
AN410

Using Stepper Motors for Motion Control
Introduction
This application note describes how to interface two stepper motors to a small hobbyist XY table so that a
Rabbit-based controller and its Prototyping Board can be used to control the stepper motors. A sample
program shows how to calibrate the motion of the stepper motors by determining the number of revolu-
tions per inch of movement along each axis. Once the calibration is completed, the resulting values can be
used in other programs to allow the stepper motors to provide precise motion control. Pick and place
machines are but one example of where this precise motion control can be put to use.

Stepper Motor Operating Principles
A stepper motor relies on electromagnetism to work. Electromagnets or coils are set up in a circle as a
stator around a permanent magnet axis or rotor. Figure 1 shows a simple two-pole bipolar stepper motor.

Figure 1. Basic Bipolar Stepper Motor
(a—teeth, b—winding or coil, c—stator, d—rotor)
022-0104 Rev. B 1

As electric current flows through the coil, the polarity induced by the flowing current is determined
according to Ampere's Law and the right-hand rule. Extend your right hand so that the fingers point in the
direction of the current flow. The thumb on your right hand will point in the direction of the north pole of
the coil—see Figure 2.

Figure 2. How to Determine Polarity

As one pair of the coils is energized, the rotor will try to orient itself with the induced magnetic field. As
adjacent coils are energized and de-energized, the rotor will rotate to “follow the field.” The movement
occurs when the polarity of only one pair of coils changes. Table 1 shows this.

You can try different patterns.

Advanced Micro Systems Inc. has a good write-up at www.ams2000.com/stepping101.html that provides a
more detailed explanation of stepper motors.

Table 1. Stepper Motor Movement Pattern

Coil Resulting
hex ValueD1 D2 D3 D4

+ – + – 0x0A

– + + – 0x06

– + – + 0x05

+ – – + 0x09
022-0104 Rev. B 2

http://www.ams2000.com/stepping101.html

Assembly

Bill of Materials

Hardware Vendor Part Number

MicroLux X-Y Table Attachment Micro-Mark 82389

2 stepper motors Applied Motion Products 5017-009

2 STMicroelectronics L293D driver chips Rabbit Semiconductor 660-0205

RCM3100 Rabbit Semiconductor 101-0157

RCM3300 Prototyping Board Rabbit Semiconductor 101-0877

RCM3100 Programming Cable Rabbit Semiconductor 101-0513

DE9 female to 10-pin IDC adapter cable Rabbit Semiconductor 540-0009

9 V, 1 A DC power supply

3/8" bar stock

A
ny

 H
ar

dw
ar

e
St

or
e11 mm 3/8" socket

10 mm 3/8" socket

Aluminum, 3/8" milling stock

3/16" × 3/4" × 1/2" mounting bracket

1/8" × 2" × 2-3/4" mounting bracket

5/8" diameter, 3/8" high nylon spacers
022-0104 Rev. B 3

http://www.rabbit.com/products/parts/
http://www.ares-server.com/Ares/Ares.asp?MerchantID=RET01229&Action=Catalog&Type=Product&ID=82389
http://www.applied-motion.com/products/stepper/motors/size17more.php
http://www.rabbit.com/products/rcm3100/
http://www.rabbit.com/products/rcm3300/
http://www.rabbit.com/products/DB9_10pin_cable/index.shtml
http://www.rabbit.com/products/rcm3100/

Construction Details

We had to machine a short section of 3/8" bar stock to act as an adapter between the round shaft of the
stepper motor and the socket. We cut the bar stock into pieces of approximately 3/4". The pieces were then
drilled axially to receive the shaft of the stepper. Machining was done for an Allen locking screw. The
exterior of the bar stock was then filed for ease of entry into the socket and to make allowances for wobble
caused by off-centered drilling—see Figure 3.

Figure 3. Stepper Motor Armature, Fitting, and Socket
(A—stepper motor armature, B—machined 3/8" fitting, C—10 mm socket)

The mounting bracket for the stepper of the y axis, the longer of two axes, was fashioned from the larger
mounting bracket. Mounting brackets for each stepper motor were cut down to allow for a better fit to each
stepper motor.

Figure 4. y Axis Mounting Detail
(B—machined 3/8" bar stock, D—11 mm socket,

F—small mounting bracket, G—large mounting bracket)
022-0104 Rev. B 4

Figure 5 shows the completed XY table.

