndis802_11AuthModeWPAPSK
 rdUserData length = 0 bytes.

 115

11.9.5.1. Connect in graphic mode
To connect to the AP in graphic mode, select the AP and click Connect. Because the AP
configuration is automatically recognized, these fields are already filled:

 Encryption: TKIP

 Authentication: WPA-PSK

Only the Network key field must be entered. Enter the pre-shared key that is configured in the AP.
Use the virtual keyboard to introduce the password.

11.9.5.2. Connect in command line mode
To connect to the AP in command line mode, enter the wzctool command. Specify the SSID of the
AP (in the example, sa_test_c) and the WPA-PSK password (in the example, testcpassword):

\> wzctool -c ccw9cwifi1 -ssid sa_test_c -auth wpa-psk -encr tkip -key
testcpassword

 116

11.9.6. WPA2-PSK authentication with AES-CCMP encryption
WPA2-PSK authentication with AES-CCMP encryption is a different combination of the same
method seen in topic 11.9.5.

When queried with wzctool –q, an AP configured with WPA2-PSK + AES-CCMP displays this
information:

Length = 196 bytes.
 dwCtlFlags = 0x00000010
 MacAddress = 00:13:46:9B:A8:55
 SSID = sa_test_d
 Privacy = 6 Privacy enabled (encrypted with [Ndis802_11Encr
yption3Enabled])
 RSSI = -37 dBm (0=excellent, -100=weak signal)
 NetworkTypeInUse = NDIS802_11FH
 Configuration:
 Struct Length = 32
 BeaconPeriod = 100 kusec
 ATIMWindow = 0 kusec
 DSConfig = 2472000 kHz (ch-13)
 FHConfig:
 Struct Length = 0
 HopPattern = 0
 HopSet = 0
 DwellTime = 0
 Infrastructure = Ndis802_11Infrastructure
 SupportedRates = 1.0,2.0,5.5,11.0,6.0,9.0,12.0,18.0, (Mbit/s)
 KeyIndex = <not available> (beaconing packets don't have this
 info)
 KeyLength = <not available> (beaconing packets don't have this
 info)
 KeyMaterial = <not available> (beaconing packets don't have this
 info)
 Authentication = 7 Ndis802_11AuthModeWPA2PSK
 rdUserData length = 0 bytes.

 117

11.9.6.1. Connect in graphic mode
To connect to an AP in graphic mode, select the AP and click Connect. The AP configuration is
automatically recognized, so these fields are already filled:

 Encryption: AES

 Authentication: WPA2-PSK

Only the Network key field must entered. Enter the pre-shared key configured in the AP. Use the
virtual keyboard to introduce the password.

11.9.6.2. Connect in command line mode
To connect to the AP in command line mode, enter the wzctool command. Specify the SSID of the
AP (in the example, sa_test_d) and the WPA2-PSK password (in the example, testdpassword):

\> wzctool -c ccw9cwifi1 -ssid sa_test_d -auth wpa2-psk -encr aes -key
testdpassword

 118

11.9.7. WPA Enterprise authentication
When queried with wzctool –q, an AP configured with WPA or WPA2 Enterprise displays this
information:

Length = 196 bytes.
 dwCtlFlags = 0x00000010
 MacAddress = 00:13:46:9B:A8:55
 SSID = sa_test_d
 Privacy = 6 Privacy enabled (encrypted with [Ndis802_11Encr
yption3Enabled])
 RSSI = -37 dBm (0=excellent, -100=weak signal)
 NetworkTypeInUse = NDIS802_11FH
 Configuration:
 Struct Length = 32
 BeaconPeriod = 100 kusec
 ATIMWindow = 0 kusec
 DSConfig = 2472000 kHz (ch-13)
 FHConfig:
 Struct Length = 0
 HopPattern = 0
 HopSet = 0
 DwellTime = 0
 Infrastructure = Ndis802_11Infrastructure
 SupportedRates = 1.0,2.0,5.5,11.0,6.0,9.0,12.0,18.0, (Mbit/s)
 KeyIndex = <not available> (beaconing packets don't have this
 info)
 KeyLength = <not available> (beaconing packets don't have this
 info)
 KeyMaterial = <not available> (beaconing packets don't have this
 info)
 Authentication = 6 Ndis802_11AuthModeWPA
 rdUserData length = 0 bytes.

11.9.7.1. Connect in graphic mode
To connect to the AP in graphic mode, select the AP and click Connect. The AP configuration is
automatically recognized, so these fields are already filled in:

 Encryption: AES

 Authentication: WPA2

Then select the desired EAP type to use. The settings and requested information displayed depend
on the EAP type.

 119

For PEAP:

From the EAP type combo box, select PEAP.

Click the Properties button. The Authentication Settings dialog is displayed. For the
Validate Server checkbox, if the correct server certificates are installed, leave it selected. If Server
Certificates are not installed or the server does not support this feature, deselect it.

The date of the system must be correctly set and match the server
certificate valid period

 120

Click OK buttons twice. If the network has never been reached using this method, the system will
prompt for User Name, Password, and Domain:

 121

For TLS:

From the EAP type combo box, select TLS.

Click the Properties button.

The Authentication Settings dialog is displayed. For the Validate Server checkbox, if the correct
server certificates are installed, leave this setting selected. If Server Certificates are not installed or
the server doesn’t support this feature, deselect it.

The date of the system must be correctly set and match the server
certificate valid period.

Click the Select button.

 122

Select the Client Certificate to use.

Click OK buttons three times. If the network has never been reached using this method, the system
will prompt for User Name and Domain:

 123

Generating and installing certificates is done using a standard
WinCE process. Description of the process is out of the scope of
this document.

11.10. APs supporting several authentication and encryption methods
Modern Access Points can be configured to support several authentication and encryption methods
at the same time. For example, an AP can be configured to support, at the same time, any
combination of WPA-PSK or WPA2-PSK authentication and TKIP or AES-CCMP encryption.

Such configuration offers the possibility to connect to the AP with any of the four resultant
combinations.

