
FAT File System
Dynamic C 8.51 introduced a FAT (File Allocation Table) file system. The small footprint of this well-
defined industry-standard file system makes it ideal for embedded systems. The Dynamic C implementa-
tion of FAT has a directory structure that can be accessed with either Unix or DOS style paths. The stan-
dard directory structure allows monitoring, logging, Web browsing, and FTP updates of files.

FAT module version 1.02 supports SPI-based serial flash devices. FAT versions 2.01 and 2.05 also support
SPI-based serial flash devices and require Dynamic C 9.01 or later. FAT version 2.05 introduces support
for NAND flash devices. FAT version 2.10 extends µC/OS-II compatibility to make the FAT API reentrant
from multiple tasks. FAT version 2.13 adds support for SD cards and requires Dynamic C 10.21 or later. In
all versions of the FAT, a battery-backed write-back cache reduces wear on the flash device and a round-
robin cluster assignment helps spread the wear over its surface.

Please be sure check the Rabbit website for software patches and updates to Dynamic C, the FAT files-
sytem, and for your specific hardware:

www.rabbit.com/support/downloads/

The FAT library can be used in either blocking or non-blocking mode and supports both FAT12 and FAT16.
(See Section A.3.1 for more information on these FAT types.)

Let’s define some terms before continuing.

• A device is a single physical hardware item such as a hard drive, a serial flash or a NAND flash. E.g.,
one serial flash is a single device. The device, in turn, can host one to four partitions.

• A partition is a range of logical sectors on a device. A real-world example of a partition is what is com-
monly known as the C drive on a PC.

• A driver is the software interface that handles the hardware-specific aspects of any communication to
or from the device.

• Blocking is a term that describes a function’s behavior in regards to completion of the requested task. A
blocking function will not return until it has completely finished its task. In contrast, a non-blocking
function will return to its calling function before the task is finished if it is waiting for something. A
non-blocking function can return a code that indicates it is not finished and should be called again.
Used in conjunction with cooperative multitasking, non-blocking functions allow other processes to
proceed while waiting for hardware resources to finish or become available.
020-0064 Rev. H www.rabbit.com 1

http://www.rabbit.com
http://www.rabbitsemiconductor.com/support/downloads/

Operations performed by the Dynamic C FAT implementation are:

• Formatting and partitioning of devices
• Formatting partitions
• File operations: create, open, close, delete, seek, read and write

• Directory1 operations: create, read and delete
• Labels: create and delete

1. Overview of Document
This document describes the Dynamic C FAT file system. We take a look at a sample program in Section 2.
Two additional sample programs, one for use with the blocking mode of the FAT and the other for use with
the non-blocking mode are described in Section 3. Then Section 4 gives detailed descriptions of the vari-
ous FAT file system functions (formatting, opening, reading, writing, and closing). Short, focused exam-
ples accompany each description. Section 5 provides a complete function reference section for the
application programming interface (API). There is some general information about FAT file systems and
also some web links for further study in Appendix A. And lastly, there are instructions for custom configu-
rations in Appendix B.

Note: All error codes returned from the Dynamic C FAT file system are defined in
LIB/.../FILESYSTEM/ERRNO.LIB.

2. Running Your First FAT Sample Program
To run FAT samples, you need a Rabbit-based board with a supported flash type, such as the SPI-based
serial flash device available on the RCM3300 or the RCM3700. FAT versions 2.01 and 2.05 require
Dynamic C 9.01 or later. FAT version 2.05 extends the list of supported flash types to include NAND flash
devices, such as those on the RCM3360 and 3370. FAT version 2.13 requires Dynamic C 10.21 or later and
adds support for SD cards, available on the RCM4300 and 4310.

The board must be powered up and connected to a serial port on your PC through the programming cable
to download a sample program.

In this section we look at fat_create.c, which demonstrate the basic use of the FAT file system. If
you are using a serial or NAND flash device that has not been formatted or a removable device that was
not formatted using Dynamic C, you must run Samples\FileSystem\Fmt_Device.c before you
can run any other sample FAT program. The program, Fmt_Device.c, creates the default configuration
of one partition that takes up the entire device.

If you are using an SD card, run Fmt_Device.c to remove the factory FAT32 partition and create a
FAT16 partition. Be aware that although multiple partitions are possible on removable cards, most PC’s
will not support cards formatted in this fashion.

1. We use the terms directory and subdirectory somewhat interchangeably. The exception is the
root directory—it is never called a subdirectory. Any directory below the root directory may be
referred to as a directory or a subdirectory.
2 www.rabbit.com FAT File System Module

http://www.rabbit.com

If you are using a removable NAND flash (XD cards), running Fmt_Device.c causes the device to no
longer be usable without the Rabbit-based board or the Rabbit USB Reader for XD cards. Insert the
NAND flash device into a USB-based flash card reader and format it to regain this usability. Note that this
will only work if you have not defined the macro NFLASH_CANERASEBADBLOCKS. Defining this
macro in a running application destroys proprietary information on the first block of the device, making it
difficult to regain the usability of the NAND device when used without the Rabbit-based board.

If you are using FAT version 2.01 or later, you do not have to run Fmt_Device.c if you initialize the
FAT file system with a call to fat_AutoMount() instead of fat_Init(). The function
fat_AutoMount() can optionally format the device if it is unformatted; however,
fat_AutoMount() will not erase and overwrite a factory-formatted removable device such as an SD
card. If you are using an SD card, run Fmt_Device.c or erase the first three pages with the appropriate
flash utitity (sdflash_inspect.c or nflash_inspect.c).

After the device has been formatted, open Samples\FileSystem\fat_create.c. Compile and run
the program by pressing function key F9.

In a nutshell, fat_create.c initializes FAT, then creates a file, writes “Hello world!” to it, and then
closes the file. The file is re-opened and the file is read, which displays “Hello world!” in the Dynamic C
Stdio window. Understanding this sample will make writing your own FAT application easier.

The sample program has been broken into two functional parts for the purpose of discussion. The first part
deals with getting the file system up and running. The second part is a description of writing and reading
files.
FAT File System Module www.rabbit.com 3

http://www.rabbit.com

2.1 Bringing Up the File System
We will look at the first part of the code as a whole, and then explain some of its details.

File Name: Samples\FileSystem\fat_create.c

#define FAT_BLOCK // use blocking mode
#use "fat.lib" // of FAT library

FATfile my_file; // get file handle
char buf[128]; // 128 byte buffer for read/write of file

int main(){
int i;
int rc; // Check return codes from FAT API
long prealloc; // Used if the file needs to be created.
fat_part *first_part; // Use the first mounted FAT partition.

rc = fat_AutoMount(FDDF_USE_DEFAULT);

first_part = NULL;
for(i=0;i < num_fat_devices * FAT_MAX_PARTITIONS; ++i)
{ // Find the first mounted partition

if ((first_part = fat_part_mounted[i]) != NULL) {
break; // Found mounted partition, so use it

}
}

if (first_part == NULL) { // Check if mounted partition was found
rc = (rc < 0) ? rc : -ENOPART; // None found, set rc to a FAT error code

} else{
printf("fat_AutoMount() succeeded with return code %d.\n", rc);
rc = 0; // Found partition; ignore error, if any

}

if (rc < 0){ // negative values indicate error
if (rc == -EUNFORMAT)

printf("Device not Formatted, Please run Fmt_Device.c\n");
else

printf("fat_AutoMount() failed with return code %d.\n", rc);
exit(1);

} // OK, file system exists and is ready to access. Let's create a file.
4 www.rabbit.com FAT File System Module

http://www.rabbit.com

The first two statements:

#define FAT_BLOCK
#use "fat.lib"

cause the FAT library to be used in blocking mode.

FAT version 2.01 introduces a configuration library that chooses initialization settings based on the board
type.The statement #use “fat.lib” brings in this configuration library, which in turn brings in the
appropriate device driver library. The following table lists the device drivers that are available in the differ-
ent FAT versions.

Defining the macro _DRIVER_CUSTOM notifies fat_config.lib that a custom driver or hardware
configuration is being used. For more information on how this works, see Appendix A.

Next some static variables are declared: a file structure to be used as a handle to the file that will be created
and a buffer that will be used for reading and writing the file.

Now we are in main(). First there are some variable declarations: the integer rc is for the code returned
by the FAT API functions. This code should always be checked, and must be checked if the non-blocking
mode of the FAT is used. The descriptions for each function list possible return codes.

The variable prealloc stores the number of bytes to reserve on the device for use by a specific file.
These clusters are attached to the file and are not available for use by any other files. This has some advan-
tages and disadvantages. The obvious disadvantage is that it uses up space on the device. Some advantages
are that having space reserved means that a log file, for instance, could have a portion of the drive set aside
for its use only. Another advantage is that if you are transferring a known amount of information to a file,
pre-allocation not only sets aside the space so you know you will not get half way through and run out, but
it also makes the writing process a little faster as the allocation of clusters has already been dealt with so
there is no need to spend time getting another cluster.

This feature should be used with care as pre-allocated clusters do not show up on directory listings until
data is actually written to them, even though they have locked up space on the device. The only way to get
unused pre-allocated clusters back is to delete the file to which they are attached, or use the
fat_truncate() or fat_split() functions to trim or split the file. In the case of fat_Split(),
the pre-allocated space is not freed, but rather attached to the new file created in the split.

Table 1.

FAT Version Device Driver

1.02, 2.01 sflash_fat.lib

2.05
sflash_fat.lib
nflash_fat.lib

2.13
sflash_fat.lib
nflash_fat.lib

SD_fat.lib
FAT File System Module www.rabbit.com 5

http://www.rabbit.com

Lastly, a pointer to a partition structure is declared with the statement:

fat_part *first_part;

This pointer will be used as a handle to an active partition. (The fat_part structure and other data struc-
tures needed by the FAT file system are discussed in fat_AutoMount().) The partition pointer will be
passed to API functions, such as fat_open().

Now a call is made to fat_AutoMount(). This function was introduced in FAT version 2.01 as a
replacement for fat_Init(). Whereas fat_Init() can do all the things necessary to ready the first
partition on the first device for use, it is limited to that. The function fat_AutoMount() is more flexi-
ble because it uses data from the configuration file fat_config.lib to identify FAT partitions and to
optionally ready them for use, depending on the flags parameter that is passed to it. The flags parameter is
described in the function description for fat_AutoMount().

For this sample program, we are interested in the first usable FAT partition. The for loop after the call to
fat_AutoMount() finds the partition, if one is available.

The for loop allows us to check every possible partition by using num_fat_devices, which is the
number of configured devices, and then multiplying the configured devices by the maximum number of
allowable partitions on a device, which is four. The for loop also makes use of fat_part_mounted,
an array of pointers to partition structures that is populated by the fat_autoMount() call.
6 www.rabbit.com FAT File System Module

http://www.rabbit.com

2.2 Using the File System
The rest of fat_create.c demonstrates how to use the file system once it is up and running.

File Name: Samples\FileSystem\fat_create.c

prealloc = 0;

rc = fat_Open(first_part, "HELLO.TXT", FAT_FILE, FAT_CREATE,
&my_file, &prealloc);

if (rc < 0) {
printf("fat_Open() failed with return code %d\n", rc);
exit(1);

}
rc = fat_Write(&my_file, "Hello, world!\r\n", 15);

if (rc < 0) {
printf("fat_Write() failed with return code %d\n", rc);
exit(1);

}
rc = fat_Close(&my_file);
if (rc < 0) {

printf("fat_Close() failed with return code %d\n", rc);
}

rc = fat_Open(first_part, "HELLO.TXT",FAT_FILE, 0, &my_file,
NULL);

if (rc < 0) {
printf("fat_Open() (for read) failed, return code %d\n", rc);
exit(1);

}
rc = fat_Read(&my_file, buf, sizeof(buf));
if (rc < 0) {

printf("fat_Read() failed with return code %d\n", rc);
}
else {

printf("Read %d bytes:\n", rc);
printf("%*.*s", rc, rc, buf); // Print a string which is not NULL terminated
printf("\n");

}
fat_UnmountDevice(first_part->dev);
printf("All OK.\n");
return 0;

}

FAT File System Module www.rabbit.com 7

http://www.rabbit.com

The call to fat_Open() creates a file in the root directory and names it HELLO.TXT. A file must be
opened before you can write or read it.
rc = fat_Open(first_part, "HELLO.TXT", FAT_FILE, FAT_CREATE,

&my_file, &prealloc);

The parameters are as follows:

• first_part points to the partition structure initialized by fat_AutoMount().

• "HELLO.TXT" is the file name, and is always an absolute path name relative to the root directory. All
paths in Dynamic C must specify the full directory path explicitly.

• FAT_FILE identifies the type of object, in this case a file. Use FAT_DIR to open a directory.

• FAT_CREATE creates the file if it does not exist. If the file does exist, it will be opened, and the posi-
tion pointer will be set to the start of the file. If you write to the file without moving the position
pointer, you will overwrite existing data.

Use FAT_OPEN instead of FAT_CREATE if the file or directory should already exist. If the file does
not exist, you will get an -ENOENT error.

Use FAT_MUST_CREATE if you know the file does not exist. This is a fail-safe way to avoid opening
and overwriting an existing file since an -EEXIST error is returned if you attempt to create a file that
already exists.

• &my_file is a file handle that points to an available file structure. It will be used for this file until the
file is closed.

• &prealloc points to the number of bytes to allocate for the file. You do not want to pre-allocate any
more than the minimum number of bytes necessary for storage, and so prealloc was set to 0. You
could also use NULL instead of prealloc and prealloc = 0.

Next, the sample program writes the data "Hello, world!\r\n" to the file.

fat_Write(&my_file, "Hello, world!\r\n", 15);

The parameters are as follows:

• &my_file is a pointer to the file handle opened by fat_Open().

• “Hello, world!\r\n” is the data written to the file. Note that \r\n (carriage return, line feed)
appears at the end of the string in the call. This is essentially a FAT (or really, DOS) convention for text
files. It is good practice to use the standard line-end conventions. (If you just use \n, the file will read
just fine on Unix systems, but some DOS-based programs may have difficulties.)

• 15 is the number of characters to write. Be sure to select this number with care since a value that is too
small will result in your data being truncated, and a value that is too large will append any data that
already exists beyond your new data.
8 www.rabbit.com FAT File System Module

http://www.rabbit.com

The file is closed to release the file handle to allow it to be used to identify a different file.

rc = fat_Close(&my_file);

The parameter &my_file is a handle to the file to be closed. Remember to check for any return code
from fat_Close() since an error return code may indicate the loss of data.

The file must be opened for any further work, even though &my_file may still reference the desired file.
The file must be open to be active, so we call fat_Open() again. Now the file can be read.

rc = fat_Read(&my_file, buf, sizeof(buf));

The function fat_Read() returns the number of characters actually read. The parameters are as follows:

• &my_file is a handle to the file to be read.