Figure 5. XY Table Completely Set Up
022-0104 Rev. B 5

Connections

Stepper Motor Electrical Connections

Connect the stepper-motor connections as follows to screw-terminal headers J3 and J4 on the Prototyping
Board.

• Green/White—MDX1

• Green—MDX2

• Red—MDX3

• Red/White—MDX4

• Black—no connect

• White—no connect

The stepper motors for the longer y axis and the x axis were
connected to MDA and MDB respectively as shown in the
diagram.

PC Connections

Once the RCM3100 is plugged in to the Prototyping
Board, use the programming cable to connect your PC
to header J1 on the RCM3100 via the PROG connector
on the programming cable. Be sure to orient the marked
(usually red) edge of the cable towards pin 1 of header J1.

If you plan to use the same PC with only one COM port
for the Serial Port F connection described below, discon-
nect the programming cable once a program is running.

Connect Serial Port F (TxF and RxF on screw-terminal
header J14) on the Prototyping Board to the COM port
on your PC as shown in the diagram. You can use a DE9
to 10-pin IDC adapter cable with your own hookup wire
to connect the screw-terminal headers to the IDC plug.

You will use this RS-232 serial connection to interface
with the sample programs to calibrate and use the step-
per motors via a Tera Term or Hyperterminal interface
on your PC. Use the following RS-232 settings for Tera
Term or Hyperterminal.

• 8 data bits
• 1 stop bit
• No parity
• No flow control
• 19200 bps

��
����������������������������� ��	������������������������	�

��

��
�������
�����	

��
�������
�����	�

��

�

�
�

�

�

��

��
��

�
��

�
��

��

�
��

�

��

��

�
�

�

��

��

�
��

��
��

�
��

�

��

�

��

���

���

��

��
�

��
�

��
�

�
�

�
�

�

��

�

��

���
�

��

�

��

��� �� �
�

��

��

�
�

��

�
��

�
��

�
��

���

�
��

��

�

��

�
�	

�

�
�

�
�

��� !"�!"#!

$�
�
�����%� &

���������	�����

�
�

�
�

��

��� !"
'()*+�, -%

.�
�/./$

��
.�

��

$0/����0/���������$01����01���������������

��/�����2/

��

�

�
�

�

�

��

��
��

�
��

�
��

��

�
��

�

��

��

�
�

�

��

��

�
��

��
��

�
��

�

��

�

��

���

���

��

��
�

��
�

��
�

�
�

�
�

�

��

�

��

���
�

��

�

��

��� �� �
�

��

��

�
�

��

�
��

�
��

�
��

���

�
��

��

�

��

�
/

.
/

$

�����������
�����

�01

�.3���

$01

�
�
�

�����
022-0104 Rev. B 6

Power-Supply Connections

Connect the AC adapter to jack J1 on the Proto-
typing Board. Plug in the AC adapter. The power
LED on the Prototyping Board should light up. The
RCM3100 and the Prototyping Board are now
ready to be used.

NOTE: A RESET button is provided on the
Prototyping Board to allow a hardware reset
without disconnecting power.

Alternate Power-Supply Connections

A power supply may also be connected to 3-pin header
J2 on the Prototyping Board. The center pin of J2 is
always connected to the positive terminal, and either
edge pin is negative. The power supply should deliver
8 V to 30 V DC at 8 W.

.�
�/./$

��/�����2/

	�
������

��
��

	
��

�
�

�

��

�
�

�

�����

��

�

�
�

�

�

��

��
��

�
��

�
��

��

�
��

�

��

��

�
�

�

��

��

�
��

��
��

�
��

�

��

�

��

���

���

��

��
�

��
�

��
�

�
�

�
�

�

��

�

��

���
�

��

�

��

��� �� �
�

��

��

�
�

��

�
��

�
��

�
��

���

�
��

��

�

��

�����

�
/

.
/

$

�����������
�����

���������
����

����
���������
022-0104 Rev. B 7

Sample Programs
The sample programs discussed in this section are available in a zip archive (AN410.zip) that can be
downloaded from www.rabbit.com/documentation/docs/refs/AN410/AN410.zip.

Running a Sample Program

To run a sample program, open it with the File menu (if the sample program is not already open), and then
run it by selecting Run in the Run menu (or press F9). The RCM3100 must be plugged in to the Prototyp-
ing Board and must be connected to the PC running Dynamic C using the programming cable.