 124

11.11. Wireless configuration tool
WifiConf.exe is a custom application provided to:

 Give access to non-standard functionality/features of the driver that cannot be accessed
through standard Windows CE tools like graphic NetUI or command-line wzctool.

 Save the settings of the preferred wireless network in the Registry, allowing the automatic
connection to the wireless network after start-up.

This application is in the Windows folder of the target

To execute the application and see its syntax, enter wificonf in a console or telnet session:

\> wificonf
Application to configure and save the wireless settings. Revision 1.2
Copyright(c) 2007 by Digi International Inc.

Usage: WifiConf <options>

Where options are:
 -status
 Displays driver internal current status.

 -stats clear|read
 Clears or reads statistics.

 -tx_power [HexValue]
 Reads/Sets tx_power.
 -chan_mask [HexValue]
 Reads/Sets chan_mask.
 -tx_rate [DecValue]
 Reads/Sets tx_rate.
 -rts_thresh [DecValue]
 Reads/Sets rts_thresh.
 -frag_thresh [DecValue]
 Reads/Sets frag_thresh.
 -options [HexValue]
 Reads/Sets options.

 -save_params
 Save wireless settings in system registry.

 -wzctool <wzctool-like command_line>
 Reads/Sets/Clears the Preferred Network in Registry.
 type 'wzctool -help' to learn about the <wzctool-like command_line>.
 See User's Guide documentation for more info.

Examples:
WifiConf -status
 Reads and display driver status
WifiConf -stats read
 Reads and display driver statistics
WifiConf -chan_mask
 Reads current value of chan_mask. Ex: 0x1002=Only ch13 & ch2 enabled
WifiConf -chan_mask 0x1003
 Sets value of chan_mask to 0x1003: ch13, ch2 and ch1 enabled
wificonf -wzctool –ssid MyAP_-auth wpa-psk -encr tkip -key MyPassword
 Stores MyAP as the Preferred Network in the registry
wificonf -wzctool -reset
 Delete the Preferred Network in the registry

 125

11.11.1. Display wireless status information
To display status information, enter this command:

\> wificonf -status
CCW9CWIFI1 Adapter Detected: Digi ccw9cWifi Wireless LAN Adapter.
OID_WIFIMAC_STATION_STATE=2 (Associated with ESS)
OID_WIFIMAC_GET_CURRENT_TX_RATE=180
OID_802_11_RSSI=-41 (Fair)
\>

11.11.2. Display transmission driver statistics
This command reads, or clears, reception and transmission driver statistics, which are more
detailed than standard NDIS statistics:

\> wificonf -stats clear
CCW9CWIFI1 Adapter Detected: Digi ccw9cWifi Wireless LAN Adapter.
OID_WIFIMAC_RESET_STATS Statistics Reseted
\> wificonf -stats read
CCW9CWIFI1 Adapter Detected: Digi ccw9cWifi Wireless LAN Adapter.
OID_WIFIMAC_GET_STATS:
txBytes = 105872866
txFrames = 80694
txBCFrames = 802
rxBytes = 7253725
rxFrames = 46558
rxBCFrames = 46236
txRTS = 0
txRetries = 8375
txDropRetry = 0
txDropBC = 0
txDropAssoc = 18
rxRTS = 0
rxRetries = 448
rxDropSize = 0
rxDropBuffer = 0
rxDropInvalid = 86
rxDropDup = 319
rxDropAge = 0
rxDropDecrypt = 53
rxDropOverrun = 0
rxDropReplay = 0
rxDropMICFail = 53
\>

 126

11.11.3. Commands for configuring driver parameters
To display or modify driver parameters, use these commands:

 WifiConf tx_power [HexValue]

 WifiConf chan_mask [HexValue]

 WifiConf tx_rate [DecValue]

 WifiConf rts_thresh [DecValue]

 WifiConf frag_thresh [DecValue]

 WifiConf options [HexValue]

Some commands take decimal values, while others take
hexadecimal values.

To read the current parameter value, type this command without any argument:

\> WifiConf -chan_mask
CCW9CWIFI1 Adapter Detected: Digi ccw9cWifi Wireless LAN Adapter.
OID_WIFIMAC_GET_CHAN_MASK=0x1001
\>

To modify the current parameter, add a value to the command line:

\> WifiConf -chan_mask 1003
CCW9CWIFI1 Adapter Detected: Digi ccw9cWifi Wireless LAN Adapter.
OID_WIFIMAC_GET_CHAN_MASK=0x1001
OID_WIFIMAC_SET_CHAN_MASK set chan_mask=0x1003
\>

11.11.4. Store parameters to Registry
If any parameter of the WLAN interface is modified with the WifiConf tool, the new configuration
can be stored into the Registry key [HKEY_LOCAL_MACHINE\Comm\ccw9cWifi1\Parms] with
this command:

\> WifiConf -save_params
CCW9CWIFI1 Adapter Detected: Digi ccw9cWifi Wireless LAN Adapter.
Configuration saved in registry. Remember to save registry in persistent
storage (type: regtool -h)!!!
\>

With this command, the new settings are stored in the Registry in
RAM. To save this Registry permanently into NVRAM, you need to
execute the regtool utility, covered in topic 12.

 127

11.11.5. Preferred Network Configuration
As explained in topic 11.7.2.3, wzctool.exe retrieves the preferred network configuration from the
registry, but it doesn’t have any mechanism to delete it or to store a modified one.

This functionality is supplied by the WifiConf.exe tool, which has a wzctool-like submenu with
options for:

 Storing the preferred network in the Registry

 Deleting all networks from the Registry

 Retrieving the preferred network from the Registry

 Automatically configuring the preferred network after start-up

11.11.5.1. Store the preferred network in the Registry
The command works by appending to wificonf application the wzctool command line (excluding
the interface).