• buf is a buffer for reading/writing the file that was defined at the beginning of the program.

• sizeof(buf) is the number of bytes to be read into buf. It does not have to be the full size of the
buffer

Characters are read beginning at the current position of the file. (The file position can be changed with the
fat_Seek() function.) If the file contains fewer than sizeof(buf) characters from the current posi-
tion to the end-of-file marker (EOF), the transfer will stop at the EOF. If the file position is already at EOF,
0 is returned. The maximum number of characters read is 32767 bytes per call.

The file can now be closed. Call fat_UnmountDevice()1 rather than simply calling fat_Close() to
ensure that any data stored in cache will be written to the device. With a write-back cache, writes are
delayed until either:

• all cache buffers are full and a new FAT read request requires a “dirty” cache buffer to be written out
before the read can take place, or

• cache buffers for a partition or a device are being flushed due to an unmount call or explicit flush call.

Calling fat_UnmountDevice() will close all open files and unmount all mounted FAT partitions. This
is the safest way to shut down a device. The parameter first_part->dev is a handle to the device to
be unmounted.

fat_UnmountDevice(first_part->dev);

Note: A removable device must be unmounted in order to flush its data before removal.
Failure to unmount any partition on a device that has been written to could corrupt the
file system. With the RCM43xx modules, there is a usage LED that is turned on when
the SD card is mounted, and turned off when the SD card is unmounted.

1. Call fat_UnmountPartition() when using a FAT module prior to version 2.06.
FAT File System Module www.rabbit.com 9

http://www.rabbit.com

3. More Sample Programs
This section studies blocking sample FAT_SHELL.C and non-blocking sample FAT_NB_Costate.c
More sample programs are in the Dynamic C folder Samples\FileSystem\FAT. For example, there
is udppages.c, an application that shows how to combine HTTP, FTP and zserver functionality to cre-
ate web content than can be updated via FTP.

As described in Section 2, you will need a target board or module with a supported flash device, powered
up and connected to a serial port on your PC through the programming cable.

3.1 Blocking Sample
The sample program Samples\FileSystem\FAT_SHELL.C allows you to use the FAT library by
entering DOS-like or Unix-like commands. To run this sample, open Dynamic C, then open
FAT_SHELL.C. Compile and run FAT_SHELL.C by pressing F9. If the flash device has not been for-
matted and partitioned, FAT_SHELL.C will format and partition the flash device, and then you will be
prompted to run FAT_SHELL.C again (just press F9 when prompted). A display similar to the one shown
in Figure 1 will open in the Dynamic C Stdio window.

Optional parameters are denoted by the square braces [and] following the command name. The [alc] after
“touch” and “mtouch” indicates an optional allocation amount in bytes. The square braces in the descrip-
tion indicate the default value that will be used if the optional parameter is not given.

Figure 1. List of Shell Commands

You can type “h” and press enter at any time to display the FAT shell commands.

In the following examples the commands that you enter are shown in boldface type. The response from the
shell program is shown in regular typeface.
10 www.rabbit.com FAT File System Module

http://www.rabbit.com

This shows the HELLO.TXT file that was created using the FAT_CREATE.C sample program. The file
length is 15 bytes. Cluster 2 has been allocated for this file. The “ls” command will display up to the first
six clusters allocated to a file.

The flag, rhsvdA, displays the file or directory attributes, with upper case indicating that the attribute is
turned on and lower case indicating that the attribute is turned off. In this example, the archive bit is turned
on and all other attributes are turned off.

These are the six attributes:
r - read-only v - volume label
h - hidden file d - directory
s - system a - archive

To create a directory named DIR1, do the following:

This shows that DIR1 was created, and is 1024 bytes (size may vary by flash type).

Now, select DIR1:

Add a new file called RABBIT.TXT:

Note that the file name was appended to the current directory. Now we can write to RABBIT.TXT. The
shell program has predetermined characters to write, and does not allow you to enter your own data.

> ls
Listing '' (dir length 16384)

hello.txt rhsvdA len=15 clust=2
>

> mkdir dir1
Directory '/dir1' created with 1024 bytes
>

> cd dir1
PWD = '/dir1'
>

> touch rabbit.txt
File '/dir1/rabbit.txt' created with 1024 bytes
>

> wr rabbit.txt
File '/dir1/rabbit.txt' written with 1024 bytes out of 1024
>

FAT File System Module www.rabbit.com 11

http://www.rabbit.com

To see what was written, use the “rd” command.

3.2 Non-Blocking Sample
To use the FAT file system in non-blocking mode, do not include the statement #define FAT_BLOCK
in your application. The program interface to the library is the same as the blocking version, with the
exception of the return code -EBUSY from many of the API functions.

The sample program Fat_NB_Costate.c in the Samples\FileSystem folder is an example of a
non-blocking application. To view the code in its entirety, open it in Dynamic C. The following discussion
will not examine every line of code, but will focus on what shows the non-blocking nature of the FAT
library and how the application takes advantage of it.

Run Fat_NB_Costate.c and after 10 seconds the Stdio window will show something similar to the fol-
lowing:

Figure 2. Screen Shot of Fat_NB_Costate.c Running

Each line is an entry into a file that is stored in the FAT file system. The file is appended once every second
and read and displayed once every ten seconds. In addition to the file system use and the screen output, if
you are using an RCM3300, RCM3700 or PowerCore FLEX development board, the application blinks
the LED on your board.

The code preceding main() brings in the required library and declares the file structure. And, as expected,
there is no #define for the macro FAT_BLOCK. At the start of main() some system variable are cre-
ated and initialized. This is followed by the code to bring up the FAT file system, which is similar to what
we examined in Section 2.1 when looking at fat_create.c, with two essential differences. One, since
we have initialized the FAT to be in non-blocking and we are making some calls to FAT functions that
must return before we can continue, we must wait for the return.

> rd rabbit.txt

rabbit.txt 1024 The quick brown fox jumps over the lazy dog
rabbit.txt 1024 The quick brown fox jumps over the lazy dog
.
.
rab

Read 1024 bytes out of 1024
>

12 www.rabbit.com FAT File System Module

http://www.rabbit.com

A while loop accomplishes our goal of blocking on the function call until it returns something other than
busy.

while ((rc = fat_Open(first_part, name, FAT_FILE, FAT_MUST_CREATE,
&file, &alloc)) == -EBUSY);

The second difference from our earlier sample is the statement right before fat_Open():

file.state = 0;

This is required before opening a file when using non-blocking mode in order to indicate that the file is not
in use. Only do this once. After you have opened the file, do not alter the contents of the file structure.

If fat_Open() succeeds we can go into the non-blocking section of the program: three costatements
inside an endless while loop. The benefit of using the non-blocking mode of the FAT file system is real-
ized when using costatements, an extension of Dynamic C that implements cooperative multitasking.
Instead of waiting while a function finishes its execution, the application can accomplish other tasks.

3.2.1 Costatement that Writes a File
The first costate is named putdata. It waits for one second and then creates a string to timestamp the
entry of a randomly generated number that is then appended to a file.

Note that the always_on keyword is used. This is required when using a named costatement to force it
to execute every time it is encountered in the execution thread (unless it is made inactive by a call to
CoPause()).

It is easy to suspend execution within a costate by using the waitfor keyword. The costate will relin-
quish control if the argument to waitfor (in this case a call to DelaySec()) evaluates to FALSE. The
next time the execution thread reaches putdata, waitfor will be called again. This will go on until
DelaySec() returns TRUE, i.e., when one second has elapsed from the time DelaySec() was first
called from within waitfor.

After the one second delay, the string to write to the file is placed in a buffer and a looping variable and
position pointer are initialized.

Before the buffer contents can be written to a file in the FAT file system, we must ensure that no collisions
occur since there is another costate that will attempt to read the file every ten seconds. A file can not be
read from and written to at the same time. In the following code the waitfor keyword is used with the
global variable filestate (defined at the top of the application) to implement a locking mechanism. As
soon as the file becomes available for putdata, it is marked unavailable for showdata.

while (1){
costate putdata always_on
{

waitfor (DelaySec(1)); // Wait for one second to elapse

sprintf(obuf, "%02d:%02d:%02d -- %6.3f \n", h, m, s, (25.0 * rand()));
ocount = 0;
optr = obuf;
FAT File System Module www.rabbit.com 13

http://www.rabbit.com

The next block of code appends the latest entry into the file that was opened at the start of the application.

Again, waitfor is used to voluntarily relinquish control, this time while waiting for the write function to
complete. If an error occurs during the write operation the device is unmounted and the application exits.
Otherwise the loop counter and the buffer position pointer are advanced by the number of bytes actually
written. Since this can be less than the requested number of bytes, it is best to check in a loop such as the
while loop shown in putdata.

The last action taken by putdata is to reset filestate, indicating that the open file is available.

3.2.2 Costatement that Reads and Displays a File
The costatement named showdata waits for ten seconds. Then it waits for the open file to be available,
and when it is, immediately marks it as unavailable.

The next statement modifies the internal file position pointer. The first time this costate runs, readto is
zero, meaning the position pointer is at the first byte of the file. The variable readto is incremented
every time a record is read from the file, allowing showdata to always know where to seek to next.

The rest of showdata is a while loop inside of a while loop. The inner while loop is where each
record is read from the file into the buffer and then displayed in the Stdio window with the printf()
call. Since fat_Read() may return less than the requested number of bytes, the while loop is needed
to make sure that the function will be called repeatedly until all bytes have been read. When the full record
has been read, it will then be displayed to the Stdio window.

waitfor (filestate == 0); // Wait until file is available
filestate = 1; // Show file is being updated

while (ocount < REC_LEN){ // Loop until entire record is written
waitfor((rc = fat_Write(&file, optr, REC_LEN - ocount))!= -EBUSY);
if (rc < 0){

printf("fat_Write: rc = %d\n",rc);
while ((rc = fat_UnmountDevice(first_part->dev)) == -EBUSY);
return rc;

}
optr += rc; // Move output pointer
ocount += rc; // Add number of characters written

}
filestate = 0; // Show file is idle

}

costate showdata always_on{
waitfor (DelaySec(10));
waitfor (filestate == 0);
filestate = 2;

waitfor (fat_Seek(&file, readto, SEEK_SET) != -EBUSY);
14 www.rabbit.com FAT File System Module

http://www.rabbit.com

The outer while loop controls when to stop reading records from the file. After the last record is read, the
fat_Read() function is called once more, returning an end-of-file error. This causes the if statements
that are checking for this error to return TRUE, which resets filestate to zero, breaking out of the
outer while loop and freeing the lock for the putdata costatement to use.

The other costatement in the endless while loop is the one that blinks the LED. It illustrates that while
using the file system in non-blocking mode, there is still plenty of time for other tasks.

while (filestate){
icount = 0;
iptr = ibuf;
while (icount < REC_LEN) {

waitfor((rc = fat_Read(&file, iptr, REC_LEN-icount)) != -EBUSY);
if (rc < 0)
{

if (rc == -EEOF)
{

filestate = 0;
break;

}
printf("fat_Read: rc = %d\n",rc);
while ((rc=fat_UnmountDevice(first_part->dev)) == -EBUSY);
return rc;

}
iptr += rc;
icount += rc;

} // end of inner while loop
if (filestate)
{

printf("%s", ibuf);
readto += REC_LEN;

}
} // end of outer while loop
FAT File System Module www.rabbit.com 15

http://www.rabbit.com

4. FAT Operations
There are some basic groups of operations involved in using the Dynamic C FAT library. These are
described at length in the following sections.

Section 4.1 “Format and Partition the Device”

• Default Partitioning

• Creating Multiple FAT Partitions

• Preserving Existing Partitions

Section 4.2 “File and Directory Operations”

• Open and Close Operations

• Read and Write Operations

• Going to a Specified Position in a File

• Creating Files and Subdirectories

• Reading Directories

• Deleting Files and Directories

4.1 Format and Partition the Device
The flash device must be formatted before its first use. Formatting it after its first use may destroy infor-
mation previously placed on it.

4.1.1 Default Partitioning
As a convenience, Samples/FileSystem/Fmt_Device.c is provided to format the flash device.
This program can format individual FAT 12/16 partitions, or can format all FAT 12/16 partitions found on
a device. If no FAT 12/16 partitions are found, it offers the option of erasing the entire device and format-
ting it with a single FAT 16 partition. Be aware that this will destroy any data on the device, including that
contained on FAT 32 partitions. This is an easy way to format new media that may contain an empty
FAT32 partition spanning the entire device, such as a new SD or XD card.

After the device has been formatted with Fmt_Device.c, an application that wants to use the FAT file
system just has to call the function fat_Init() (replaced in FAT version 2.01) or
fat_AutoMount(). If you are calling fat_AutoMount() refer to Section 2.1 for an example of its
use. Note that if you call fat_AutoMount() using the configuration flag FDDF_DEV_FORMAT, you
may not need to run Fmt_Device.c.

4.1.2 Creating Multiple Partitions
To create multiple partitions on the flash device use the sample program FAT_Write_MBR.c, which will
allow you to easily create as many as four partitions. This program does require that the device be “erased”
before being run. This can be done with the appropriate sample program: sdflash_inspect.c,
sflash_inspect.c or nflash_inspect.c. You only need to clear the first three pages on SD
cards or serial flash, or the first page on NAND flash or XD cards. Once this is done, run
FAT_Write_MBR and it will display the total size of the device in MegaBytes and allow you to specify the
size of each partition until all the space is used. If you specify an amount larger than the space remaining,
then all remaining space will be used for that partition. Once all space is specified, it will ask approval to
write the new partition structure. This utility does not format the partitions, it merely creates their defini-
16 www.rabbit.com FAT File System Module

http://www.rabbit.com

tions. Run Fmt_device.c afterwards and use the 0 or 1 option to format the full device and all parti-
tions will be formatted. Be forewarned that on removable media, using multiple partitions will typically
make the device unusable with PC readers.

The sample program FAT_Write_MBR.c is distributed with FAT module version 2.13. It is also compat-
ible with FAT versions 2.01, 2.05 and 2.10. If you have one of these earlier versions of the FAT module
and would like a copy of FAT_Write_MBR.c, please contact Technical Support either by email to
support@rabbitsemiconductor.com or using the online form available on the Rabbit website:
www.rabbitsemiconductor.com/support/questionSubmit.shtml.

There is a way to create multiple partitions without using the utility FAT_Write_MBR.c; this auxiliary
method is explained in A.3.5.

4.1.3 Preserving Existing Partitions
If the flash device already has a valid partition that you want to keep, you must know where it is so you
can fit the FAT partition onto the device. This requires searching the partition table for both available parti-
tions and available space. An available partition has the partsecsize field of its mbr_part entry
equal to zero.