Calibrate Stepper Motors

The calibration program XY_CAL.C is used to calibrate the setup. A counter is incremented each time the
program cycles through the interrupt service routine. Once the stepper motor stops moving, the distance
moved is entered and is used to calculate the number of counts per unit distance.

Once the sample program is running, the following menu will be displayed in the Hyperterminal or Tera
Term window.

Let’s examine the menu step by step.

The first two options toggle the direction the y and x motors rotate. Initially, the direction is CW or clock-
wise. When you press 0 or 1, you will toggle the y or x motor to rotate CCW or counterclockwise. The
Hyperterminal or Tera Term window will display the direction once you have done the toggle.

Once you have established the direction the motors will rotate, you’re ready to do the calibration. Note the
starting position of the x motor, then enter 3 to get the motor turning. After the motor has advanced the
desired amount, enter 2 to stop the motor. The Hyperterminal or Tera Term window will prompt you for
inches or counts. Press i to indicate that you will enter the distance the motor advanced in decimal inches,
or press c to display the counts.
022-0104 Rev. B 8

http://www.rabbit.com/documentation/docs/refs/AN410/AN410.zip

When you provide the distance the motor moved in inches, enter the value (up to two decimal places), then
press <Enter>. The Hyperterminal or Tera Term window will then display the calibration in counts/inch.
Note this value so that you can use it in the XY_TABLE.C sample program.

Now you can repeat the process for the y motor by entering 5 to get the motor turning. After the motor has
advanced the desired amount, enter 4 to stop the motor. Press i to enter the distance the motor advanced in
decimal inches (up to two decimal places), then press <Enter>. The Hyperterminal or Tera Term window
will then display the calibration in counts/inch. Note this value so that you can use it in the XY_TABLE.C
sample program.

The XY_CAL.C program also allows you to move the motors by pressing 6 or 7, then entering the dis-
tance in inches the x and y motors should move. Keep in mind that this distance should not exceed the
maximum length of the XY table. While the motors are moving, you may stop them immediately (for
example, in an emergency) by pressing the S2 button on the Prototyping Board.
022-0104 Rev. B 9

How the Sample Program Works

First, the series of values for the movement of the stepper motor in Table 1 is assigned to the
stepp_patt_bip() function call.

The motor will turn one way (“clockwise”) for the sequence shown, and will turn the opposite way (“coun-
terclockwise”) if the order of the movement values is reversed. The stepper values are written during the
interrupt service routine (ISR) for Timer B.

Next display_menu() presents the menu options.

const byte stepp_patt_bip[] = { 0xa,0x6,0x5,0x9 };

void display_menu() {
 serFputs("\x1b[2J");

 goxys(1,2,"0...Toggle direction on Y\0");
 goxys(1,3,"1...Toggle direction on X\0");
 goxys(1,4,"2...stop X\0");
 goxys(1,5,"3...go X\0");
 goxys(1,6,"4...stop Y\0");
 goxys(1,7,"5...go Y\0");
 goxys(1,8,"6...Input x and y values\0");
 goxys(1,9,"7...Input x and y values & round robin\0");
}

022-0104 Rev. B 10

The following code processes the 0 and 1 entries made in response to the menu.

if((i = serFgetc()) != -1) { // if a character has been received
 switch(i) {
 case '0':
 if(dir_y == CW) {
 direction_Y(CCW);
 dir_y = CCW;
 }
 else {
 direction_Y(CW);
 dir_y = CW;
 }
 break;
 case '1':
 if(dir_x == CW) {
 direction_X(CCW);
 dir_x = CCW;
 }
 else {
 direction_X(CW);
 dir_x = CW;
 }
 break;
022-0104 Rev. B 11

Menu entries 3 and 5 clear the variable counter_x and counter_y respectively, and the number of
pulses is counted in the ISR. Entries 2 and 4 stop the counting when the motor is stopped, and a decision is
made whether to translate the counts to counts per inch.