\> wificonf -wzctool -ssid sa_test_d -auth wpa2-psk -encr aes -key
testdpassword
CCW9CWIFI1 Adapter Detected: Digi ccw9cWifi Wireless LAN Adapter.
Deleting previous Preferred Network from registry
Storing Preferred Network in registry
Done Successfully.
Configuration saved in registry. Remember to save registry in persistent
storage (type: regtool -h)!!!
\>

This command creates a connection like the one seen in topic 11.9.6.2 but, additionally, this entry
is added to the Registry:

[HKEY_CURRENT_USER\Comm\WZCTOOL]
 "SSID" = "sa_test_d"
 "authentication" = dword:7 ;WPA2-PSK (Ndis802_11AuthModeWPA2PSK)
 "encryption" = dword:6 ;AES (Ndis802_11Encryption3Enabled)
 "key" = "testdpassword"
 "adhoc" = dword:0 ;CE8021X is an infrastructure network

With this command, the new settings are stored in the Registry in
RAM. To save the Registry permanently into NVRAM, execute the
regtool utility, covered in topic 12.

The WZCTOOL Registry entry exposes the encryption key. If
access to the target’s Registry is not secure, this would be a
security hole.

 128

11.11.5.2. Delete all networks from the Registry
To delete all networks from the Registry, enter this command:

\> wificonf -wzctool -reset
CCW9CWIFI1 Adapter Detected: Digi ccw9cWifi Wireless LAN Adapter.
Deleting Preferred network from registry
Done Successfully
Configuration saved in registry. Remember to save registry in persistent
storage (type: regtool -h)!!!
\>

This command deletes all networks of wzcsvc as if wzctool -reset command was used; in
addition, the [HKEY_CURRENT_USER\Comm\WZCTOOL] Key entry, with the preferred network
seen before, is deleted from the Registry.

With this command, the new settings are stored in the Registry in
RAM. To save the Registry permanently into NVRAM, you need to
execute the regtool utility, covered in topic 12

11.11.5.3. Retrieve the preferred network from the Registry
To retrieve the preferred network from the Registry, enter this command:

\> wificonf -wzctool -registry
CCW9CWIFI1 Adapter Detected: Digi ccw9cWifi Wireless LAN Adapter.
Recovering Preferred network from Registry
Done Successfully
\>

This command retrieves the preferred network from the registry for wzcsvc just as if the
wzctool -registry was used. This command is a wrapper function to bring the whole functionality to
WifiConf application.

11.11.5.4. Automatic configuration of the preferred network after start-up.
WifiConf.exe tool is automatically executed at start-up (after device.dll has been loaded) because
of this entry in platform.reg file:

[HKEY_LOCAL_MACHINE\Init]
 "Launch85"="WifiConf.exe"
 "Depend85"=hex:14,00

This startup entry executes WifiConf tool in a special mode to retrieve the preferred network from
the Registry but with these considerations:

 Silent mode: No messages are displayed to avoid opening command windows on the screen.

 The attempt to add the preferred network is not done until CCW9CWIFI1 reports that an AP is
available.

 The automatic configuration expires after a timeout of 30 seconds.

 129

11.11.6. Source code for WifiConf
The WifiConf source code is in the folder
%PROGRAM_FILES%\Digi\ConnectCore\ConnectCore 9C and Wi-9C\Apps\Source
Code\WifiConf\. Either modify it or use it as example to create other applications that access the
WLAN driver.

11.11.6.1. Build the WifiConf tool
WiFiConf can be built as a Windows CE native code C++ application. To add the WifiConf
application to an OS design:

1. Select the OS design in the Solution explorer (in this case, Kernel) and select the Subprojects
element in it. Right-click and select Add Existing Subproject.

2. Open the folder containing the WifiConf source code, select file WifiConf.pbpxml and click
Open.

 130

The WifiConf tool is added to the OS design.

11.11.6.2. About the code
The application gets access to the standard NDIS ccw9cwifi driver through the NDISUIO interface.
After the interface is opened, both standard and not standard OIDs can be executed. The standard
OIDs are those described in the standard NDIS specification, such as OID_802_11_SSID,
OID_802_11_INFRASTRUCTURE_MODE, etc.

The driver’s non standard OIDs are described in the file
%_WINCEROOT%\PLATFORM\CCX9C\SRC\DRIVERS\wifimac\oidwifimac.h. Description of the
OIDs follow.

Name Description Related
Registry entry

Range

OID_WIFIMAC_GET_TX_POWER
OID_WIFIMAC_SET_TX_POWER

Transmit Power "tx_power" 0 to 15

OID_WIFIMAC_SET_CHAN_MASK
OID_WIFIMAC_GET_CHAN_MASK

Bitmap of allowed channels. "chan_mask" Bit 0 is
channel
1, and
so on.

OID_WIFIMAC_GET_TX_RATE
OID_WIFIMAC_SET_TX_RATE

Maximum transmit rate (in units of
100 kbps), so 540 == 54 mbps

"tx_rate" Max
540

OID_WIFIMAC_GET_RTS_THRESH
OID_WIFIMAC_SET_RTS_THRESH

RTS threshold, 0 to use default. "rts_thresh"

0 to
2347

OID_WIFIMAC_GET_FRAG_THRESH
OID_WIFIMAC_SET_FRAG_THRESH

Fragmentation threshold, 0 to use
default.

"frag_thresh"

0 to
2346

OID_WIFIMAC_GET_OPTIONS
OID_WIFIMAC_SET_OPTIONS

Bitmap of options:
 0x0001 Enable antenna diversity
 0x0002 Enable short preamble
 0x0004 Enable server certificate
verification
 0x0008 Use only 802.11b rates in 2.4
GHz band
 0x0010 Use RTS/CTS protection
frames for 802.11g
 0x0020 Use fixed transmit rate
 0x0040 Enable 802.11 Multi domain
capability(802.11d)

"options" N/A

OID_WIFIMAC_GET_STATS
OID_WIFIMAC_RESET_STATS

Get/Reset ccw9cWifi internal statistics N/A N/A

OID_WIFIMAC_STATION_STATE Gets internal driver state:
WLN_ST_STOPPED,
WLN_ST_SCANNING,
WLN_ST_ASSOC_ESS,
WLN_ST_AUTH_ESS,
WLN_ST_JOIN_IBSS,
WLN_ST_START_IBSS

N/A 0 to 5

OID_WIFIMAC_GET_CURRENT_TX_RATE Get current TX rate N/A Max
540

 131

12. Persistent Registry

This topic describes the regtool application, used to save Registry settings to NVRAM.