Look in lib/.../RCM3300/RemoteApplicationUpdate/downloadmanager.lib for the
function dlm_initserialflash() for an example of searching through the partition table for avail-
able partitions and space. See the next section for more information on the download manager (DLM) and
how to set up coexisting partitions.

4.1.4 FAT and DLM Partitions
The RabbitCore RCM3300 comes with a download manager utility that creates a partition on a serial flash
device, which is then used by the utility to remotely update an application. You can set up a device to have
both a DLM partition and a FAT partition.

Run the program Samples/RCM3300/RemoteApplicationUpdate/DLM_FAT_FORMAT.C.
This program must be run on an unformatted serial flash, i.e., a flash with no MBR. To remove an existing
MBR, first run the program Samples/RCM3300/SerialFlash/SFLASH_INSPECT.C to clear the
first three pages.

The program DLM_FAT_FORMAT.C will set aside space for the DLM partition and use the rest of the
device to create a FAT partition. Then, when you run the DLM software, it will be able to find space for its
partition and will coexist with the FAT partition. This shows the advantage to partitions: Partitions set hard
boundaries on the allocation of space on a device, thus neither FAT nor the DLM software can take space
from the other.
FAT File System Module www.rabbit.com 17

http://www.rabbitsemiconductor.com/support/questionSubmit.shtml
http://www.rabbit.com

4.2 File and Directory Operations
The Dynamic C FAT implementation supports the basic set of file and directory operations. Remember
that a partition must be mounted before it can be used with any of the file, directory or status operations.

4.2.1 Open and Close Operations
The fat_Open() function opens a file or a directory. It can also be used to create a file or a directory.
When using the non-blocking FAT, check the return code and call it again with the same arguments until it
returns something other than -EBUSY..

The first parameter, my_part, points to a partition structure. This pointer must point to a mounted parti-
tion. Some of the sample programs, like fat_create.c, declare a local pointer and then search for a
partition pointer in the global array fat_part_mounted[]. Other sample programs, like
fat_shell.c, define an integer to be used as an index into fat_part_mounted[]. Both methods
accomplish the same goal of gaining access to a partition pointer.

The second parameter contains the file name, including the directory (if applicable) relative to the root
directory. All paths in Dynamic C must specify the full directory path explicitly, e.g., DIR1\\FILE.EXT
or DIR1/FILE.EXT. The direction of the slash in the pathname is a backslash by default. If you use the
default backslash for the path separator, you must always precede it with another backslash, as shown in
the above call to fat_Open(). This is because the backslash is an escape character in a Dynamic C
string. To use the forward slash as the path separator, define the macro FAT_USE_FORWARDSLASH in
your application (or in FAT.LIB to make it the system default).

The third parameter determines whether a file or directory is opened (FAT_FILE or FAT_DIR).

The fourth parameter is a flag that limits fat_Open() to the action specified. FAT_CREATE creates the
file (or directory) if it does not exist. If the file does exist, it will be opened, and the position pointer will be
set to the start of the file. If you write to the file without moving the position pointer, you will overwrite
existing data. Use FAT_MUST_CREATE if you know the file does not exist; this last option is also a fail-
safe way to avoid opening and overwriting an existing file since an -EEXIST error message will be
returned if you attempt to create a file that already exists.

The fifth parameter, &my_file, is an available file handle. After a file or directory is opened, its handle is
used to identify it when using other API functions, so be wary of using local variables as your file handle.

The final parameter is an initial byte count if the object needs to be created. It is only used if the
FAT_CREATE or FAT_MUST_CREATE flag is used and the file or directory does not already exist. The
byte count is rounded up to the nearest whole number of clusters greater than or equal to 1. On return, the
variable prealloc is updated to the number of bytes allocated. Pre-allocation is used to set aside space
for a file, or to speed up writing a large amount of data as the space allocation is handled once.

Pass NULL as the final parameter to indicate that you are opening the file for reading or that a minimum
number of bytes needs to be allocated to the file at this time. If the file does not exist and you pass NULL,
the file will be created with the minimum one cluster allocation.

Once you are finished with the file, you must close it to release its handle so that it can be reused the next
time a file is created or opened.

rc = fat_Open(my_part, "DIR\\FILE.TXT", FAT_FILE, FAT_CREATE,
&my_file, &prealloc);
18 www.rabbit.com FAT File System Module

http://www.rabbit.com

Remember to check the return code from fat_Close() since an error return code may indicate the loss
of data. Once you are completely finished, call fat_UnmountDevice() to make sure any data stored
in the cache is written to the flash device.

4.2.2 Read and Write Operations
Use fat_Read() to read a file.

The first parameter, &my_file, is a pointer to the file handle already opened by fat_Open(). The
parameter buf points to a buffer for reading the file. The sizeof(buf) parameter is the number of
bytes to be read into the buffer. It does not have to be the full size of the buffer. If the file contains fewer
than sizeof(buf) characters from the current position to the end-of-file marker (EOF), the transfer will
stop at the EOF. If the file position is already at the EOF, 0 is returned. The maximum number of charac-
ters read is 32767 bytes per call.

The function returns the number of characters read or an error code. Characters are read beginning at the
current position of the file. If you have just written to the file that is being read, the file position pointer
will be where the write left off. If this is the end of the file and you want to read from the beginning of the
file you must change the file position pointer. This can be done by closing the file and reopening it, thus
moving the position pointer to the start of the file. Another way to change the position pointer is to use the
fat_Seek() function. This function is explained in Section 4.2.3.

Use fat_ReadDir() to read a directory. This function is explained in Section 4.2.5.

Use fat_Write() or fat_xWrite() to write to a file. The difference between the two functions is
that fat_xWrite() copies characters from a string stored in extended memory.

The first parameter, &my_file, is a pointer to the file handle already opened by fat_Open(). Because
fat_Open() sets the position pointer to the start of the file, you will overwrite any data already in the
file. You will need to call fat_Seek() if you want to start the write at a position other than the start of
the file (see Section 4.2.3).

The second parameter contains the data to write to the file. Note that \r\n (carriage return, line feed)
appear at the end of the string in the function. This is essentially a FAT (or really, DOS) convention for text
files. It is good practice to use these standard line-end conventions. (If you only use \n, the file will read
just fine on Unix systems, but some DOS-based programs may have difficulties.) The third parameter
specifies the number of characters to write. Select this number with care since a value that is too small will
result in your data being truncated, and a value that is too large will append any data that already exists
beyond your new data.

Remember that once you are finished with a file you must close it to release its handle. You can call the
fat_Close() function, or, if you are finished using the file system on a particular partition, call
fat_UnmountPartition(), which will close any open files and then unmount the partition. If you

rc = fat_Close(&my_file);

rc = fat_Read(&my_file, buf, sizeof(buf));

rc = fat_Write(&my_file, "Write data\r\n", 12);
FAT File System Module www.rabbit.com 19

http://www.rabbit.com

are finished using the device, it is best to call fat_UnmountDevice(), which will close any open FAT
files on the device and unmount all mounted FAT partitions. Unmounting the device is the safest method
for shutting down after using the device.

4.2.3 Going to a Specified Position in a File
The position pointer is at the start of the file when it is first opened. Two API functions, fat_Tell()
and fat_Seek(), are available to help you with the position pointer.

The fat_Tell() function does not change the position pointer, but reads its value (which is the number
of bytes from the beginning of the file) into the variable pointed to by &pos. Zero indicates that the posi-
tion pointer is at the start of the file. The first parameter, &my_file, is the file handle already opened by
fat_Open().

The fat_Seek() function changes the position pointer. Clusters are allocated to the file if necessary, but
the position pointer will not go beyond the original end of file (EOF) unless doing a SEEK_RAW. In all
other cases, extending the pointer past the original EOF will preallocate the space that would be needed to
position the pointer as requested, but the pointer will be left at the original EOF and the file length will not
be changed. If this occurs, the error code -EEOF is returned to indicate the space was allocated but the
pointer was left at the EOF. If the position requires allocating more space than is available on the device,
the error code -ENOSPC is returned.

The first parameter passed to fat_Seek() is the file handle that was passed to fat_Open(). The sec-
ond parameter, pos, is a long integer that may be positive or negative. It is interpreted according to the
value of the third parameter. The third parameter must be one of the following:

• SEEK_SET - pos is the byte position to seek, where 0 is the first byte of the file. If pos is less than 0,
the position pointer is set to 0 and no error code is returned. If pos is greater than the length of the file,
the position pointer is set to EOF and error code -EEOF is returned.

• SEEK_CUR - seek pos bytes from the current position. If pos is less than 0 the seek is towards the
start of the file. If this goes past the start of the file, the position pointer is set to 0 and no error code is
returned. If pos is greater than 0 the seek is towards EOF. If this goes past EOF the position pointer is
set to EOF and error code -EEOF is returned.

• SEEK_END - seek to pos bytes from the end of the file. That is, for a file that is x bytes long, the state-
ment:

fat_Seek (&my_file, -1, SEEK_END);

will cause the position pointer to be set at x-1 no matter its value prior to the seek call. If the value of
pos would move the position pointer past the start of the file, the position pointer is set to 0 (the start of
the file) and no error code is returned. If pos is greater than or equal to 0, the position pointer is set to
EOF and error code -EEOF is returned.

• SEEK_RAW - is similar to SEEK_SET, but if pos goes beyond EOF, using SEEK_RAW will set the file
length and the position pointer to pos. This adds whatever data exists on the allocated space onto the
end of the file..

fat_Tell(&my_file, &pos);
fat_Seek(&my_file, pos, SEEK_SET);
20 www.rabbit.com FAT File System Module

http://www.rabbit.com

4.2.4 Creating Files and Subdirectories
While the fat_Open() function is versatile enough to not only open a file but also create a file or a sub-
directory, there are API functions specific to the tasks of creating files and subdirectories.

The fat_CreateDir() function is used to create a subdirectory one level at a time.

The first parameter, my_part, points to a partition structure. This pointer must point to a mounted parti-
tion. Some of the sample programs, like fat_create.c, declare a local pointer and then search for a
partition pointer in the global array fat_part_mounted[]. Other sample programs, like
fat_shell.c, define an integer to be used as an index into fat_part_mounted[]. Both methods
accomplish the same goal of gaining access to a partition pointer.

The second parameter contains the directory or subdirectory name relative to the root directory. If you are
creating a subdirectory, the parent directory must already exist.

Once DIR1 is created as the parent directory, a subdirectory may be created, and so on.

Note that a forward slash is used in the pathname instead of a backslash. Either convention may be used.
The backslash is used by default. To use a forward slash instead, define FAT_USE_FORWARDSLASH in
your application or in FAT.LIB.

A file can be created using the fat_CreateFile() function. All directories in the path must already
exist.

The first parameter, my_part, points to the static partition structure set up by fat_AutoMount().

The second parameter contains the file name, including the directories (if applicable) relative to the root
directory. All paths in the FAT library are specified relative to the root directory.

The third parameter indicates the initial number of bytes to pre-allocate. At least one cluster will be allo-
cated. If there is not enough space beyond the first cluster for the requested allocation amount, the file will
be allocated with whatever space is available on the partition, but no error code will be returned. If no clus-
ters can be allocated, the -ENOSPC error code will return. Use NULL to indicate that no bytes need to be
allocated for the file at this time. Remember that pre-allocating more than the minimum number of bytes
necessary for storage will reduce the available space on the device.

The final parameter, &my_file, is a file handle that points to an available file structure. If NULL is
entered, the file will be closed after it is created.

rc = fat_CreateDir(my_part, "DIR1");

rc = fat_CreateDir(my_part, "DIR1/SUBDIR");

rc = fat_CreateFile(my_part, "DIR1/SUBDIR/FILE.TXT", &prealloc,
&my_file);
FAT File System Module www.rabbit.com 21

http://www.rabbit.com

4.2.5 Reading Directories
The fat_ReadDir() function reads the next directory entry from the specified directory. A directory
entry can be a file, directory or a label. A directory is treated just like a file.

The first parameter specifies the directory; &dir is an open file handle. A directory is opened by a call to
fat_OpenDir() or by passing FAT_DIR in a call to fat_Open(). The second parameter, &dirent,
is a pointer to a directory entry structure to fill in. The directory entry structure must be declared in your
application, for example:

fat_dirent dirent;

Search Conditions
The last parameter, mode, determines which directory entry is being requested, a choice that is built from
a combination of the macros described below. To understand the possible values for mode, the first thing
to know is that a directory entry can be in one of three states: empty, active or deleted. This means you
must choose one of the default flags described below, or one or more of the following macros:

• FAT_INC_ACTIVE - include active entries. This is the default setting if other FAT_INC_* macros
are not specified; i.e., active files are included unless FAT_INC_DELETED, FAT_INC_EMPTY, or
FAT_INC_LNAME is set.

• FAT_INC_DELETED - include deleted entries

• FAT_INC_EMPTY - include empty entries

• FAT_INC_LNAME - include long name entries (this is included for completeness, but is not used since
long file names are not supported)

The above macros narrow the search to only those directory entries in the requested state. The search is
then refined further by identifying particular attributes of the requested entry. This is done by choosing one
or more of the following macros:

• FATATTR_READ_ONLY - include read-only entries

• FATATTR_HIDDEN - include hidden entries

• FATATTR_SYSTEM - include system entries

• FATATTR_VOLUME_ID - include label entries

• FATATTR_DIRECTORY - include directory entries

• FATATTR_ARCHIVE - include modified entries

Including a FATATTR_* macro means you do not care whether the corresponding attribute is turned on or
off. Not including a FATATTR_* macro means you only want an entry with that particular attribute turned
off. Note that the FAT system sets the archive bit on all new files as well as those written to, so including
FATATTR_ARCHIVE in your mode setting is a good idea.

For example, if mode is (FAT_INC_ACTIVE) then the next directory entry that has all of its attributes
turned off will be selected; i.e., an entry that is not read only, not hidden, not a system file, not a directory
or a label, and not archived. In other words, the next writable file that is not hidden, system or already
archived is selected.

fat_ReadDir(&dir, &dirent, mode);
22 www.rabbit.com FAT File System Module

http://www.rabbit.com

But, if you want the next active file and do not care about the file’s other attributes, mode should be
(FAT_INC_ACTIVE | FATATTR_READ_ONLY | FATATTR_HIDDEN | FATATTR_SYSTEM |
FATATTR_ARCHIVE). This search would only exclude directory and label entries.