 case '2':
 toggle_X(OFF);
 inch_count_choice(X); // for determining counts
 // per inch, if needed
 counter_pointer = &dummy; // counter_ponter
 // pointing to dummy variable
 display_results(X);
 break;
 case '3':
 toggle_X(ON);
 counter_x = 0L;
 counter_pointer = &counter_x; // counter_pointer is pointing
 // to variable for monitoring
 // counts on X axis
 break;
 case '4':
 toggle_Y(OFF);
 inch_count_choice(Y); // for determining counts
 // per inch, if needed
 counter_pointer = &dummy;
 display_results(Y);
 break;
 case '5':
 toggle_Y(ON);
 counter_y = 0L;
 counter_pointer = &counter_y; // counter_pointer is pointing
 // to variable for monitoring
 // counts on Y axis
 break;
022-0104 Rev. B 12

Menu entry 6 will cause the stepper motors to rotate in one direction, one at a time, and menu entry 7 will
also provide a return path to the “home” position.

The move_axis() function call deals with the ramping up, the “cruise” section, and the ramping down
of the stepper motor speed.

The speed calculation is based on determining the slope of the increase (or decrease) in speed you are
seeking over a given distance. Hence the equation would be

increment = (LOW_SPEED_DIVISOR – HI_SPEED_DIVISOR) / RAMP_WIDTH

 case '6': // one direction
 get_axis_value(X);
 get_axis_value(Y);

 move_axis(X,dir_x);
 move_axis(Y,dir_y);
 break;
 case '7': // round robin
 get_axis_value(X);
 get_axis_value(Y);

 move_axis(X,dir_x);
 move_axis(Y,dir_y);

 dir_x = dir_x == CW ? CCW : CW;
 dir_y = dir_y == CW ? CCW : CW;

 move_axis(X,dir_x);
 move_axis(Y,dir_y);
 break;

void move_axis(int axis, int dir) {
 shared unsigned long actual_counts;
 unsigned long scratch;
 char divisor, old_divisor, increment;

 movement_struct *t;

 if(axis == X)
 t = &X_axis; // set pointer to x_axis structure
 else
 t = &Y_axis; // set pointer to y_axis structure

 if(!counter_x || !counter_y) // if not calibrated
 return; // then return
022-0104 Rev. B 13

This section shows how to find the value by which the divisor variable will be incremented:

old_divisor = 0;

scratch = (LOW_SPEED_DIVISOR - HI_SPEED_DIVISOR)/RAMP_WIDTH;

increment = (char)scratch;

actual_counts = 0L;

counter_pointer = &actual_counts; // counter_pointer now to update
 // actual counts

if(axis == X) {
 direction_X(dir);
 toggle_X(ON);
}
else {
 direction_Y(dir);
 toggle_Y(ON);
}

divisor = LOW_SPEED_DIVISOR;

if(divisor != old_divisor) {
 set_speed(divisor);
 old_divisor = divisor;
}

022-0104 Rev. B 14

The stepper motors have now started to move, and the Hyperterminal or Tera Term displays are being
updated.

while(actual_counts < t->target_count) {

if(!BitRdPortI(PGDR, 0)) { // emergency stop
 toggle_X(OFF);
 toggle_Y(OFF);

 counter_pointer = &dummy;
 return;
}

if(axis == X) {
 sprintf(buf, "target:%10lu", t->target_count);
 goxys(1,17,buf);

 sprintf(buf, "actual:%10lu", actual_counts);
 goxys(1,18,buf);

 if(t->inch_or_count == INCH) {
 sprintf(buf, "target inches:%.3f", t->target_inch);
 goxys(1,19,buf);

 sprintf(buf, "actual inches:%.3f",
 (float)(actual_counts)/x_cts_per_in);
 goxys(1,20,buf);
 }
}

else {
 sprintf(buf, "target:%10lu", t->target_count);
 goxys(25,17,buf);

 sprintf(buf, "actual:%10lu", actual_counts);
 goxys(25,18,buf);

 if(t->inch_or_count == INCH) {
 sprintf(buf, "target inches:%.3f", t->target_inch);
 goxys(25,19,buf);

 sprintf(buf, "actual inches:%.3f",
 (float)(actual_counts)/y_cts_per_in);
 goxys(25,20,buf);
 }
}

022-0104 Rev. B 15

This code ramps up the stepper motor before the “cruise” phase.

This code controls the “cruise” phase.

This code ramps down the stepper motor after the “cruise” phase.