12.1. Regtool application
While working with the target, interface settings and OS parameters can be modified, for example,
network settings and memory configuration. These changes are saved to the target's Windows
Registry, a database that stores settings and options for your target's operating system. Because
the target's Registry resides in RAM memory, these settings are lost when the target is powered
off.

The regtool application stores the Registry into NVRAM so the settings are not lost.

To see the application’s syntax, execute it with the –h option:

\> regtool -h
Application to save or erase the Registry. Revision 1.1
Copyright(c) 2007 by Digi International Inc.

 Usage: regtool <options>

 Where options are:
 -s Save registry to flash
 -e Erase registry in flash
 -h Show this helps

\>

Options include:

 -s: Saves the Registry to the first flash partition of type WinCE-Registry.

 -e: Erases the first flash partition of type WinCE-Registry.

When the system boots, if it finds a correct Registry in the first flash partition of type WinCE-
Registry, it loads these settings for the running system. Otherwise, the system generates a
Registry in RAM with default values.

 132

13. Boot loader development

This topic describes how to work with the boot loader. It covers how to customize, build, and install
a boot loader image, then update the flash memory with the newly generated boot loader image.

13.1. Development environment
U-Boot sources are prepared to be built in a Linux environment. To develop with U-Boot under a
Windows based host PC, you must install Digi U-Boot SDK from the ConnectCore BSP for
Windows Embedded CE 6.0 CD-ROM, which installs the CygwinTM environment, Microcross GNU
X-Tools and the U-Boot boot loader source files.

For the U-Boot boot loader to build correctly, its source code must
be installed in a path without blank spaces.

13.2. Platform specific source code
Several files are used to customize U-Boot:

File Description
include/configs/yourplatform.h Default configuration for the modules
include/configs/digi_common*.h Configuration for all Digi modules
board/yourplatform/yourplatform.c Platform initialization

13.3. Customize U-Boot

13.3.1. Default environment variables
U-Boot has a set of default environment variables that are defined in the environment variable
CONFIG_EXTRA_ENV_SETTINGS in include/configs/yourplatform.h.

Digi has extended U-Boot by dynamic environment variables. These variables are auto-generated,
depending on the platform and the module U-Boot runs, and are used by the dboot and update
commands.

The list of dynamic variables and their current values can be retrieved with U-Boot command
printenv_dynamic. The standard command printenv does not list the variables unless they are
overwritten by user action, as seen in this example:

printenv_dynamic
eimg=eboot-CCX9C
printenv eimg
Error: "eimg" not defined
setenv eimg myeimage
printenv_dynamic
eimg=myeimage

To return dynamic variables to their default values, set them to a value of nothing with setenv:

setenv eimg
printenv_dynamic
eimg=eboot-CCX9C

 133

13.3.1.1. Windows Embedded CE-related environment variables
Digi has implemented specific variables for different OS implementations (Linux, Windows
Embedded CE, NET+OS). These are the specific Windows Embedded CE related variables:

Variable Description
ebootaddr The RAM address in which to place the EBOOT

image.
wceloadaddr The RAM address in which to place the Windows

Embedded CE kernel image.
wimg Windows Embedded CE kernel image filename;

used for kernel updates.
eimg EBOOT image filename; used for kernel updates.

13.4. Build U-Boot
A script is provided to help compile the U-Boot boot loader. To display the script’s syntax, open
Cygwin in the U-Boot installation folder and execute:

$./userbuild_cyg.sh –h

Usage: userbuild_cyg.sh [options] <platform>

 -l List available platforms
 -c Configure Project
 -b Build project
 -i <path> Install path for the U-Boot images

Available platforms:
 ccw9cjsnand
 ccw9cjsnand_dbg
 cc9cjsnand
 cc9cjsnand_dbg

Platforms with the _dbg suffix are special versions for running with a hardware
debugger.

13.4.1. Configure U-Boot for the target platform
Before U-Boot is compiled, it needs to be configured for one of the available platforms. This is done
only one time, with the –c option. For example, for the ConnectCore Wi-9C, execute:

$./userbuild_cyg.sh –c ccw9cjsnand
Configuring ConnectCore Wi-9C with NAND Flash on Development Board
Configuring for ccw9c board...

 134

13.4.2. Compile U-Boot
After configuring the target platform, to build U-Boot, execute:

$./userbuild_cyg.sh –b ccw9cjsnand

The build command compiles the boot loader sources and generates the U-Boot image. The image
is stored with the name u-boot-platform.bin (where platform is substituted with the platform
name) in the folder in which U-Boot sources are installed (the same folder from which the
command was launched).

13.4.3. Install U-Boot image
The installation folder for the image can be specified with the –i option. This folder can be a TFTP
exposed folder or a USB disk that will be used to make the image accessible for the target.

$./userbuild_cyg.sh –i /cygdrive/c/tftproot ccw9cjsnand

13.5. Updating U-Boot

13.5.1. Update from a running Windows Embedded CE system
If a Windows Embedded CE system is running on the target, the U-Boot partition can be updated
with a new U-Boot image by using the update_flash tool, as seen in topic 8.2.

13.5.2. Update from U-Boot
A useful feature of U-Boot is its ability to update itself. As demonstrated in topic 8.3, the U-Boot
update command, can directly write to the flash memory.

Depending on the setting for the type parameter, the update command gets the image file from
either from a USB flash disk or a TFTP exposed folder in the host. The command acquires the file
name from the value stored in this U-Boot environment variable:

U-Boot image filename: uimg

The default value for this variable corresponds to the default image filename generated during
compilation of the boot loader. If the image filename was changed, this U-Boot variable must be set
accordingly.