Now suppose you want only the next active read-only file, leaving out hidden or system files. The next
group of macros allows this search by filtering on whether the requested attribute is set. The filter macros
are:

• FAT_FIL_RD_ONLY - filter on read-only attribute

• FAT_FIL_HIDDEN - filter on hidden attribute

• FAT_FIL_SYSTEM - filter on system attribute

• FAT_FIL_LABEL - filter on label attribute

• FAT_FIL_DIR - filter on directory attribute

• FAT_FIL_ARCHIVE - filter on modified attribute

If you set mode to (FAT_INC_ACTIVE | FATATTR_READ_ONLY | FAT_FIL_RD_ONLY |
FATATTR_ARCHIVE), the result will be the next active file that has its read-only attribute set (and has
the archive attribute in either state).

Note: If you have FAT module version 2.05 or earlier, you do not have access to the
FAT_FIL_* macros.

Default Search Flags
To make things easier, there are two predefined mode flags. Each one may be used alone or in combination
with the macros already described.

• FAT_INC_ALL - selects any directory entry of any type.

• FAT_INC_DEF - selects the next active file or directory entry, including read-only or archived files.
No hidden, system, label, deleted, or empty directories or files will be selected. This is typically what
you see when you do a directory listing on your PC.

Search Flag Examples
Here are some more examples of how the flags work.

1. If you want the next hidden file or directory:

Start with the FAT_INC_DEF macro default flag. This flag does not allow hidden files, so we need
FATATTR_HIDDEN. Then to narrow the search to consider only a hidden file or directory, we need the
macro FAT_FIL_HIDDEN to filter on files or directories that have the hidden attribute set. That is,
mode is set to:

FAT_INC_DEF | FATATTR_HIDDEN | FAT_FIL_HIDDEN

2. If you want the next hidden directory:

Again, start with the FAT_INC_DEF macro default flag. To narrow the search to directories only, we
want entries with their directory attribute set; therefore, OR the macros FATATTR_DIRECTORY and
FAT_FIL_DIR. Then OR the macros FATATTR_HIDDEN and FAT_FIL_HIDDEN to search only
for directories with their hidden attribute set. That is, set mode to:

FAT_INC_DEF | FATATTR_DIRECTORY | FAT_FIL_DIR | FATATTR_HIDDEN |
FAT_FIL_HIDDEN
FAT File System Module www.rabbit.com 23

http://www.rabbit.com

3. If you want the next hidden file (no directories):

Start with the predefined flag, FAT_INC_DEF. This flag allows directories, which we do not want, so
we do an AND NOT of the FATATTR_DIRECTORY macro.

Next we want to narrow the search to only entries that have their hidden attribute set. The default flag
does not allow hidden flags, so we need to OR the macros FATTR_HIDDEN and FAT_FIL_HIDDEN.

That is, set mode to:

FAT_INC_DEF & ~FATATTR_DIRECTORY | FATATTR_HIDDEN | FAT_FIL_HIDDEN

4. If you want the next non-hidden file (no directories):

First, select the FAT_INC_DEF filter default flag. This flag allows directories, which we do not want,
so we do an AND NOT of the FATATTR_DIRECTORY macro. The default flag already does not allow
hidden files, so we are done. That is, set mode to:

FAT_INC_DEF & ~FATATTR_DIRECTORY

5. Finally let’s see how to get the next non-empty entry of any type.

Start with the predefined flag, FAT_INC_ALL. This flag selects any directory entry of any type. Since
we do not want empty entries, we have to remove that search condition from the flag, so we do an AND
NOT for the FAT_INC_EMPTY macro to filter out the empty entries. That means mode is the bitwise
combination of the macros:

mode = FAT_INC_ALL & ~FAT_INC_EMPTY

4.2.6 Deleting Files and Directories
The fat_Delete() function is used to delete a file or directory. The second parameter sets whether a
file or directory is being deleted. Only one file or directory may be deleted at any one time—this means
that you must call fat_Delete() at least twice to delete a file and its associated directory (if the direc-
tory has no other files or subdirectories since a directory must be empty to be deleted).

The first parameter, my_part, points to the static partition structure that was populated by
fat_AutoMount(). The second parameter is the file type, FAT_FILE or FAT_DIR, depending on
whether a file or a directory is to be deleted. The third parameter contains the file name, including the
directory (if applicable) relative to the directory root. All paths in the FAT library are specified relative to
the root directory.

fat_Delete(my_part, FAT_FILE, "DIR/FILE.TXT");
24 www.rabbit.com FAT File System Module

http://www.rabbit.com

4.3 Error Handling
Most routines in the FAT library return an int value error code indicating the status of the requested opera-
tion. Table 2 contains a list of error codes specific to the FAT file system. Most of these codes, along
with some other error codes, are defined in /Lib/../ERRNO.LIB.

Table 2. FAT-Specific Error Codes

Code Value Description

EOF 231 End of File Encountered

EEOF 41 End-of-file marker reached

ETYPE 232 Incorrect Type

EPATHSTR 233 Invalid Path String

EROOTFULL 234 Root Directory is Full

EUNFORMAT 235 Unformatted Volume

EBADPART 236 Invalid Partition

ENOPART 237 Unpartitioned / Unformatted Media

ENOTEMPTY 238 Open Files in Partition / Directory to be Deleted

EPERM 1 Operation not permitted

ENOENT 2 No such file or directory

EIO 5 I/O error

EBUSY 16 Device or resource busy

EEXIST 17 File exists

ENODEV 19 No such device

ENOSPC 28 No space left on device

ENOTEMPTY 39 Directory is not empty

ENOMEDIUM 123 No medium found
FAT File System Module www.rabbit.com 25

http://www.rabbit.com

5. FAT API Functions
The FAT API functions are described in this section. The table below groups the functions by category and
provides links to the function descriptions.

Function Category Function Names

Device and partition operations

fat_AutoMount
fat_Init
fat_EnumDevice
fat_FormatDevice
fat_UnmountDevice

fat_EnumPartition
fat_FormatPartition
fat_PartitionDevice
fat_MountPartition
fat_UnmountPartition

File operations

fat_Close
fat_CreateFile
fat_Delete
fat_Open
fat_Read

fat_Seek
fat_Split
fat_Truncate
fat_Write
fat_xWrite

Directory operations
fat_CreateDir
fat_OpenDir

fat_ReadDir

Status operations

fat_Free
fat_FileSize
fat_GetAttr
fat_GetName

fat_SetAttr
fat_Status
fat_Tell
nf_XD_Detect

Administrative

fat_CreateTime
fat_InitUCOSMutex
fat_LastAccess
fat_LastWrite

fat_SyncFile
fat_SyncPartition
fat_tick
26 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_AutoMount

int fat_AutoMount(word flags);

DESCRIPTION

Initializes the drivers in the default drivers configuration list in fat_config.lib and enu-
merates the devices in the default devices configuration list, then mounts partitions on enumer-
ated devices according to the device's default configuration flags, unless overridden by the
specified run time configuration flags. Despite its lengthy description, this function makes ini-
tializing multiple devices using the FAT library as easy as possible. The first driver in the con-
figuration list becomes the primary driver in the system, if one is not already set up.

After this routine successfully returns, the application can start calling directory and file func-
tions for the devices' mounted partitions.

If devices and/or partitions are not already formatted, this function can optionally format them
according to the device's configuration or run time override flags.

This function may be called multiple times, but will not attempt to (re)mount device partitions
that it has already mounted. Once a device partition has been mounted by this function, un-
mounts and remounts must be handled by the application.

There are two arrays of data structures that are populated by calling fat_AutoMount(). The
array named fat_part_mounted[] is an array of pointers to fat_part structures. A
fat_part structure holds information about a specific FAT partition. The other array,
_fat_device_table[], is composed of pointers to mbr_dev structures. An mbr_dev
structure holds information about a specific device. Partition and device structures are needed
in many FAT function calls to specify the device and partition to be used.

An example of using fat_part_mounted[] was shown in the sample program
fat_create.c. FAT applications will need to scan fat_part_mounted[] to locate val-
id FAT partitions. A valid FAT partition must be identified before any file and directory opera-
tions can be performed. These pointers to FAT partitions may be used directly by indexing into
the array or stored in a local pointer. The fat_shell.c sample uses an index into the array,
whereas most other sample programs make a copy of the pointer.

An example of using _fat_device_table[] is in the sample program fat_shell.c.
This array is used in FAT operations of a lower level than fat_part_mounted[]. Specifi-
cally, when the device is being partitioned, formatted and/or enumerated. Calling
fat_AutoMount() relieves most applications of the need to directly use
fat_device_table[].
FAT File System Module www.rabbit.com 27

http://www.rabbit.com

fat_AutoMount (continued)

PARAMETERS

flags Run-time device configuration flags to allow overriding the default device
configuration flags. If not overriding the default configuration flags, spec-
ify FDDF_USE_DEFAULT. To override the default flags, specify the
ORed combination of one or more of the following:

• FDDF_MOUNT_PART_0: Mount specified partition

• FDDF_MOUNT_PART_1:

• FDDF_MOUNT_PART_2:

• FDDF_MOUNT_PART_3:

• FDDF_MOUNT_PART_ALL: Mount all partitions

• FDDF_MOUNT_DEV_0: Apply to specified device

• FDDF_MOUNT_DEV_1:

• FDDF_MOUNT_DEV_2:

• FDDF_MOUNT_DEV_3:

• FDDF_MOUNT_DEV_ALL: Apply to all available devices

• FDDF_NO_RECOVERY: Use norecovery if fails first time

• FDDF_COND_DEV_FORMAT: Format device if unformatted

• FDDF_COND_PART_FORMAT: Format partition if unformatted

• FDDF_UNCOND_DEV_FORMAT: Format device unconditionally

• FDDF_UNCOND_PART_FORMAT: Format partition unconditionally

Note: The FDDF_MOUNT_PART_* flags apply equally to all
FDDF_MOUNT_DEV_* devices which are specified. If this is a prob-
lem, call this function multiple times with a single DEV flag bit each
time.

Note: Formatting the device creates a single FAT partition covering
the entire device. It is recommended that you always set the
*_PART_FORMAT flag bit if you set the corresponding
*_DEV_FORMAT flag bit.
28 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_AutoMount (continued)

RETURN VALUE

0: success
-EBADPART: partition is not a valid FAT partition
-EIO: Device I/O error
-EINVAL: invalid prtTable
-EUNFORMAT: device is not formatted
-ENOPART: no partitions exist on the device
-EBUSY: For non-blocking mode only, the device is busy. Call this function again to complete
the close.

Any other negative value means that an I/O error occurred when updating the directory entry.
In this case, the file is forced to close, but its recorded length might not be valid.

LIBRARY

FAT.LIB

SEE ALSO

fat_EnumDevice, fat_EnumPartition, fat_MountPartition
FAT File System Module www.rabbit.com 29

http://www.rabbit.com

fat_Close

fat_Close(FATfile *file);

DESCRIPTION

Closes a currently open file. You should check the return code since an I/O needs to be per-
formed when closing a file to update the file's EOF offset (length), last access date, attributes
and last write date (if modified) in the directory entry. This is particularly critical when using
non-blocking mode.

PARAMETERS

file Pointer to the open file to close.

RETURN VALUE

0: success.
-EINVAL: invalid file handle.
-EBUSY: For non-blocking mode only, the device is busy. Call this function again to complete
the close.

Any other negative value means that an I/O error occurred when updating the directory entry.
In this case, the file is forced to close, but its recorded length might not be valid.

LIBRARY

FAT.LIB

SEE ALSO

fat_Open, fat_OpenDir
30 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_CreateDir

fat_CreateDir(fat_part *part, char *dirname);

DESCRIPTION

Creates a directory if it does not already exist. The parent directory must already exist.

In non-blocking mode, only one file or directory can be created at any one time, since a single
static FATfile is used for temporary storage. Each time you call this function, pass the same
dirname pointer (not just the same string contents).

PARAMETERS

part Handle for the partition being used.

dirname Pointer to the full path name of the directory to be created.

RETURN VALUE

0: success.
-EINVAL: invalid argument. Trying to create volume label.
-ENOENT: parent directory does not exist.
-EPERM: the directory already exists or is write-protected.
-EBUSY: the device is busy (only if non-blocking).
-EFSTATE: if non-blocking, but a previous sequence of calls to this function (or
fat_CreateFile()) has not completed and you are trying to create a different file or direc-
tory. You must complete the sequence of calls for each file or directory i.e., keep calling until
something other than -EBUSY is returned.

Other negative values are possible from fat_Open()/fat_Close() calls.

LIBRARY

FAT.LIB

SEE ALSO

fat_ReadDir, fat_Status, fat_Open, fat_CreateFile
FAT File System Module www.rabbit.com 31

http://www.rabbit.com

fat_CreateFile

int fat_CreateFile(fat_part *part, char *filename, long alloc_size,
FATfile *file);

DESCRIPTION

Creates a file if it does not already exist. The parent directory must already exist.

In non-blocking mode, if file is NULL, only one file or directory can be created at any one
time, since a single static FATfile is used for temporary storage. Each time you call this func-
tion, pass the same dirname pointer (not just the same string contents).

PARAMETERS

part Pointer to the partition being used.

filename Pointer to the full path name of the file to be created.

alloc_size Initial number of bytes to pre-allocate. Note that at least one cluster will be
allocated. If there is not enough space beyond the first cluster for the re-
quested allocation amount, the file will be allocated with whatever space is
available on the partition, but no error code will be returned. If not even the
first cluster is allocated, the -ENOSPC error code will return. This initial
allocation amount is rounded up to the next whole number of clusters.

file If not NULL, the created file is opened and accessible using this handle.
If NULL, the file is closed after it is created.

RETURN VALUE

0: success.
-EINVAL: part, filename, alloc_size, or file contain invalid values.
-ENOENT: the parent directory does not exist.
-ENOSPC: no allocatable sectors were found.
-EPERM: write-protected, trying to create a file on a read-only partition.
-EBUSY: the device is busy (non-blocking mode only).
-EFSTATE: if non-blocking, but a previous sequence of calls to this function (of
fat_CreateFile) has not completed but you are trying to create a different file or directory. You
must complete the sequence of calls for each file or directory i.e. keep calling until something
other than -EBUSY is returned. This code is only returned if you pass a NULL file pointer, or
if the file pointer is not NULL and the referenced file is already open.

Other negative values indicate I/O error, etc.

LIBRARY

FAT.LIB

SEE ALSO

fat_Open, fat_ReadDir, fat_Write
32 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_CreateTime

fat_CreateTime(fat_dirent *entry, struct tm *t);

DESCRIPTION

This function puts the creation date and time of the entry into the system time structure t. The
function does not fill in the tm_wday field in the system time structure.

