
TN234

File Compression
(Using #zimport)

This document gives a brief description of the Dynamic C #zimport compression utility feature (avail-
able starting with Dynamic C version 8.00) and details its performance characteristics. The #zimport
compiler directive is similar to #ximport with one important difference: the file is compressed before it
is downloaded to the target device. This compression happens during compilation by invoking an external
compression utility. The external utility may be replaced with a user-designed executable.

Compressed files are accessed in the same manner as #ximport files. To support the compression for user
programs, several libraries are supplied (see below).

The #zimport Directive
The #zimport directive extends the functionality of #ximport to include file pre-processing by an
external utility. The default utility supplied with Dynamic C is the zcompress.exe compression utility.
The name of the utility is a project file option, and may be changed to reflect the needs of individual
projects.

The syntax for #zimport is similar to #ximport:

#zimport "filename" symbolname

Where filename is the input file, and symbolname represents the 20-bit physical address of the
downloaded file. The first 32 bits of the file is the length field, which contains the length (in bytes) of the
file. The file is accessed in the same manner as a #ximported file, with one difference: the top bit of the
length field (the most significant bit of the 32-bit length value) is set to indicate a compressed (pre-pro-
cessed) file. The zimport.lib compression support library defines a mask ZIMPORT_MASK which
can be used to extract the indicator bit or the length of the file.

The Compression Utility
The #zimport directive invokes a utility program to pre-process a file before it is downloaded to the tar-
get. The utility implements an LZ77 compression algorithm for use with the compression support libraries.

The utility’s path is defined in the current project file, and may be changed to suit the needs of that project.
This allows a user to replace zcompress.exe with a utility of his or her own. To edit the project file,
open it in NotePad with Dynamic C closed. Find the following line:

Zimport External Utility=ZCOMPRESS.EXE

Substitute the name of your utility for ZCOMPRESS.EXE. Then save the project file. When you open
Dynamic C and the project file you just edited, your utility will be invoked when #zimport is used.
022-0083 Rev. C www.rabbit.com 1

http://www.rabbit.com

A user replacement for the utility must have the following characteristics:

• The program must be in the same directory as the executable file for Dynamic C,
Dcrab_xxx.exe.

• The program must be a console application (Windows EXE) and take a single parameter, which is
the file path of the input file given in the #zimport statement.

• The program must output a file to the same directory as the input file. The file must have the same
name, and the extension appended with .DCZ. E.g., test.txt becomes test.txt.dcz.

• The program must return 0 on success and non-zero on failure, so Dynamic C can handle errors in
the utility program.

Compression Support Libraries
Several libraries are included with Dynamic C to support the compression utility and the #zimport
directive. These are found in the \LIB\ZIMPORT directory. User programs need only include the
zimport.lib library. Sample programs can be found in the \SAMPLES\ZIMPORT directory. A sample
program named zimport.c that demonstrates different ways to use compressed files with the HTTP
server can be found at \SAMPLES\TCPIP\HTTP.

The support libraries allow for on-the-fly decompression of #zimport files, as well as utilities for com-
pressing to and decompressing from FS2 file system files. See the Dynamic C User Manual and the sam-
ple programs for more information.

Compression Ratio Examples
The LZ77 algorithm achieves an average compression ratio of better than 50% for text files, but is very
dependent upon the input file. Some input files may exhibit better compression ratios, some far worse. For
example, some files, such as JPEG graphics files (which are already compressed), may actually become
larger when recompressed. To demonstrate the compression ratios for different types of files, we present
some examples, summarized in the table below in order of decreasing benefit:

As can be seen from the compression ratios in the table, text files compress well, whereas graphics files
benefit little, or, as in the case of JPEG, suffer from the additional compression. Also note that compressing
small files (< 1 KB) provides little benefit, due to the small space savings and large decompression over-
head.

Table 1. Compression Ratios for Various File Types

File File Type
Uncompressed

Size (bytes)
Compressed
Size (bytes)

Ratio (Compressed /
Uncompressed)

RABBIT.HTML HTML Page 25493 8120 32.204%

TCP_TIME.C Dynamic C Source File 16479 7660 46.483%

LICENSE.TXT Basic Windows Text 10858 5778 53.214%

ZCOMPRESS.EXE Windows Executable 133632 77022 57.637%

LICENSEPDF.PDF PDF File 14925 10680 71.557%

COFFEE BEAN.BMP Windows BMP file 17062 15752 92.322%

PARADISE.JPG JPEG File 62417 69411 111.205%
2 www.rabbit.com TN234

http://www.rabbit.com

Code and Data Space Considerations
In order to realize the benefits of this compression, the size of the support library code must be taken into
consideration. For on-the-fly decompression straight from a #zimport file, the code footprint is about
2.5KB (actual size varies, depending on compiler options and compiler version). The code size for FS2
compression support using the function CompressFile() is about 6.6 KB. None of the compression
support library code is forced to root.

The data space used by the libraries is a user-controlled option. All the data used by the compression sup-
port libraries resides in xmem, except for a small fixed array of pointers in root memory. For decompres-
sion, the minimum space required is 4 KB for the LZSS window. Compression requires an additional
24 KB. If multiple files are to be compressed/decompressed concurrently, each additional file will require
a 4 KB buffer for decompression, and 24 KB for compression. The actual number of these buffers is con-
trolled by 2 macros, which can be defined by the user at the beginning of a program.

OUTPUT_COMPRESSION_BUFFERS (default value = 0, must be at least 1 if compression is used)

INPUT_COMPRESSION_BUFFERS (default value = 1)

Performance
The performance of the decompression is based upon the compression ratio of the file being decom-
pressed, and the speed of the processor. On a 44 MHz Rabbit 3000, the decompression algorithm achieves
a throughput of 10-20 KB/second (size of uncompressed file/total time to decompress). Compression
(from a #ximport file to an FS2 file) achieves a rate of 500-1000 bytes/second The performance charac-
teristics are summarized in the table below:

Table 2. Library Code Size

Code Functionality Code Footprint

Decompression only 2.5 KB

Compression and decompression 6.6 KB

Table 3. Throughput

Action Speed

Decompression 10-20 KB/sec

Compress from #ximport to FS2 file 500-1000 bytes/sec
TN234 www.rabbit.com 3

http://rabbit.com

	File Compression
	The #zimport Directive
	The Compression Utility

	Compression Support Libraries
	Compression Ratio Examples
	Code and Data Space Considerations
	Performance