The U-Boot update command transfers the image file to RAM, erasing flash sectors and writing the
new image. For example, if the boot loader is in the TFTP exposed folder on the development
computer, the update command is:

update uboot tftp

At the reboot, the new U-Boot start message is displayed. To check it, look at the compilation date.

 135

14. Troubleshooting

Here are common issues and solutions when using Windows Embedded CE.

14.1. Language settings
The default locale for the OS designs is English (United States). If a different locale is selected for
the OS design, it is important to pay attention to the paths when copying files to the target. Some
folders have different names depending on the selected locale; for example My Documents
changes to Mis Documentos in Spanish language.

Windows Embedded CE supports these locales:

 Arabic

 English (U.S.)

 English (Worldwide)

 French

 German

 Hebrew

 Indic

 Japanese

 Korean

 Simplified Chinese

 Traditional Chinese

 Thai

 136

14.2. Monthly updates
Microsoft releases periodic updates of the Platform Builder plug-in and the Windows Embedded CE
source code. Periodically, check the Microsoft Web site for new monthly updates:

http://msdn.microsoft.com/embedded/downloads/ce/wince/default.aspx

To check which updates are currently installed and which ones are available:

1. In Visual Studio, select Tools > Platform Builder for CE 6.0 > CE Update Check.

2. In the window that opens, click Verify Updates. A list of installed updates is displayed,
indicated by a green check symbol, as well as available uninstalled items, indicated by a
warning symbol. If new items are available, visit the URL above, download the items, and
install them to make sure the latest release of Windows Embedded CE 6.0 is installed.

14.3. Using native functions in managed applications
Managed code applications, like those developed in C#, do not have easy access to drivers
functions, which are developed in native C code and packed in DLL libraries.

To make calls to native code from a managed application, use the DllImport attribute.

For more information, visit http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore/html/vcwlkSysimportAttributeTutorial.asp and examine the driver's sample applications.

http://msdn.microsoft.com/embedded/downloads/ce/wince/default.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/vcwlkSysimportAttributeTutorial.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/vcwlkSysimportAttributeTutorial.asp

 137

14.4. Using pointers and addresses in managed applications
Using pointers and addresses in managed C# applications running on the .NET Framework is
forbidden because it is considered unsafe code.

To use pointers and addresses, the piece of code must be enclosed within unsafe braces { }, as
the example shows:

 int variable;
unsafe{
 int *pointer;
}

 variable = 3;
unsafe{
 pointer = &variable;
}

In addition, the project must be configured to allow compilation of unsafe code:

1 In the Solution Explorer, select the C# project.

2. Right-click it and select Properties.

3. Select the Build tab. In the General section, check Allow unsafe code.

 138

14.5. Including and launching debugging services
As explained in topic 2.3.3, two services must be running in the target platform to make it listen to
debug connections: conmanclient2.exe and cmaccept.exe. If the OS design was based in the
ConnectCore 9C or Wi-9C template, these services are included and launched by default.

To include and launch these services in custom OS designs, go to the Catalog view and expand
Third Party > BSP > ConnectCore 9C/Wi-9C:ARMV4I > Application Debug Helpers. Check
these two items:

 Automatically launch application debugging tools: Includes application tools to
automatically launch the conmanclient2.exe and cmaccept.exe services, to listen for debug
connections.

 Include VS2005 SR files: Includes Visual Studio 2005 SR files into the OS design for
application debugging.

Then recompile and download the new OS design. The new kernel launches the applications
automatically to listen for debug connections.

14.6. Writing large files to flash from U-Boot
The update command in U-Boot transfers files to RAM, erases the flash partition, and writes the
files from RAM into flash memory.

The transferred file is copied to a certain physical address in RAM, therefore the maximum length
of the file to update is:

update file size limit = total RAM memory – RAM offset where the file was loaded

As a general rule, U-Boot does not allow updating a flash partition with a file whose size exceeds
the available RAM memory. For example, for a module with 32MB RAM and 64MB flash, U-Boot
will not update a partition with a file that is 35MB.

Note that this limitation is due to the RAM memory size, as U-Boot first needs to transfer the file to
RAM before copying it to flash.

To update files bigger than the available RAM, use the update_flash tool (explained in topic 8.2).

 139

14.7. Run-time licenses
The licensing model for Microsoft Windows Embedded CE offers two run-time license options:

 Core: targeted to the low-end device market

 Professional: targeted to devices that need the full set of Windows Embedded CE features

Depending on the components included in the OS designed, one license or the other is required.

To determine which runtime license a custom OS design needs:

1. Select Tools > Platform Builder for CE 6.0 > Run-Time License Assessment Tool. A
dialog opens.

2. Read the Terms of Use and click Accept.

3. In the window that appears, click Open and select file ceconfig.h or nk.bin of the OS design.
These files are generated during compilation of the OS design and can be located at the
"Flat Release Directory.” The tool predicts the required run-time license.

 140

14.8. CE 5.0 application compatibility on CE 6.0
Managed applications are abstracted from the underlying operating system by the .NET framework
and run in both CE 5.0 and in CE 6.0 kernels. Native applications developed for CE 5.0, on the
other hand, might have compatibility problems when being executed in a CE 6.0 kernel.

A command line tool, CeAppCompat, determines whether the binary applications developed for
Windows CE 5.0 have compatibility problems on Windows Embedded CE 6.0. This tool can be
used for applications and DLLs and folders full of applications and DLLs. The syntax of the
command looks like this:

CeAppCompat -i Input -o Foo

where Input is the executable, DLL, or folder that must be checked and Foo is the name of the
HTML report that will be generated with the compatibility information.

14.9. Finding source code for debugging
When debugging a Windows Embedded CE kernel, Visual Studio 2005 sometimes cannot find the
path to the source file of the process being executed. In those cases, the Find Executable dialog
prompts for the right path:

If the source file is available but in a different path, select the proper path and click OK to open the
source code for debugging.