PARAMETERS

entry Pointer to a directory entry

t Pointer to a system time structure

RETURN VALUE

0: success.
-EINVAL: invalid directory entry or time pointer

LIBRARY

FAT.LIB

SEE ALSO

fat_ReadDir, fat_Status, fat_LastAccess, fat_LastWrite
FAT File System Module www.rabbit.com 33

http://www.rabbit.com

fat_Delete

fat_Delete(fat_part *part, int type, char *name);

DESCRIPTION

Deletes the specified file or directory. The type must match or the deletion will not occur. This
routine inserts a deletion code into the directory entry and marks the sectors as available in the
FAT table, but does not actually destroy the data contained in the sectors. This allows an unde-
lete function to be implemented, but such a routine is not part of this library. A directory must
be empty to be deleted.

PARAMETERS

part Handle for the partition being used.

type Must be a FAT file (FAT_FILE) or a FAT directory (FAT_DIR), depend-
ing on what is to be deleted.

name Pointer to the full path name of the file/directory to be deleted.

RETURN VALUE

0: success.
-EIO: device I/O error.
-EINVAL: part, type, or name contain invalid values.
-EPATHSTR: name is not a valid path/name string.
-EPERM: the file is open, write-protected, hidden, or system.
-ENOTEMPTY: the directory is not empty.
-ENOENT: the file/directory does not exist.
-EBUSY: the device is busy. (Only if non-blocking.)
-EPSTATE: if the partition is busy; i.e., there is an allocation in progress. (Only if non-block-
ing.)

LIBRARY

FAT.LIB

SEE ALSO

fat_Open, fat_OpenDir, fat_Split, fat_Truncate, fat_Close
34 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_EnumDevice

fat_EnumDevice(mbr_drvr *driver, mbr_dev *dev, int devnum, char *sig,
int norecovery);

DESCRIPTION

This routine is called to learn about the devices present on the driver passed in. The device will
be added to the linked list of enumerated devices. Partition pointers will be set to NULL, indi-
cating they have not been enumerated yet. Partition entries must be enumerated separately.

The signature string is an identifier given to the write-back cache, and must remain consistent
between resets so that the device can be associated properly with any battery-backed cache en-
tries remaining in memory.

This function is called by fat_AutoMount() and fat_Init().

PARAMETERS

driver Pointer to an initialized driver structure set up during the initialization of
the storage device driver.

dev Pointer to the device structure to be filled in.

devnum Physical device number of the device.

sig Pointer to a unique signature string. Note that this value must remain the
same between resets.

norecovery Boolean flag - set to True to ignore power-recovery data. True is any value
except zero.

RETURN VALUE

0: success.
-EIO: error trying to read the device or structure.
-EINVAL: devnum invalid or does not exist.
-ENOMEM: memory for page buffer/RJ is not available.
-EUNFORMAT: the device is accessible, but not formatted. You may use it provided it is

 formatted/partitioned by either this library or by another system.
-EBADPART: the partition table on the device is invalid.
-ENOPART: the device does not have any FAT partitions. This code is superseded by any other

 error detected.
-EEXIST: the device has already been enumerated.
-EBUSY: the device is busy (nonblocking mode only).

LIBRARY

FAT.LIB

SEE ALSO

fat_AutoMount, fat_Init, fat_EnumPartition
FAT File System Module www.rabbit.com 35

http://www.rabbit.com

fat_EnumPartition

fat_EnumPartition(mbr_dev *dev, int pnum, fat_part *part);

DESCRIPTION

This routine is called to enumerate a partition on the given device. The partition information
will be put into the FAT partition structure pointed to by part. The partition pointer will be
linked to the device structure, registered with the write-back cache, and will then be active. The
partition must be of a valid FAT type.

This function is called by fat_AutoMount() and fat_Init().

PARAMETERS

dev Pointer to an MBR device structure.

pnum Partition number to link and enumerate.

part Pointer to an FAT partition structure to be filled in.

RETURN VALUE

0: success.
-EIO: error trying to read the device or structure.
-EINVAL: partition number is invalid.
-EUNFORMAT: the device is accessible, but not formatted.
-EBADPART: the partition is not a FAT partition.
-EEXIST: the partition has already been enumerated.
-EUNFLUSHABLE: there are no flushable sectors in the write-back cache.
-EBUSY: the device is busy (Only if non-blocking.).

LIBRARY

FAT.LIB

SEE ALSO

fat_EnumDevice, fat_FormatPartition, fat_MountPartition
36 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_FileSize

fat_FileSize(FATfile *file, unsigned long *length);

DESCRIPTION

Puts the current size of the file in bytes into length.

PARAMETERS

file Handle for an open file.

length Pointer to the variable where the file length (in bytes) is to be placed.

RETURN VALUE

0: success.
-EINVAL: file is invalid.

LIBRARY

FAT.LIB

SEE ALSO

fat_Open, fat_Seek
FAT File System Module www.rabbit.com 37

http://www.rabbit.com

fat_FormatDevice

fat_FormatDevice(mbr_dev *dev, int mode);

DESCRIPTION

Formats a device. The device will have a DOS master boot record (MBR) written to it. Existing
partitions are left alone if the device was previously formatted. The formatted device will be
registered with the write-back cache for use with the FAT library. The one partition mode will
instruct the routine to create a partition table, with one partition using the entire device. This
mode only works if the device is currently unformatted or has no partitions.

If needed (i.e., there is no MBR on the device), this function is called by fat_AutoMount()
if its flags parameter allows it.

PARAMETERS

dev Pointer to the data structure for the device to format.

mode Mode:

0 = normal (use the partition table in the device structure)
1 = one partition using the entire device (errors occur if there are already

partitions in the device structure)
3 = force one partition for the entire device (overwrites values already in

the device structure)

RETURN

0: success.
-EIO: error trying to read the device or structure.
-EINVAL: device structure is invalid or does not exist.
-ENOMEM: memory for page buffer/RJ is not available.
-EEXIST: the device is already formatted.
-EPERM: the device already has mounted partition(s).
-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY

FAT.LIB

SEE ALSO

fat_AutoMount, fat_Init, fat_EnumDevice, fat_PartitionDevice,
fat_FormatPartition
38 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_FormatPartition

fat_FormatPartition(mbr_dev *dev, fat_part *part, int pnum,
int type, char *label, int (*usr)());

DESCRIPTION

Formats partition number pnum according to partition type. The partition table information in
the device must be valid. This will always be the case if the device was enumerated. The parti-
tion type must be a valid FAT type. Also note that the partition is not mounted after the partition
is formatted. If -EBUSY is returned, the partition structure must not be disturbed until a subse-
quent call returns something other than -EBUSY.

If needed (i.e., fat_MountPartition() returned error code -EBADPART), this function
is called by fat_AutoMount().

PARAMETERS

dev Pointer to a device structure containing partitions.

part Pointer to a FAT partition structure to be linked. Note that opstate must
be set to zero before first call to this function if the library is being used in
the non-

blocking mode.

pnum Partition number on the device (0–3).

type Partition type.

label Pointer to a partition label string.

usr Pointer to a user routine.

RETURN VALUE

0: success.
-EIO: error in reading the device or structure.
-EINVAL: the partition number is invalid.
-EPERM: write access is not allowed.
-EUNFORMAT: the device is accessible, but is not formatted.
-EBADPART: the partition is not a valid FAT partition.
-EACCES: the partition is currently mounted.
-EBUSY: the device is busy (Only if non-blocking.).

LIBRARY

FAT.LIB

SEE ALSO

fat_AutoMount, fat_Init, fat_FormatDevice, fat_EnumDevice,
fat_PartitionDevice, fat_EnumPartition
FAT File System Module www.rabbit.com 39

http://www.rabbit.com

fat_Free

fat_Free(fat_part *part);

DESCRIPTION

This function returns the number of free clusters on the partition.

PARAMETERS

part Handle to the partition.

RETURN VALUE

Number of free clusters on success
0: partition handle is bad or partition is not mounted.

LIBRARY

FAT.LIB

SEE ALSO

fat_EnumPartition, fat_MountPartition
40 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_GetAttr

fat_GetAttr(FATfile *file);

DESCRIPTION

This function gets the given attributes to the file. Use the defined attribute flags to check the
value:

• FATATTR_READ_ONLY

• FATATTR_HIDDEN

• FATATTR_SYSTEM

• FATATTR_VOLUME_ID

• FATATTR_DIRECTORY

• FATATTR_ARCHIVE

• FATATTR_LONG_NAME

PARAMETERS

file Handle to the open file.

RETURN VALUE

Attributes on success
-EINVAL: invalid file handle.

LIBRARY

FAT.LIB

SEE ALSO

fat_Open, fat_Status
FAT File System Module www.rabbit.com 41

http://www.rabbit.com

fat_GetName

int fat_GetName(fat_dirent *entry, char *buf, word flags);

DESCRIPTION

Translates the file or directory name in the fat_dirent structure into a printable name. FAT
file names are stored in a strict fixed-field format in the fat_dirent structure (returned from
fat_Status, for example). This format is not always suitable for printing, so this function
should be used to convert the name to a printable null-terminated string.

PARAMETERS

entry Pointer to a directory entry obtained by fat_Status().

buf Pointer to a char array that will be filled in. This array must be at least 13
characters long.

flags May be one of the following:
• 0 - standard format, e.g., AUTOEXEC.BAT or XYZ.GIF

• FAT_LOWERCASE - standard format, but make lower case.

RETURN VALUE

0: success.
-EINVAL: invalid (NULL) parameter(s).

LIBRARY

FAT.LIB

SEE ALSO

fat_ReadDir, fat_Status
42 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_Init

fat_Init(int pnum, mbr_drvr *driver, mbr_dev *dev, fat_part *part,
int norecovery);

DESCRIPTION

Initializes the default driver in MBR_DRIVER_INIT, enumerates device 0, then enumerates
and mounts the specified partition. This function was replaced with the more powerful
fat_AutoMount().

fat_Init() will only work with device 0 of the default driver. This driver becomes the pri-
mary driver in the system.

The application can start calling any directory or file functions after this routine returns success-
fully.

The desired partition must already be formatted. If the partition mount fails, you may call the
function again using a different partition number (pnum). The device will not be initialized a
second time.

PARAMETERS

pnum Partition number to mount (0-3).

driver Pointer to the driver structure to fill in.

dev Pointer to the device structure to fill in.

part Pointer to the partition structure to fill in.

norecovery Boolean flag - set to True to ignore power-recovery data. True is any value
except zero.

RETURN VALUE

0: success.
-EIO: device I/O error.
-EINVAL: pnum, driver, or device, or part is invalid.
-EUNFORMAT: the device is not formatted.
-EBADPART: the partition requested is not a valid FAT partition.
-ENOPART: no partitions exist on the device.
-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY

FAT.LIB

SEE ALSO

fat_AutoMount, fat_EnumDevice, fat_EnumPartition,
fat_MountPartition
FAT File System Module www.rabbit.com 43

http://www.rabbit.com

fat_InitUCOSMutex

fat_InitUCOSMutex(int mutexPriority);

DESCRIPTION

This function was introduced in FAT version 2.10. Prior versions of the FATfile system are com-
patible with µC/OS-II only if FAT API calls are confined to one µC/OS-II task. The FAT API is
not reentrant from multiple tasks without the changes made in FAT version 2.10. If you wish to
use the FAT file system from multiple µC/COS tasks, you must do the following:

1. The statement #define FAT_USE_UCOS_MUTEX must come before the statement:

 #use FAT.LIB

2. After calling OSInit() and before starting any tasks that use the FAT, call
fat_InitUCOSMutex(mutexPriority). The parameter mutexPriority is a
µC/OS-II task priority that must be higher than the priorities of all tasks that call FAT API func-
tions.

3. You must not call low-level, non-API FAT or write-back cache functions. Only call FAT func-
tions appended with “fat_” and with public function descriptions.

4. Run the FAT in blocking mode (#define FAT_BLOCK).

Mutex timeouts or other errors will cause a run-time error -ERR_FAT_MUTEX_ERROR.

µC/OS-II may raise the priority of tasks using mutexes to prevent priority inversion.

The default mutex time-out in seconds is given by FAT_MUTEX_TIMEOUT_SEC, which de-
faults to 5 seconds if not defined in the application before the statement #use FAT.LIB.

PARAMETERS

mutexPriority A µC/OS-II task priority that MUST be higher than the priorities of all
tasks that call FAT API functions.

RETURN VALUE

None. A run-time error causes an exception and the application will exit with the error code
-ERR_FAT_MUTEX_ERROR.

LIBRARY

FAT.LIB

SEE ALSO

fat_AutoMount, fat_Init
44 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_LastAccess

fat_LastAccess(fat_dirent *entry, struct tm *t);

DESCRIPTION

Puts the last access date of the specified entry into the system time structure t. The time is al-
ways set to midnight. The function does not fill in the tm_wday field in the system time struc-
ture.

PARAMETERS

entry Pointer to a directory entry

t Pointer to a system time structure

RETURN VALUE

0: success.
-EINVAL: invalid directory entry or time pointer

LIBRARY

FAT.LIB

SEE ALSO

fat_ReadDir, fat_Status, fat_CreateTime, fat_LastWrite
FAT File System Module www.rabbit.com 45

http://www.rabbit.com

fat_LastWrite

fat_LastWrite(fat_dirent *entry, struct tm *t);

DESCRIPTION

Puts the date and time of the last write for the given entry into the system time structure t. The
function does not fill in the tm_wday field in the system time structure.

PARAMETERS

entry Pointer to a directory entry

t Pointer to a system time structure

RETURN VALUE

0: success.
-EINVAL: invalid directory entry or time pointer

LIBRARY

FAT.LIB

SEE ALSO

fat_ReadDir, fat_Status, fat_CreateTime, fat_LastAccess
46 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_MountPartition

fat_MountPartition(fat_part *part);

DESCRIPTION

Marks the enumerated partition as mounted on both the FAT and MBR level. The partition
MUST be previously enumerated with fat_EnumPartition().

This function is called by fat_AutoMount() and fat_Init().

PARAMETER

part Pointer to the FAT partition structure to mount.

RETURN VALUE

0: success.
-EINVAL: device or partition structure or part is invalid.
-EBADPART: the partition is not a FAT partition.
-ENOPART: the partition does not exist on the device.
-EPERM: the partition has not been enumerated.
-EACCESS: the partition is already linked to another fat_part structure.
-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY

FAT.LIB

SEE ALSO

fat_EnumPartition, fat_UnmountPartition
FAT File System Module www.rabbit.com 47

http://www.rabbit.com

fat_Open

int fat_Open(fat_part *part, char *name, int type, int ff,
FATfile *file, long *prealloc);

DESCRIPTION

Opens a file or directory, optionally creating it if it does not already exist. If the function returns
-EBUSY, call it repeatedly with the same arguments until it returns something other than
-EBUSY.

PARAMETERS

part Handle for the partition being used.

name Pointer to the full path name of the file to be opened/created.

type FAT_FILE or FAT_DIR, depending on what is to be opened/created.

ff File flags, must be one of:

• FAT_OPEN - Object must already exist. If it does not exist, -ENOENT
will be returned.