Movement along the selected axis has finished.

if(actual_counts < RAMP_WIDTH) {
 if(divisor > (HI_SPEED_DIVISOR + increment))
 divisor -= increment;

 else
 divisor = HI_SPEED_DIVISOR;
}

if(actual_counts < (t->target_count - RAMP_WIDTH) &&
 actual_counts > RAMP_WIDTH)
 divisor = HI_SPEED_DIVISOR;

if(actual_counts > (t->target_count - RAMP_WIDTH)) {
 if(divisor < (LOW_SPEED_DIVISOR - increment))
 divisor += increment;

 else
 divisor = LOW_SPEED_DIVISOR;
}

if(divisor != old_divisor) {
 set_speed(divisor);
 old_divisor = divisor;
}

if(axis == X)
 toggle_X(OFF);
else
 toggle_Y(OFF);

counter_pointer = &dummy; // point to dummy variable when done

}

022-0104 Rev. B 16

Operate Stepper Motors

The XY_TABLE.C sample program accepts an array of x,y coordinates via Serial Port F. Once the stepper
motors are “homed” to their starting position, the sample program calculates the motor movement and
direction to move to from one x,y position to another. Operator input is then requested at that location. The
process is repeated until the last numerical pair has been processed.

Before you compile and run the sample program, there are several things to do.

1. Enter the maximum range of motion and the calibration values in counts/inch that you established for the
x and y motors when you ran the XY_CAL.C sample program. These #define statements are near the
beginning of the XY_TABLE.C sample program.

#define X_MAX 1.5 // max inches on X
#define Y_MAX 3.5 // max inches on Y

#define X_INCH_FACTOR 8329 // counts per inch
#define Y_INCH_FACTOR 8101

Remember to save the sample program (File > Save) once you have changed the entries.

2. Create the array of x,y coordinates relative to the home position to be entered via Serial Port F. You can
do this as a txt file in Notepad with each x value on a line by itself followed by the corresponding y
value on a line by itself, followed by the next x value on a line by itself, etc. Use the entry (x,y) = (0,0)
for when you wish the stepper motors to be in the home position. Remember to keep the x,y coordinates
within the maximum range of motion specified in Step 1; otherwise the sample program will not drive
the stepper motors as a safety precaution.

Now you may compile and run the XY_TABLE.C sample program.

Now with Hyperterminal or Tera Term running, you’re ready to respond to the prompts in.the Hypertermi-
nal or Tera Term window. The first question you get is to tell the sample program how many x,y coordi-
nates you created in Step 2.

How many pairs of entries?

Provide the answer and press Enter. Next the RCM3100 reports that it is ready to receive the information.

Ready to receive 5 pairs...

Depending on whether you’re using Hyperterminal or Tera Term, do Transfer > Send File or File >
Send File and select the txt file you created in Step 2.

Next, you will be prompted to “home” the stepper motors.

Press + or - for CW or CCW on X axis or 0 for done

Keep tapping + or - keystrokes until the x motor is in its home position, then press 0.

Press + or - for CW or CCW on Y axis or 0 for done

Now do the same for the y stepper motor.

The sample program will now advance the stepper motors to the first set of x,y coordinates and will prompt you.

press a key to continue

Once the stepper motors have proceeded through all the x,y coordinates, the sample program will report
“All done.” Press the RESET button on the Prototyping Board to relive the experience.
022-0104 Rev. B 17

How the Sample Program Works

Variables and structures are used for the incoming serial data:

The following code in main() first looks to receive the number of x,y pairs to receive, then checks to see
if the data are within limits. If the data are not within the limits, the process is repeated.

float buf[MAX_ENTRY][2]; // for incoming serial data

struct {
 unsigned long x_counts;
 unsigned long y_counts;
 char x_dir;
 char y_dir;
}steps[MAX_ENTRY];

do {
 done = 1; // assume a successful transmission of data
 // will occur.

 serFputs("\x1b[2J"); // clear screen

 serFputs("How many pairs of entries?\n\r");

 index = 0;

 memset(incoming,0,sizeof(incoming)); // clear incoming array

 listen(incoming,&index, sizeof(incoming) - 2);

 count = atoi(incoming); // recover number of pairs to receive.
022-0104 Rev. B 18

 if(count) { // if count not zero, then...
 sprintf(outgoing,"Ready to receive %d pairs...\n\r", count);
 serFputs(outgoing);
 for(i = 0; i < count; i++) {
 index = 0;
 memset(incoming,0,sizeof(incoming));
 listen(incoming,&index, sizeof(incoming) - 2);
 float_var_x = atof(incoming);

 index = 0;
 memset(incoming,0,sizeof(incoming));
 listen(incoming,&index, sizeof(incoming) - 2);
 float_var_y = atof(incoming);

 printf("%.2f%.2f\n",float_var_x, float_var_y);
 // if values are less than max, store them.