If the source file is not available, or debug the source file is not desired, click Cancel for the debug
process to continue.

 141

14.10. Application and Device Debugging
Deploying a Windows CE solution and debugging a custom application cannot be done from the
same instance of Visual Studio 2005. To do both, different instances of Visual Studio 2005 must be
opened.

14.11. Shorten build process
To shorten the build process during development phase, when adding new drivers or application to
the Windows CE kernel in the platform.bib/project.bib or changing the registry
platform.reg/project.reg for testing, it may be easier to make the changes in the corresponding
files in the %FLATRELEASEDIR%.

Once the changes are made, in the Visual Studio 2005 Build menu, select the menu option
Make Run-Time Image to build the new Windows CE kernel with added files or registry
modifications.

Changes made in the %FLATRELEASEDIR% files are overwritten the next time
a SYSGEN is executed for the project if the changes are not moved to files in
Visual Studio 2005.

14.12. Windows CE Image Size
Because of the image size of the delivered Windows CE kernel, the system may run out of virtual
memory on a module with 32MB of RAM. On the target, the memory configuration between
application memory and file system memory can be configured. Go to Control Panel > System.
Change the slider position to increment the amount of memory available for the application memory
and confirm it by clicking on the OK button.

 142

15. Recovering a device

Normally, Windows CE application development involves creating an OS design and developing
applications. Even bad a kernel images are written that cannot boot, new images can be rewritten e
from the U-Boot monitor shell. Nonetheless, it may be best to create your custom boot loader and
update it, as seen in topic 12. If a custom boot loader is not able to boot, or if the boot loader is
erased from flash, a special hardware tool, called the JTAG booster is needed to recover this
fundamental part of software.

This topic describes how to use the JTAG booster.

15.1. JTAG tool and software
The JTAG-Booster is a hardware tool with a DB25 connector in one end (to be attached to a PC)
and 8 lines on the other (JTAG lines). The tool ships with cables and adaptors for connecting it to
the development board. The logic in the JTAG tool allows for control of all the lines of the
microprocessor over the JTAG bus.

Together with its DOS software, the JTAG-Booster is used to program flash memory. This is useful
to recover a module that cannot even boot the U-Boot boot loader.

The JTAG-Booster tool and its software are sold as a separate product. Contact
your Digi distributor for purchasing information.

The JTAG tool software runs from both the DOS operating system and from a standard Microsoft
Windows installation (98, NT, 2000 or XP). To run the tool from Windows, a special driver, the
Kithara DOS enabler, is required to access the parallel port, which has restricted access in NT
platforms.

 143

To install the Kithara DOS enabler:

1. Insert the JTAG tool CD-ROM in the Windows host machine. Double-click the file
JTAG\DOSenabler\ksetup.exe. A reboot of the computer is required before continuing.

2. Reboot the computer and enter in the BIOS configuration screen. Verify that the BIOS parallel
port settings are set to Standard Parallel Port (SPP) and not EPP.

3. Copy the JTAG directory from CD-ROM to the Windows host hard drive; for example, into
C:\JTAG.

Not installing the Kithara DOS Enabler software or setting the BIOS parallel
port to other than SPP can result in the error "cable not connected or target
power fail" when running the JTAG tool from Windows.

15.2. Program a U-Boot into flash with the JTAG tool
1. Connect the JTAG Booster to the parallel port of the Windows/DOS PC.

2. Connect the adapter cable to the hardware module plugged into the development board.

3. Plug jumper J1 on the JTAG adapter to switch to JTAG "boundary scan" mode. This is needed
for the JTAG tool software (if unplugged, the adapter is using JTAG debug mode).

 144

4. Copy the boot loader image file that is desired to be stored in flash memory (for example,
u-boot-ccw9cjsnand.bin) to the installed JTAG directory on the Windows/DOS PC.

5. Rename the file u-boot.bin. (Because the JTAG tool is DOS software, it manages only 8 + 3
filenames.)

6. Power on the module on the development board.

7. Launch a command prompt or DOS shell on the Windows/DOS PC and change to the JTAG
directory.

8. Start the batch file progubt.bat from the DOS command prompt. Output like this should be
displayed:

The programming takes approximately 60 seconds, after which the message Programming
successfully is displayed.

9. Reset or power off/on the module. The command prompt of U-Boot on the serial port should be
displayed. If the prompt is not displayed, check the tool’s output for error messages, recheck
cable connections, power, and jumper settings, and retry flash programming. If the procedure
still fails, try using the factory default boot loader image u-boot.bin located at
%PROGRAM_FILES%\Digi\ConnectCore\ConnectCore 9C and Wi-
9C\Images\bootloader\platform, where platform is substituted with the platform name, or at
the Digi support web site: http://www.digi.com/support/.

http://www.digi.com/support/

 145

15.3. Update the SPI loader
The boot loader itself cannot be executed directly from NAND flash. Instead, a small part of
software, the SPI loader, is stored in an SPI EEPROM and executed at power-on. The SPI loader
configures the SDRAM and the NAND flash, switches to little endian mode, and copies the first
KBytes from NAND (U-Boot partition) to SDRAM. Then the U-Boot in SDRAM is executed.

Very rarely, the SPI loader needs to be updated, or the EEPROM contents are destroyed by
accident. In these cases, the SPI loader must be reprogrammed using the JTAG tool.

1. Connect the JTAG-Booster as seen in topic 15.2.

2. On the Windows/DOS PC, launch a command prompt or DOS shell.

3. Change to the JTAG directory.

4. Start the batch file dumpspi.bat to check the first bytes of the SPI loader. Data like this is
displayed:

Watch the output to see which version of the SPI loader is on the module. Check that the
correct date, module, and SDRAM size for the module are displayed.

If the SPI loader version information is correct, do not update the
SPI loader.

 146

To update the SPI loader:

1. Copy the new SPI loader image to the JTAG folder of the Windows host:

 For modules with 64MB SDRAM: spi64.bin

 For modules with 32MB SDRAM: spi32.bin.