• FAT_CREATE - Object is created only if it does not already exist

• FAT_MUST_CREATE - Object is created, and it must not already exist.

• FAT_READONLY - No write operations (this flag is mutually exclusive
with any of the CREATE flags).

• FAT_SEQUENTIAL - Optimize for sequential reads and/or writes. This
setting can be changed while the file is open by using the
fat_fcntl() function.

file Pointer to an empty FAT file structure that will act as a handle for the newly
opened file. Note that you must memset this structure to zero when you
are using the non-blocking mode before calling this function the first time.
Keep calling until something other than -EBUSY is returned, but do not
change anything in any of the parameters while doing so.

prealloc An initial byte count if the object needs to be created. This number is
rounded up to the nearest whole number of clusters greater than or equal to
1. This parameter is only used if one of the *_CREATE flag is set and the
object does not already exist. On return, *prealloc is updated to the ac-
tual number of bytes allocated. May be NULL, in which case one cluster is
allocated if the call is successful.
48 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_Open (continued)

RETURN VALUE

0: success.
-EINVAL: invalid arguments. Trying to create volume label, or conflicting flags.
-ENOENT: file/directory could not be found.
-EEXIST: object existed when FAT_MUST_CREATE flag set.
-EPERM: trying to create a file/directory on a read-only partition.
-EMFILE - too many open files. If you get this code, increase the FAT_MAXMARKERS defi-
nition in the BIOS.

Other negative values indicate I/O error, etc.

Non-blocking mode only:

-EBUSY: the device is busy (nonblocking mode only).
-EFSTATE - file structure is not in a valid state. Usually means it was not zerod before calling
this function for the first time (for that file) struct, when in non-blocking mode; can also occur
if the same file struct is opened more than once.

 LIBRARY

FAT.LIB

SEE ALSO

fat_ReadDir, fat_Status, fat_Close
FAT File System Module www.rabbit.com 49

http://www.rabbit.com

fat_OpenDir

fat_OpenDir(fat_part *part, char *dirname, FATfile *dir);

DESCRIPTION

Opens a directory for use, filling in the FATfile handle.

PARAMETERS

part Pointer to the partition structure being used.

dirname Pointer to the full path name of the directory to be opened or created.

dir Pointer to directory requested.

RETURN VALUE

0: success
-EINVAL: invalid argument.
-ENOENT: the directory cannot be found.
-EBUSY: the device is busy (Only if non-blocking).

Other negative values are possible from the fat_Open() call.

LIBRARY

FAT.LIB

SEE ALSO

fat_ReadDir, fat_Status, fat_Open, fat_Close
50 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_PartitionDevice

fat_PartitionDevice(mbr_dev *dev, int pnum);

DESCRIPTION

This function partitions the device by modifying the master boot record (MBR), which could
destroy access to information already on the device. The partition information contained in the
specified mbr_dev structure must be meaningful, and the sizes and start positions must make
sense (no overlapping, etc.). If this is not true, you will get an -EINVAL error code. The device
being partitioned must already have been formatted and enumerated.

This function will only allow changes to one partition at a time, and this partition must either
not exist or be of a FAT type.

The validity of the new partition will be verified before any changes are done to the device. All
other partition information in the device structure (for those partitions that are not being modi-
fied) must match the values currently existing on the MBR. The type given for the new partition
must either be zero (if you are deleting the partition) or a FAT type.

You may not use this function to create or modify a non-FAT partition.

PARAMETERS

dev Pointer to the device structure of the device to be partitioned.

pnum Partition number of the partition being modified.

RETURN VALUE

0: success.
-EIO: device I/O error.
-EINVAL: pnum or device structure is invalid.
-EUNFORMAT: the device is not formatted.
-EBADPART: the partition is a non-FAT partition.
-EPERM: the partition is mounted.
-EBUSY: the device is busy (Only if non-blocking).

LIBRARY

FAT.LIB

SEE ALSO

fat_FormatDevice, fat_EnumDevice, fat_FormatPartition
FAT File System Module www.rabbit.com 51

http://www.rabbit.com

fat_Read

fat_Read(FATfile *file, char *buf, int len);

DESCRIPTION

Given file, buf, and len, this routine reads len characters from the specified file and plac-
es the characters into buf. The function returns the number of characters actually read on suc-
cess. Characters are read beginning at the current position of the file and the position pointer
will be left pointing to the next byte to be read. The file position can be changed by the
fat_Seek() function. If the file contains fewer than len characters from the current position
to the EOF, the transfer will stop at the EOF. If already at the EOF, 0 is returned. The len pa-
rameter must be positive, limiting reads to 32767 bytes per call.

PARAMETERS

file Handle for the file being read.

buf Pointer to the buffer where data are to be placed.

len Length of data to be read.

RETURN VALUE

Number of bytes read: success. May be less than the requested amount in non-blocking mode,
or if EOF was encountered.
-EEOF: stating position for read was at (or beyond) end-of-file.
-EIO: device I/O error.
-EINVAL: file, buf, or len, contain invalid values.
-EPERM: the file is locked.
-ENOENT: the file/directory does not exist.
-EFSTATE: file is in inappropriate state (Only if non-blocking).

LIBRARY

FAT.LIB

SEE ALSO

fat_Open, fat_Write, fat_Seek
52 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_ReadDir

int fat_ReadDir(FATfile *dir, fat_dirent *entry, int mode);

DESCRIPTION

Reads the next directory entry of the desired type from the given directory, filling in the entry
structure.

PARAMETERS

dir Pointer to the handle for the directory being read.

entry Pointer to the handle to the entry structure to fill in.

mode 0 = next active file or directory entry including read only (no hidden, sys,
label, deleted or empty)

A nonzero value sets the selection based on the following attributes:

• FATATTR_READ_ONLY - include read-only entries

• FATATTR_HIDDEN - include hidden entries

• FATATTR_SYSTEM - include system entries

• FATATTR_VOLUME_ID - include label entries

• FATATTR_DIRECTORY - include directory entries

• FATATTR_ARCHIVE - include modified entries

• FAT_FIL_RD_ONLY - filter on read-only attribute

• FAT_FIL_HIDDEN - filter on hidden attribute

• FAT_FIL_SYSTEM - filter on system attribute

• FAT_FIL_LABEL - filter on label attribute

• FAT_FIL_DIR - filter on directory attribute

• FAT_FIL_ARCHIVE - filter on modified attribute

The FAT_INC_* flags default to FAT_INC_ACTIVE if none set:

• FAT_INC_DELETED - include deleted entries

• FAT_INC_EMPTY - include empty entries

• FAT_INC_LNAME - include long name entries

• FAT_INC_ACTIVE - include active entries

The following predefined filters are available:

• FAT_INC_ALL - returns ALL entries of ANY type

• FAT_INC_DEF - default (files and directories including read-only and
archive)

Note: Active files are included by default unless FAT_INC_DELETED,
FAT_INC_EMPTY, or FAT_INC_LNAME is set. Include flags become the desired fil-
ter value if the associated filter flags are set.
FAT File System Module www.rabbit.com 53

http://www.rabbit.com

fat_ReadDir (continued)

EXAMPLES OF FILTER BEHAVIOR

mode = FAT_INC_DEF | FATFIL_HIDDEN | FATATTR_HIDDEN

would return the next hidden file or directory (including read-only and archive)

mode = FAT_INC_DEF|FAT_FIL_HIDDEN|FAT_FIL_DIR|FATATTR_HIDDEN

would return next hidden directory (but would not return any hidden file)

mode = FAT_INC_DEF|FAT_FIL_HIDDEN|FAT_FIL_DIR|
FATATTR_HIDDEN & ~FATATTR_DIRECTORY

would return next hidden file (but would not return any hidden directory)

mode = FAT_INC_ALL & ~FAT_INC_EMPTY

would return the next non-empty entry of any type

RETURN VALUE

0: success.
-EINVAL: invalid argument.
-ENOENT: directory does not exist
-EEOF: no more entries in the directory
-EFAULT: directory chain has link error
-EBUSY: the device is busy (non-blocking mode only)

Other negative values from the fat_Open() call are also possible.

LIBRARY

FAT.LIB

SEE ALSO

fat_OpenDir, fat_Status
54 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_Seek

fat_Seek(FATfile *file, long pos, int whence);

DESCRIPTION

Positions the internal file position pointer. fat_Seek() will allocate clusters to the file if nec-
essary, but will not move the position pointer beyond the original end of file (EOF) unless doing
a SEEK_RAW. In all other cases, extending the pointer past the original EOF will preallocate the
space that would be needed to position the pointer as requested, but the pointer will be left at
the original EOF and the file length will not be changed. If this occurs, an EOF error will be
returned to indicate the space was allocated but the pointer was left at the EOF.

PARAMETERS

file Pointer to the file structure of the open file.

pos Position value in number of bytes (may be negative). This value is inter-
preted according to the third parameter, whence.

whence Must be one of the following:

• SEEK_SET - pos is the byte position to seek, where 0 is the first byte
of the file. If pos is less than 0, the position pointer is set to 0 and no
error code is returned. If pos is greater than the length of the file, the po-
sition pointer is set to EOF and error code -EEOF is returned.

• SEEK_CUR - seek pos bytes from the current position. If pos is less
than 0 the seek is towards the start of the file. If this goes past the start
of the file, the position pointer is set to 0 and no error code is returned.
If pos is greater than 0 the seek is towards EOF. If this goes past EOF
the position pointer is set to EOF and error code -EEOF is returned.

• SEEK_END - seek to pos bytes from the end of the file. That is, for a
file that is x bytes long, the statement:

fat_Seek (&my_file, -1, SEEK_END);

will cause the position pointer to be set at x-1 no matter its value prior
to the seek call. If the value of pos would move the position pointer past
the start of the file, the position pointer is set to 0 (the start of the file)
and no error code is returned. If pos is greater than or equal to 0, the
position pointer is set to EOF and error code -EEOF is returned..

• SEEK_RAW - is similar to SEEK_SET, but if pos goes beyond EOF,
using SEEK_RAW will set the file length and the position pointer to
pos.
FAT File System Module www.rabbit.com 55

http://www.rabbit.com

fat_Seek (continued)

RETURN VALUE

0: success.
-EIO: device I/O error.
-EINVAL: file, pos, or whence contain invalid values.
-EPERM: the file is locked or writes are not permitted.
-ENOENT: the file does not exist.
-EEOF: space is allocated, but the pointer is left at original EOF.
-ENOSPC: no space is left on the device to complete the seek.
-EBUSY: the device is busy (Only if non-blocking).
-EFSTATE: if file in inappropriate state (Only if non-blocking).

LIBRARY

FAT.LIB

SEE ALSO

fat_Open, fat_Read, fat_Write, fat_xWrite
56 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_SetAttr

fat_SetAttr(FATfile *file, int attr);

DESCRIPTION

This function sets the given attributes to the file. Use defined attribute flags to create the set val-
ues.

PARAMETERS

file Handle to the open file.

attr Attributes to set in file. May be one or more of the following:

• FATATTR_READ_ONLY

• FATATTR_HIDDEN

• FATATTR_SYSTEM

• FATATTR_VOLUME_ID

• FATATTR_DIRECTORY

• FATATTR_ARCHIVE

• FATATTR_LONG_NAME

RETURN VALUE

0: Success
-EIO: on device IO error
-EINVAL: invalid open file handle
-EPERM: if the file is locked or write not permitted
-EBUSY: if the device is busy. (Only if non-blocking)

LIBRARY

FAT.LIB

SEE ALSO

fat_Open, fat_Status
FAT File System Module www.rabbit.com 57

http://www.rabbit.com

fat_Split

fat_Split(FATfile *file, long where, char *newfile);

DESCRIPTION

Splits the original file at where and assigns any left over allocated clusters to newfile. As
the name implies, newfile is a newly created file that must not already exist. Upon comple-
tion, the original file is closed and the file handle is returned pointing to the created and opened
new file. The file handle given must point to a file of type FAT_FILE. There are internal static
variables used in this function, so only one file split operation can be active. Additional requests
will be held off with -EBUSY returns until the active split completes.

PARAMETERS

file Pointer to the open file to split.

where May be one of the following:

• ≥ 0 - absolute byte to split the file. If the absolute byte is beyond the
EOF, file is split at EOF.

• FAT_BRK_END - split at EOF.

• FAT_BRK_POS - split at current file position.

newfile Pointer to the absolute path and name of the new file created for the split.

RETURN VALUE

0: success.
-EIO: device I/O error.
-EINVAL: file has invalid references.
-EPATHSTR: newfile is not a valid path/name string.
-EEOF: no unused clusters are available for newfile. file will be unchanged and open,
newfile is not created.
-EPERM: file is in use, write-protected, hidden, or system.
-ENOENT: file does not exist.
-ETYPE: file is not a FAT file type.
-EBUSY: the device is busy (Only non-blocking mode).
-EFSTATE: if file in inappropriate state (Only non-blocking mode).

LIBRARY

FAT.LIB

SEE ALSO

fat_Open, fat_OpenDir, fat_Delete, fat_Truncate, fat_Close
58 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_Status

int fat_Status(fat_part *part, char *name, fat_dirent *entry);

DESCRIPTION

Scans for the specified entry and fills in the entry structure if found without opening the direc-
tory or entry.

PARAMETERS

part Pointer to the partition structure being used.

name Pointer to the full path name of the entry to be found.

entry Pointer to the directory entry structure to fill in.

RETURN VALUE

0: success.
-EIO: device I/O error.
-EINVAL: part, filepath, or entry are invalid.
-ENOENT: the file/directory/label does not exist.
-EBUSY: the device is busy (Only non-blocking mode). If you get this error, call the function
again without changing any parameters.

LIBRARY

FAT.LIB

SEE ALSO

fat_ReadDir
FAT File System Module www.rabbit.com 59

http://www.rabbit.com

fat_SyncFile

fat_SyncFile(FATfile *file);

DESCRIPTION

Updates the directory entry for the given file, committing cached size, dates, and attribute fields
to the actual directory. This function has the same effect as closing and re-opening the file.

PARAMETERS

file Pointer to the open file.

RETURN VALUE

0: success.
-EINVAL: file is invalid.
-EPERM - this operation is not permitted on the root directory.
-EBUSY: the device is busy (Only if non-blocking). Call function again to complete the update.
-EFSTATE - file not open or in an invalid state.

Any other negative value: I/O error when updating the directory entry.

LIBRARY

FAT.LIB

SEE ALSO

fat_Close, fat_Open, fat_OpenDir
60 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_SyncPartition

fat_SyncPartition(fat_part *part);

DESCRIPTION

Flushes all cached writes to the specified partition to the actual device.