 if(float_var_x < X_MAX && float_var_y < Y_MAX) {
 buf[i][0] = float_var_x;
 buf[i][1] = float_var_y;
 }
 else {
 serFputs("out of range, please press the 'r' key to
 restart\n\r");
 while(serFgetc() != 'r');
 done = 0;
 break;
 }
 }
 }
 else
 done = 0;
}while(!done);
022-0104 Rev. B 19

The next step is to “home” the x and y axes by pressing + or - to rotate the particular stepper motor
HOMING_STEP counts either clockwise (for+) or counterclockwise (for -).

void find_home() {
 int i;

 sprintf(buffer, "Press 8 or 2 for CW or CCW on X axis or 0 for
 done\n\r");
 goxys(1,2,buffer);

 do {
 if((i = serFgetc()) != -1) {
 switch(i) {
 case '+':
 case '\r':
 move_axis(X, CW, HOMING_STEP);
 sprintf(buffer, "CW on X\n\r");
 goxys(1,3,buffer);
 break;
 case '-':
 case 0x2c:
 move_axis(X, CCW, HOMING_STEP);
 sprintf(buffer, "CCW on X\n\r");
 goxys(1,3,buffer);
 break;
 case '0':
 goxys(1,2," ");
 goxys(1,3," ");
 break;
 }
 }
 }while(i != '0');

 sprintf(buffer, "Press 8 or 2 for CW or CCW on Y axis or 0 for
 done\n\r");
 goxys(1,2,buffer);
022-0104 Rev. B 20

 do {
 if((i = serFgetc()) != -1) {
 switch(i) {
 case '+':
 case '\r':
 move_axis(Y, CW, HOMING_STEP);
 sprintf(buffer, "CW on Y\n\r");
 goxys(25,3,buffer);
 break;
 case '-':
 case 0x2c:
 move_axis(Y, CCW, HOMING_STEP);
 sprintf(buffer, "CCW on Y\n\r");
 goxys(25,3,buffer);
 break;
 case '0':
 goxys(1,2," ");
 goxys(25,3," ");
 break;
 }
 }
 }while(i != '0');
022-0104 Rev. B 21

The data values received serially are processed and the results are stored in memory.

void calculate_steps(int num_of_steps) {
 int i;
 float x_dif, y_dif;

 x_dif = buf[0][0];
 y_dif = buf[0][1];

 steps[0].x_counts = (unsigned long)(x_dif * X_INCH_FACTOR);
 steps[0].y_counts = (unsigned long)(y_dif * Y_INCH_FACTOR);

 steps[0].x_dir = CW;
 steps[0].y_dir = CW;

 for(i = 1; i < num_of_steps; i++) {
 // find distance from previous data pair
 x_dif = buf[i][0] - buf[i - 1][0];
 y_dif = buf[i][1] - buf[i - 1][1];

 // if value of move is less than previous
 // change direction of movement and
 // change sign of value of move.

 if(x_dif < 0.00) {
 steps[i].x_dir = CCW;
 x_dif *= -1.00;
 }
 else
 steps[i].x_dir = CW;

 if(y_dif < 0.00) {
 steps[i].y_dir = CCW;
 y_dif *= -1.00;
 }
 else
 steps[i].y_dir = CW;

 steps[i].x_counts = (unsigned long)(x_dif * X_INCH_FACTOR);
 steps[i].y_counts = (unsigned long)(y_dif * Y_INCH_FACTOR);
 }
}

022-0104 Rev. B 22

Rabbit Semiconductor Inc.
www.rabbit.com

	Using Stepper Motors for Motion Control
	Introduction
	Stepper Motor Operating Principles
	Assembly
	Bill of Materials

	Connections
	Stepper Motor Electrical Connections
	PC Connections
	Power-Supply Connections

	Sample Programs
	Running a Sample Program
	Calibrate Stepper Motors
	Operate Stepper Motors