2. If the image has a different name, rename it either spi64.bin or spi32.bin, according to its
memory size.

3. Run either of these:

 For modules with 64 MB SDRAM:

$ progspi.bat spi64.bin

 For modules with 32 MB SDRAM

$ progspi.bat spi32.bin

 147

16. Uninstalling

The different components of the BSP can be uninstalled separately using Windows Control Panel
Add or Remove Programs:

 Digi JumpStart BSP for Windows Embedded CE 6.0: Uninstalls the ConnectCore 9C/Wi-9C
BSP (Board Support Package), documentation and Digi TFTP server.

 Digi U-Boot SDK: Uninstalls the U-Boot source code.

 Digi JumpStart SDK for Windows Embedded CE 6.0: Uninstalls the SDK.

 Microcross Cygwin & X-Tools 3.40 GNU Tools

 Microsoft Visual Studio 2005

 Windows Embedded CE 6.0

Uninstalling these components does not remove the OS designs or custom applications created
during development. These must be removed by hand.

 148

17. References

U-Boot Reference Manual

Manual of Digi's implementation of the U-Boot boot loader, with description of built-in commands
and environment variables.

 149

Index

A
application

cmaccept 22, 138
conmanclient2 22, 138
cs_hello.exe....................................... 52
regtool.. 71, 131
Test_12C-GPIO................................. 89
Test_GPIO... 65
Test_SPI .. 77
Test_WatchDog................................. 94
touchcal ... 81
WifiConf ... 124
wzctool... 105
wztool... 102

B
Board Support Package See BSP
boot loader

commands.. 51
defined... 7
development 132

breakpoint
adding and removing 23

BSP
defined... 8

building
C# application.............................. 18, 19
SDK ... 58
Visual Basic applicaion...................... 15
WifiConf tool 129

C
Call Profiler remote tool......................... 45
catalog view... 29
CloseHandle function 65, 76, 88, 94
cmaccept.exe application.............. 22, 138
code

stepping through................................ 45
compiling U-Boot 133
configuring

device transport20
conmanclient2.exe application22, 138
CreateFile function62, 74, 86
cs_hello application52
cs_hello.exe application52

D
device

recovering ..142
device transport

configuring ...20
DeviceIoControl function62, 86
devices

and hardware resources....................60

E
EBOOT

updating ...55
Ethernet driver

and hardware resources used by66
Ethernet interface

and debugging41
enabling in the kernel...................67, 69

F
file system..35
file system, described.............................. 8
File Viewer...45
flash memory ...53

updating54, 55
flash memory device

and hardware resources used by70

G
GPIO driver

and hardware resources used by61
GPIO pins ..61

configuring behavior of63
creating handle for62
enabling interface in kernel................61
managing from user space62

 150

H
hardware resources

and devices..60
Heap Walker remote tool.......................45

I
installing

SDK..58

J
JTAG-Booster......................................142

K
kernel

building debug version.......................40
building release version39
debugging ..41
defined ...8
updating ...55

Kernel Tracker remote tool45
Kithara DOS enabler..........................142

L
language settings135
LEDs for wireless interface....................98
licenses

run-time..139

M
Microsoft Visual Studio 2005

creating a project13
generating an interface14

N
network settings

for WLAN adapter99

P
Performance Monitor remote tool..........45
Platform Builder9
platform.reg file......................................33
Process Viewer remote tool45

project
creating ..13

project.reg file ..33

R
ReadFile function.................62, 64, 75, 86
recovering a device..............................142
RefreshWatchDogTimer function94
Registry Editor remote tool45
regtool application................................131
Remote Tools

purpose of ..45
run-time license139

S
SDK

building...58
creating ..57
defined ...57
installing ...58

serial device driver
and hardware resources used by72

Software Development KitSee SDK
source code

generating for Microsoft Visual Studio
2005 project15

SPI loader
updating ...145

Spy remote tool......................................45
StartWatchDogTimer function94
stepping through code45
System Information remote tool.............45

T
test applications

Test_GPIO ...65
Test_SPI ..77

Test_I2C-GPIO applications89
Test_SPI application........................77, 78
Test_WatchDog application...................95
touch screen device

enabling in kernel...............................80
interface to system.............................81

touchcal.exe application81

 151

U
U-Boot

compiling.. 133
updating ... 134

V
Visual Basic application

building .. 15
creating .. 13

Visual C# application
building .. 18, 19

Visual C# project
creating .. 16, 18

W
watchdog timer93, 94

enabling/disabling in kernel93
managing from user space93

WifiConf tool ..129
wireless driver

and hardware resources used by68
wireless interface LEDs.........................98
WriteFile function.................62, 64, 76, 86
wzctool application108

Z
Zoom-in remote tool45

	Contents
	Concepts
	1.1. Windows Embedded CE concepts
	1.1.1. Cross-compilation
	1.1.2. Boot loader
	1.1.3. Kernel
	1.1.4. File system
	1.1.5. OS design
	1.1.6. Applications
	1.1.7. Board Support Package (BSP)
	1.1.8. Software Development Kit (SDK)
	1.1.9. Projects and Solutions

	1.2. Structure of Windows Embedded CE
	1.2.1. Main directories

	1.3. Platform Builder
	1.4. License background
	1.5. Conventions
	1.6. Abbreviations

	2. Developing applications with Visual Studio 2005
	2.1. Create the project
	2.1.1. Visual Basic application
	2.1.2. Visual C# application
	2.1.3. Visual C++ application

	2.2. Build the solution
	2.3. Deploy and debug applications
	2.3.1. Device Transport configuration
	2.3.2. Set StartUp projects
	2.3.3. Connect to the device
	2.3.4. Start deploying and debugging the application
	2.3.5. Add a breakpoint
	2.3.6. Other debugging tools

	2.4. Delete projects and solutions

	3. Configure the Windows Embedded CE kernel
	3.1. Create a new Platform Builder project
	3.2. Catalog view
	3.2.1. Include and remove project components