PARAMETER

part Pointer to the partition to be synchronized.

RETURN VALUE

0: success.
-EINVAL: part is invalid.
-EBUSY: the device is busy (Only if non-blocking). Call function again to complete the sync.

Any other negative value: I/O error when updating the device.

LIBRARY

FAT.LIB

SEE ALSO

fat_Close, fat_SyncFile, fat_UnmountPartition
FAT File System Module www.rabbit.com 61

http://www.rabbit.com

fat_Tell

fat_Tell(FATfile *file, unsigned long *pos);

DESCRIPTION

Puts the value of the position pointer (that is, the number of bytes from the beginning
of the file) into pos. Zero indicates the position pointer is at the beginning of the file.

µC/OS-II USERS:

• The FAT API is not reentrant. To use the FAT from multiple µC/OS-II tasks, put the
following statement in your application:

#define FAT_USE_UCOS_MUTEX

• Mutex timeouts or other mutex errors will cause the run-time error
ERR_FAT_MUTEX_ERROR. The default mutex timeout is 5 seconds and can be
changed by #define'ing a different value for FAT_MUTEX_TIMEOUT_SEC.

• You MUST call fat_InitUCOSMutex() after calling OSInit() and before calling
any other FAT API functions.

• You must run the FAT in blocking mode (#define FAT_BLOCK).

• You must not call low-level, non-API FAT or write-back cache functions. Only call FAT
functions appended with “fat_” and with public function descriptions.

PARAMETERS

file Pointer to the file structure of the open file

pos Pointer to the variable where the value of the file position pointer is to be
placed.

RETURN VALUE

0: success.
-EIO: position is beyond EOF.
-EINVAL: file is invalid.

LIBRARY

FAT.LIB

SEE ALSO

fat_Seek, fat_Read, fat_Write, fat_xWrite
62 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_tick

int fat_tick(void)

DESCRIPTION

Drive device I/O completion and periodic flushing. It is not generally necessary for the appli-
cation to call this function; however, if it is called regularly (when the application has nothing
else to do) then file system performance may be improved.

RETURN VALUE

Currently always 0.

LIBRARY

FATWTC.LIB
FAT File System Module www.rabbit.com 63

http://www.rabbit.com

fat_Truncate

fat_Truncate(FATfile *file, long where);

DESCRIPTION

Truncates the file at where and frees any left over allocated clusters. The file must be a
FAT_FILE type.

PARAMETERS

file Pointer to the open file to truncate.

where One of the following:

• ≥ 0 - absolute byte to truncate the file. The file is truncated at EOF if
the absolute byte is beyond EOF.

• FAT_BRK_END - truncate at EOF.

• FAT_BRK_POS - truncate at current file position.

RETURN VALUE

0: success.
-EIO: device I/O error.
-EINVAL: file is invalid.
-EPERM: file is in use, write-protected, hidden, or system.
-ENOENT: the file does not exist.
-ETYPE: file is not a FAT file type.
-EBUSY: the device is busy (Only if non-blocking).
-EFSTATE: if file in inappropriate state (Only if non-blocking)

LIBRARY

FAT.LIB

SEE ALSO

fat_Open, fat_OpenDir, fat_Delete, fat_Split
64 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_UnmountDevice

fat_UnmountDevice(mbr_dev * dev);

DESCRIPTION

Unmounts all FAT partitions on the given device and unregisters the device from the cache sys-
tem. This commits all cache entries to the device and prepares the device for power down or
removal. The device structure given must have been enumerated with fat_EnumDevice().

This function was introduced in FAT module version 2.06. Applications using prior versions of
the FAT module would call fat_UnmountPartition() instead.

PARAMETER

dev Pointer to a FAT device structure to unmount.

RETURN VALUE

0: success.
-EINVAL: device structure (dev) is invalid.
-EBUSY: the device is busy (Only if non-blocking).

LIBRARY

FAT.LIB

SEE ALSO

fat_EnumDevice, fat_AutoMount, fat_UnmountPartition
FAT File System Module www.rabbit.com 65

http://www.rabbit.com

fat_UnmountPartition

fat_UnmountPartition(fat_part *part);

DESCRIPTION

Marks the enumerated partition as unmounted on both the FAT and the master boot record lev-
els. The partition must have been already enumerated using fat_EnumPartition()
(which happens when you call fat_AutoMount()).

To unmount all FAT partitions on a device call fat_UnmountDevice(), a function intro-
duced with FAT version 2.06. It not only commits all cache entries to the device, but also pre-
pares the device for power down or removal.

Note: The partitions on a removable device must be unmounted in order to flush data
before removal. Failure to unmount a partition that has been written could cause dam-
age to the FAT file system.

PARAMETERS

part Pointer to a FAT partition structure to unmount.

RETURN VALUE

0: success.
-EINVAL: device or partition structure or pnum is invalid.
-EBADPART: the partition is not a FAT partition.
-ENOPART: the partition does not exist on the device.
-EPERM: the partition has not been enumerated.
-EBUSY: the device is busy (only if non-blocking).

LIBRARY

FAT.LIB

SEE ALSO

fat_EnumPartition, fat_MountPartition, fat_UnmountDevice
66 www.rabbit.com FAT File System Module

http://www.rabbit.com

fat_Write

fat_Write(FATfile *file, char *buf, int len);

DESCRIPTION

Writes characters into the file specified by the file pointer beginning at the current position in
the file. Characters will be copied from the string pointed to by buf. The len variable controls
how many characters will be written. This can be more than one sector in length, and the write
function will allocate additional sectors if needed. Data is written into the file starting at the cur-
rent file position regardless of existing data. Overwriting at specific points in the file can be ac-
complished by calling the fat_Seek() function before calling fat_Write().

PARAMETERS

file Handle for the open file being written.

buf Pointer to the buffer containing data to write.

len Length of data to be written.

RETURN VALUE

Number of bytes written: success (may be less than len, or zero if non-blocking mode)
-EIO: device I/O error.
-EINVAL: file, buf, or len contain invalid values.
-ENOENT: file does not exist.
-ENOSPC: no space left on the device to complete the write.
-EFAULT: problem in file (broken cluster chain, etc.).
-EPERM: the file is locked or is write-protected.
-EBUSY: the device is busy (only if non-blocking).
-EFSTATE: file is in inappropriate state (only if non-blocking).

LIBRARY

FAT.LIB

SEE ALSO

fat_Open, fat_Read, fat_xWrite, fat_Seek
FAT File System Module www.rabbit.com 67

http://www.rabbit.com

fat_xWrite

fat_xWrite(FATfile *file, long xbuf, int len);

DESCRIPTION

Writes characters into the file specified by the file pointer beginning at the current position in the
file. Characters will be copied from the xmem string pointed to by xbuf. The len variable con-
trols how many characters will be written. This can be more than one sector in length, and the
write function will allocate additional sectors if needed. Data will be written into the file starting
at the current file position regardless of existing data. Overwriting at specific points in the file
can be accomplished by calling the fat_Seek() function before calling fat_xWrite().

PARAMETERS

file Handle for the open file being written.

xbuf xmem address of the buffer to be written.

len Length of data to write.

RETURN VALUE

Number of bytes written: success. (may be less than len, or zero if non-blocking mode)
-EIO: device I/O error.
-EINVAL: file, xbuf, or len contain invalid values.
-ENOENT: the file/directory does not exist.
-ENOSPC: there are no more sectors to allocate on the device.
-EFAULT: there is a problem in the file (broken cluster chain, etc.).
-EPERM: the file is locked or write-protected.
-EBUSY: the device is busy (only if non-blocking).
-EFSTATE: file is in inappropriate state (only if non-blocking).

LIBRARY

FAT.LIB

SEE ALSO

fat_Open, fat_Read, fat_Write, fat_Seek
68 www.rabbit.com FAT File System Module

http://www.rabbit.com

nf_XD_Detect

long nf_XD_Detect(int debounceMode)

DESCRIPTION

This function attempts to read the xD card ID and searches the internal device table for that ID.

This function assumes that there is only one XD card present.

WARNING! - This should not be called to determine if it is safe to do write operations if there
is a chance a removable device might be pulled between calling it and the write. It is best used
to determine if a device is present to proceed with an automount after a device has been un-
mounted in SW and removed.

PARAMETERS

debounceMode 0 - no debouncing

1 - busy wait for debouncing interval

2 - for use if the function is to be called until the debouncing interval is
done, e.g.,

waitfor(rc = nf_XD_Detect(1) != -EAGAIN);

-EAGAIN will be returned until done.

RETURN VALUE

>0: The ID that was found on the device and in the table
-EBUSY: NAND flash device is busy
-ENODEV: No device found
-EAGAIN: if debounceMode equals 2, then not done debouncing, try again

LIBRARY

NFLASH_FAT.LIB
FAT File System Module www.rabbit.com 69

http://www.rabbit.com

Appendix A. More FAT Information
The FAT file system stores and organizes files on a storage device such as a hard drive or a memory
device.

A.1 Clusters and Sectors
Every file is stored on one or more clusters. A cluster is made up of a contiguous number of bytes called
sectors and is the smallest unit of allocation for files. The Dynamic C FAT implementation supports a sec-
tor size of 512 bytes. Cluster sizes depend on the media. The table below gives the cluster sizes used for
some of our RabbitCore modules.

The cluster size for a NAND device corresponds to its page size. Note that a file or directory takes at mini-
mum one cluster. On a NAND device the page size is 16K bytes; therefore, while it is allowable to write
very small files to the FAT file system on a NAND device, it is not space efficient. Even the smallest file
takes at least 16,000 bytes of storage. Cluster sizes for SD cards vary with the size of the card inserted. To
determine the number of sectors per cluster on an SD card, divide the size of the card by 32MB.

A.2 The Master Boot Record
The master boot record (MBR) is located on one or more sectors at the physical start of the device. Its
basic structure is illustrated in Figure 3. The boot region of the MBR contains DOS boot loader code,
which is written when the device is formatted (but is not otherwise used by the Dynamic C FAT file sys-
tem). The partition table follows the boot region. It contains four 16-byte entries, which allows up to four
partitions on the device. Partition table entries contain some critical information: the partition type
(Dynamic C FAT recognizes partition types FAT12 and FAT16) and the partition’s starting and ending sec-
tor numbers. There is also a field denoting the total number of sectors in the partition. If this number is
zero, the corresponding partition is empty and available.

Table 3. Cluster Sizes on Flash Devices

RabbitCore Model Flash Device
Number of Sectors

per Cluster

RCM 3700 1 MB Serial Flash 1

RCM 3300 4 and 8 MB Serial Flash 2

RCM3360/70 NAND Flash 32

RCM4000 NAND Flash 32

RCM4200/10 8 and 4 MB Serial Flash 2

RCM4300/10 SD Card Varies
70 www.rabbit.com FAT File System Module

http://www.rabbit.com

Figure 3. High-Level View of an MBR

Note: Some devices are formatted without an MBR and, therefore, have no partition
table. This configuration is not currently supported in the Dynamic C FAT file system.

A.3 FAT Partitions
The first sector of a valid FAT file system partition contains the BIOS parameter block (BPB); this is fol-
lowed by the file allocation table (FAT), and then the root directory. The figure below shows a device with
two FAT partitions.

Figure 4. Two FAT Partitions on a Device

A.3.1 BPB
The fields of the BPB contain information describing the partition:

• the number of bytes per sector

• the number of sectors per cluster (see Table 3)

• the total count of sectors on the partition

• the number of root directory entries

• plus additional information not mentioned here

�����
�����

�����

�����

�����

�����

���	
�����

���	�	���
�

���	�	���
�

���	�	���
�

����	���

�
��
	�	
��
�

��
��
�

���	��
���	
������
�����

���	�	���
�

��� �

���
���
����

�	
	���	

���	�	���
�

�	��	
�!
����	��
�

 ���	
���	��
�!
���	�	���
�

���
���
����

���	�	���
�

�	
	���	���

�	��	
�!
����	��
�

 ���	
���	��
�!
���	�	���
�

���	��
�
�!
��"���
FAT File System Module www.rabbit.com 71

http://www.rabbit.com

The FAT type (FAT12 or FAT16) is determined by the count of clusters on the partition. The “12” and “16”
refer to the number of bits used to hold the cluster number. The FAT type is calculated using information
found in the BPB. Information from a BPB on a mounted partition is stored in the partition structure (of
type fat_part) populated by fat_AutoMount().

Partitions greater than or equal to 2 MB will be FAT16. Smaller partitions will be FAT12. To save code
space, you can compile out support for either FAT type. Find the lines

#define FAT_FAT12 // comment out to disable FAT12 support
#define FAT_FAT16 // comment out to disable FAT16 support

in LIB/../FAT.LIB, make your change, and then recompile your application.

A.3.2 FAT
The file allocation table is the structure that gives the FAT file system its name. The FAT stores informa-
tion about cluster assignments. A cluster is either assigned to a file, is available for use, or is marked as
bad. A second copy of the FAT immediately follows the first.

A.3.3 Root Directory
The root directory has a predefined location and size. It has 512 entries of 32 bytes each. An entry in the
root directory is either empty or contains a file or subdirectory name (in 8.3 format), file size, date and
time of last revision and the starting cluster number for the file or subdirectory.

A.3.4 Data Area
The data area takes up most of the partition. It contains file data and subdirectories. Note that the data area
of a partition must, by convention, start at cluster 2.

A.3.5 Creating Multiple FAT Partitions
FAT version 2.13 introduces FAT_Write_MBR.c, a utility that simplifies the creation of multiple parti-
tions. It is distributed with FAT module version 2.13. It is also compatible with FAT versions 2.01, 2.05
and 2.10. If you have one of these earlier versions of the FAT module and would like a copy of
FAT_Write_MBR.c, please contact Technical Support either by email to
support@rabbitsemiconductor.com or by using the online form available on the Rabbit website:
www.rabbitsemiconductor.com/support/questionSubmit.shtml. See Section 4.1.2 for information on run-
ning this utility.

Without the use of FAT_Write_MBR.c, creating multiple FAT partitions on the flash device requires a
little more effort than the default partitioning. If the flash device does not contain an MBR, i.e., the device
is not formatted, both fat_Init() and fat_AutoMount() return an error code (-EUNFORMAT)
indicating this fact. So the next task is to write the MBR to the device. This is done with a call to
fat_FormatDevice(). Since we want more than one partition on the flash device,
fat_FormatDevice() must be called with a mode parameter of zero.