	3.3. OS design properties
	3.3.1. Environment variables

	3.4. Registry entries
	3.5. Adjusting the memory layout
	3.6. File system
	3.6.1. Include files and folders

	3.7. Launch an application after start-up
	3.7.1. Create a shortcut to the application
	3.7.2. Add the shortcut to the OS design
	3.7.3. Create the Startup entry

	4. Build the kernel
	4.1. Build the kernel (Release version)
	4.2. Build the kernel (Debug version)

	5. Debug the kernel
	5.1. About debugging over Ethernet
	5.2. Establish the connection to the target
	5.2.1. Target connectivity options
	5.2.2. Send BOOTME messages from target
	5.2.3. Attach the device

	5.3. Debug the code
	5.4. Remote Tools

	6. Connect to a Release kernel
	6.1. Use Remote Tools in a Release configuration
	6.1.1. Add the Remote Tools component
	6.1.2. Connect with Manual server

	7. Transfer the system to the target
	7.1. TFTP server
	7.2. Basic boot loader
	7.3. Environment variables
	7.4. Test the system
	7.4.1. Transfer the system using Platform Builder
	7.4.2. Transfer the system by Ethernet
	7.4.3. Transfer the system by USB

	8. Update the flash memory
	8.1. Structure of the flash
	8.2. Update from a running Windows Embedded CE system
	8.3. Update from U-Boot
	8.3.1. Update the kernel
	8.3.2. Update EBOOT
	8.3.3. Update U-Boot

	9. SDK for the OS design
	9.1. Included SDK
	9.2. Create an SDK
	9.3. Build the SDK
	9.4. Install the SDK

	10. Devices and Interfaces
	10.1. Table of devices and their hardware resources
	10.2. GPIO (General Purpose Input/Output) pins
	10.2.1. Hardware resources used by the driver
	10.2.2. Enable the interface in the kernel
	10.2.3. Manage the GPIOs from the user space

	10.3. Ethernet interface
	10.3.1. Hardware resources used by the driver
	10.3.2. Enable the Ethernet interface in the kernel
	10.3.3. The Ethernet interface in the system

	10.4. Wireless
	10.4.1. Hardware resources used by the driver
	10.4.2. Enable the Wireless interface in the kernel
	10.4.3. The wireless interface in the system

	10.5. Flash memory device
	10.5.1. Hardware resources used by the driver
	10.5.2. Enable the device in the kernel

	10.6. Serial port device drivers
	10.6.1. Hardware resources used by the driver
	10.6.2. Enable the serial ports in the kernel
	10.6.3. Identify the serial ports in the system
	10.6.4. Manage the serial ports from the user space

	10.7. Touch screen
	10.7.1. Hardware resources used by the driver
	10.7.2. Enable the touch screen device in the kernel
	10.7.3. The touch screen interface in the system

	10.8. USB host interface
	10.8.1. Hardware resources used by the driver
	10.8.2. Enable the interface in the kernel
	10.8.3. USB devices in the system

	10.9. I2C
	10.9.1. Hardware resources used by the interface
	10.9.2. Enable the interface in the kernel
	10.9.3. Manage the interface from user space

	10.10. RTC
	10.10.1. Manage the device from user space

	10.11. Video
	10.11.1. Hardware resources used by the driver
	10.11.2. Include video support in the kernel
	10.11.3. Manage the display from the user space

	10.12. Watchdog
	10.12.1. Enable/Disable the watchdog in the kernel
	10.12.2. Manage the watchdog from user space

	11. Using the Wireless LAN adapter
	11.1. Concepts
	11.2. Features of the WLAN adapter
	11.3. Include the wireless interface in the Windows CE kernel
	11.3.1. Required components
	11.3.2. Recommended catalog components

	11.4. Wireless interface LEDs
	11.5. Driver start
	11.6. WLAN network settings
	11.7. Connect to an access point (infrastructure mode)
	11.7.1. Graphic mode
	11.7.2. Command line mode

	11.8. Connect to a computer (ad hoc mode)
	11.8.1. Graphic mode
	11.8.2. Command line mode

	11.9. Authentication and encryption
	11.9.1. Supported methods
	11.9.2. Authentication and encryption combinations
	11.9.3. Open authentication without encryption
	11.9.4. Open authentication with WEP encryption
	11.9.5. WPA-PSK authentication with TKIP encryption
	11.9.6. WPA2-PSK authentication with AES-CCMP encryption
	11.9.7. WPA Enterprise authentication

	11.10. APs supporting several authentication and encryption methods
	11.11. Wireless configuration tool
	11.11.1. Display wireless status information
	11.11.2. Display transmission driver statistics
	11.11.3. Commands for configuring driver parameters
	11.11.4. Store parameters to Registry
	11.11.5. Preferred Network Configuration
	11.11.6. Source code for WifiConf

	12. Persistent Registry
	12.1. Regtool application

	13. Boot loader development
	13.1. Development environment
	13.2. Platform specific source code
	13.3. Customize U-Boot
	13.3.1. Default environment variables

	13.4. Build U-Boot
	13.4.1. Configure U-Boot for the target platform
	13.4.2. Compile U-Boot
	13.4.3. Install U-Boot image

	13.5. Updating U-Boot
	13.5.1. Update from a running Windows Embedded CE system
	13.5.2. Update from U-Boot

	14. Troubleshooting
	14.1. Language settings
	14.2. Monthly updates
	14.3. Using native functions in managed applications
	14.4. Using pointers and addresses in managed applications
	14.5. Including and launching debugging services
	14.6. Writing large files to flash from U-Boot
	14.7. Run-time licenses
	14.8. CE 5.0 application compatibility on CE 6.0
	14.9. Finding source code for debugging
	14.10. Application and Device Debugging
	14.11. Shorten build process
	14.12. Windows CE Image Size

	15. Recovering a device
	15.1. JTAG tool and software
	15.2. Program a U-Boot into flash with the JTAG tool
	15.3. Update the SPI loader

	16. Uninstalling
	17. References
	Index