Before calling fat_FormatDevice(), partition specific information must be set in the mbr_part
entries for each partition you are creating. The following code shows possible information for partition 0
where MY_PARTITION_SIZE is equal to the size of the desired partition in bytes, 512 is the flash sector
size, and dev points to the mbr_part structure.
72 www.rabbit.com FAT File System Module

http://www.rabbit.com
http://www.rabbitsemiconductor.com/support/questionSubmit.shtml

The memset() function is used to initialize the entry to zero. The values for starthead and endhead
should be 0xFE to indicate that the media uses LBA (Logical Block Addressing) instead of head and cylin-
der addressing. The FAT library uses LBA internally. The values for the startsector, partsecsize
and parttype fields determine where the partition starts, how many sectors it contains and what parti-
tion type it is. The number of sectors in the partition is calculated by dividing the number of raw bytes in
the partition by the sector size of the flash. The number of raw bytes in the partition includes not only
bytes for file storage, but also the space needed by the BPB and the root directory. One is added to dev-
>partsecsize to ensure an extra sector is assigned if MY_PARTITION_SIZE is not evenly divisible
by the size of a flash sector. The partition type (.parttype) is determined by the partition size: 1 indi-
cates FAT12 and 6 indicates FAT16. Fill in an mbr_part structure for each partition you are creating.
The remaining entries should be zeroed out.

When laying out partitions, there are three basic checks to make sure the partitions fit in the available
device space and do not overlap.

1. No partition can start on a sector less than 1.

2. Each partition resides on sectors from startsector through startsector+partsecsize-1.
No other partition can have a startsector value within that range.

3. No partition ending sector (startsector+partsecsize-1) can be greater than or equal to the
total sectors on the device.

The partition boundaries are validated in the call to fat_FormatDevice() and the function will return
an error if any of the partition boundaries are invalid. If fat_FormatDevice() returns success, then
call fat_AutoMount() with flags of FDDF_COND_PART_FORMAT | FDDF_MOUNT_DEV_# |
FDDF_MOUNT_PART_ALL; where # is the device number for the device being partitioned. This will for-
mat and mount the newly created partitions.

A.4 Directory and File Names
File and directory names are limited to 8 characters followed by an optional period (.) and an extension of
up to 3 characters. The characters may be any combination of letters, digits, or characters with code point
values greater than 127. The following special characters are also allowed:

$ % ' - _ @ ~ ` ! () { } ^ # &

File names passed to the file system are always converted to upper case; the original case value is lost.

The maximum size of a directory is limited by the available space. It is recommended that no more than
ten layers of directories be used with the Dynamic C FAT file system.

memset(dev->part, 0, sizeof(mbr_part));
dev->part[0].starthead = 0xFE;
dev->part[0].endhead = 0xFE;
dev->part[0].startsector = 1;
dev->part[0].partsecsize = (MY_PARTITION_SIZE / 512) + 1;
dev->part[0].parttype = (dev->part[0].partsecsize < SEC_2MB) ? 1 : 6;
FAT File System Module www.rabbit.com 73

http://www.rabbit.com

A.5 µC/OS-II and FAT Compatibility
Versions of the FAT file system prior to version 2.10 are compatible with µC/OS-II only if FAT API calls
are confined to one µC/OS-II task. To make the FAT API reentrant from multiple tasks, you must do the
following:

• Use FAT version 2.10

• #define FAT_USE_UCOS_MUTEX before #use'ing FAT.LIB

• Call the function fat_InitUCOSMutex(priority) after calling OSInit() and before calling
FAT APIs or beginning multitasking; the parameter “priority” MUST be a higher priority than all tasks
using FAT APIs

• Call only high-level fat APIs with names that begin with “fat_”

See the function description for fat_InitUCOSMutex for more details, and the sample program
Samples/FileSystem/FAT_UCOS.C for a demonstration of using FAT with µC/OS-II.

A.6 SF1000 and FAT Compatibility
There are two macros that need to be defined for the FAT module to work with the SF1000 Serial Flash
Expansion Board.

#define SF_SPI_DIVISOR 5
#define SF_SPI_INVERT_RX

A.7 Hot-Swapping an xD Card
Hot-swapping is currently supported on the RCM3365 and the RCM3375. FAT version 2.10 or later is
required. Two sample programs are provided in Samples/FileSystem to demonstrate this feature:
FAT_HOT_SWAP.C and FAT_HOT_SWAP_336x0.C. The samples are mostly identical: they both test
for a keyboard hit to determine if the user wants to hot-swap the xD card, but in addition, the sample pro-
gram FAT_HOT_SWAP_336x0.C also checks for a switch press and indicates a ready-to-mount condi-
tion with an LED.

As demonstrated in the sample programs, an xD card should only be removed after it has unmounted with
fat_UnmountDevice() and no operations are happening on the device. Only fat_AutoMount()
should be used to remount xD cards. In addition, the function nf_XD_Detect() should be called to ver-
ify xD card presence before attempting to remount an xD card.

xD cards formatted with versions of the FAT prior to 2.10 did not have unique volume labels. If there is a
chance that two such cards may be swapped, call fat_autoMount() with the FDDF_NO_RECOVERY
flag set. This means that if there is a write cache entry to be written, it will not be written. The function
fat_UnmountDevice() flushes the cache (i.e., writes all cache entries to the device) before unmount-
ing, so this should not generally be a problem if the device was properly unmounted.
74 www.rabbit.com FAT File System Module

http://www.rabbit.com

A.8 Hot-Swapping an SD Card
Hot-swapping is currently supported on the RCM4300 and the RCM4310. FAT version 2.14 or later is
required. A sample program is provided in Samples/FileSystem to demonstrate this feature:
FAT_HOT_SWAP_SD.C. The sample tests for a keyboard hit to determine if the user wants to hot-swap
the SD card. The LED near the SD socket on the RCM 4300/4310 will go out when the SD card is
unmounted and safe to remove.

Hot-swapping an SD card requires that you unmount the device before removal, as the FAT filesystem
employs a cache system that may not have written all information to the device unless unmounted. This is
easy to see with both the RCM4300 and RCM4310 because the FAT system turns on the LED during the
mount process, and turns it off when the card is unmounted. It is possible to have the LED left on during
an error condition. This may require you to restart the system and mount the card again, then unmount to
ensure all cached entries have been written.

As demonstrated in the sample program, the SD card should only be removed after it has unmounted with
fat_UnmountDevice() and no operations are happening on the device. Only fat_AutoMount()
should be used to remount SD cards. In addition, the function sdspi_debounce() should be called to
verify SD card presence before attempting to remount an SD card.

A.9 Unsupported FAT Features
At this time, the Dynamic C FAT file system does not support the following.

• Single-volume drives (they do not have an MBR)

• FAT32 or long file or directory names

• Sector sizes other than 512 bytes

• Direct parsing of relative paths

• Direct support of a “working directory”

• Drive letters (the FAT file system is not DOS)

A.10 References
There are a number of good references regarding FAT file systems available on the Internet. Any reason-
able search engine will bring up many hits if you type in relevant terms, such as “FAT,” “file system,” “file
allocation table,” or something along those lines. At the time of this writing, the following links provided
useful information.

1. This link is to Microsoft’s “FAT32 File System Specification,” which is also applicable to FAT12 and
FAT16.

www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx

2. This article gives a brief history of FAT.

http://en.wikipedia.org/wiki/File_Allocation_Table

3. These tutorials give lots of details plus links to more information.

www.serverwatch.com/tutorials/article.php/2239651

www.pcguide.com/ref/hdd/file/fat.htm
FAT File System Module www.rabbit.com 75

http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
http://www.serverwatch.com/tutorials/article.php/2239651
http://www.pcguide.com/ref/hdd/file/fat.htm
http://www.rabbit.com
http://en.wikipedia.org/wiki/File_Allocation_Table

Appendix B. Custom Configurations
The configuration library fat_config.lib is brought in when fat.lib is #use’d in the code. This con-
figuration library recognizes the macro _DRIVER_CUSTOM as a flag that a custom hardware configura-
tion or custom device driver is being used in the hardware/device driver arrangement set up by
fat_config.lib.

B.1 Adding SD Card Interface
As an example of a custom hardware configuration, consider the task of designing an SD card interface on
a board that uses a core module that does not natively support such an interface. This is just one example
of connecting an SD card socket to an RCM4400W core module. A device driver already exists for the SD
card interface with FAT module version 2.13 and Dynamic C version 10.21. The desired driver, which in
this case is SD_FAT.LIB, must be identified before fat.lib is #use’d in the application. One strategy
is to create a new configuration library that will be #use’d at the top of your application program. The bulk
of this library can be taken from existing configuration setups and modified for the custom application. In
this case, we get this setup section from the RCM43xx.lib file, which sets up the SD card for the
RCM43xx series of core modules. There is a fairly long parameter block which consists of defines setting
which port, pins and shadow registers are used to access the control and serial lines needed to control the
SD card.

Once this type of configuration library is created, you can use any FAT-based sample with the custom
hardware by simply replacing the #use "FAT.lib" statement in the sample with #use "customSD.lib", where
customSD.lib is the name of the new configuration library.

B.1.1 Example Code
The configuration library would have to include something similar to the following code:

// Tells fat_config.lib that a custom driver/configuration is to be used
#define _DRIVER_CUSTOM "SD_FAT.LIB"

// Configuration definitions modified to include custom initialization function
// Signature strings have been set to NULL because the SD card is removable media
#define PC_COMPATIBLE
#define _DRIVER_CUSTOM_INIT { "SD", sd_custom_init, NULL, },
#define _DEVICE_CUSTOM_0 { sd_custom_init, NULL, 0, 0, \

FDDF_MOUNT_PART_ALL|FDDF_MOUNT_DEV_0, NULL, },

// SD hardware parameter block copied from RCM43xx.lib
//*** SD hardware definitions

// Sets up the following port connections for the SD driver
// This would use external buffer and power line control similar to the SD card circuitry on the RCM4300
// Directly connecting these pins to the SD card would have possible line drive issues
// Port C, Pin 2 TxC Serial Transmit line
// Port D, Pin 0 Card Select line, active low
// Port D, Pin 1 SD Card Active LED, active high
// Port D, Pin 2 SclkC Serial Clock line
// Port D, Pin 3 TxC Serial Receive line
// Port E, Pin 3 Card Detect line, active low

// This example does not use write protect or power control
76 www.rabbit.com FAT File System Module

http://www.rabbit.com

// If not using power control, it is recommended that the detect switch on the SD card socket
// be tied to appropriate circuitry for applying power to the SD card.

#define SD_CD_PORT PEDR // Card Detect set to pin PE3
#define SD_CD_PORT_FR PEFR
#define SD_CD_PORT_FRSHADOW &PEFRShadow
#define SD_CD_PORT_DDR PEDDR
#define SD_CD_PORT_DDRSHADOW &PEDDRShadow
#define SD_CD_PIN 3

// No Write Protect input
#define SD_WP_PORT 0 // WP input not used
#define SD_WP_PORT_FR 0
#define SD_WP_PORT_FRSHADOW NULL
#define SD_WP_PORT_DDR 0
#define SD_WP_PORT_DDRSHADOW NULL
#define SD_WP_PIN 0

#define SD_CS_PORT PDDR // Card Select set to pin PD0
#define SD_CS_PORT_DRSHADOW &PDDRShadow
#define SD_CS_PORT_DDR PDDDR
#define SD_CS_PORT_FR PDFR
#define SD_CS_PORT_FRSHADOW &PDFRShadow
#define SD_CS_PORT_DDRSHADOW &PDDDRShadow
#define SD_CS_PORT_DCR PDDCR
#define SD_CS_PORT_DCRSHADOW &PDDCRShadow
#define SD_CS_PIN 0
#define SD_CS_PORT_OD 0

#define SD_TX_PORT_DR PCDR // TxC set to pin PC2
#define SD_TX_PORT_DRSHADOW &PCDRShadow
#define SD_TX_PORT_FR PCFR
#define SD_TX_PORT_FRSHADOW &PCFRShadow
#define SD_TX_PORT_DDR PCDDR
#define SD_TX_PORT_DDRSHADOW &PCDDRShadow
#define SD_TX_PORT_DCR PCDCR
#define SD_TX_PORT_DCRSHADOW &PCDCRShadow
#define SD_TX_PIN 2
#define SD_TX_PORT_OD 0

#define SD_PWR_PORT_DR 0 // Power control pin not used
#define SD_PWR_PORT_DRSHADOW NULL
#define SD_PWR_PORT_FR 0
#define SD_PWR_PORT_FRSHADOW NULL
#define SD_PWR_PORT_DDR 0
#define SD_PWR_PORT_DDRSHADOW NULL
#define SD_PWR_PORT_DCR 0
#define SD_PWR_PORT_DCRSHADOW NULL
FAT File System Module www.rabbit.com 77

http://www.rabbit.com

#define SD_PWR_PIN 0
#define SD_PWR_PORT_OD 0
#define SD_PWR_PORT_ON 0

#define SD_LED_PORT_DR PDDR // LED Output set to pin PD1
#define SD_LED_PORT_DRSHADOW &PDDRShadow
#define SD_LED_PORT_FR PDFR
#define SD_LED_PORT_FRSHADOW &PDFRShadow
#define SD_LED_PORT_DDR PDDDR
#define SD_LED_PORT_DDRSHADOW &PDDDRShadow
#define SD_LED_PORT_DCR PDDCR
#define SD_LED_PORT_DCRSHADOW &PDDCRShadow
#define SD_LED_PIN 1
#define SD_LED_PORT_OD 1
#define SD_LED_PORT_ON 0

#define SD_RX_PORT_DR PDDR // RxC set to pin PD3
#define SD_RX_PORT_FR PDFR
#define SD_RX_PORT_FRSHADOW &PDFRShadow
#define SD_RX_PORT_DDR PDDDR
#define SD_RX_PORT_DDRSHADOW &PDDDRShadow
#define SD_RX_PIN 3

#define SD_CLK_PORT_DR PDDR // SclkC set to pin PD2
#define SD_CLK_PORT_FR PDFR
#define SD_CLK_PORT_FRSHADOW &PDFRShadow
#define SD_CLK_PORT_DDR PDDDR
#define SD_CLK_PORT_DDRSHADOW &PDDDRShadow
#define SD_CLK_PORT_DCR PDDCR
#define SD_CLK_PORT_DCRSHADOW &PDDCRShadow
#define SD_CLK_PIN 2
#define SD_CLK_PORT_OD 0

// Setup clock & control registers for serial port
#define SD_SPI_TACRSHADOW &TACRShadow
#define SD_SPI_SERPORT SCDR
#define SD_SPI_TCREG TACR
#define SD_SPI_TCRSHADOW &TACRShadow
#define SD_SPI_TCRVALUE 0
#define SD_SPI_SERSHADOW &SCERShadow
#define SD_SPI_SERVALUE SD_SPI_CLOCK_MODE
#define SD_SPI_SCRSHADOW &SCCRShadow
#define SD_SPI_SCRVALUE SD_SPI_CONTROL_VALUE
#define SD_SPI_DIVREG TAT6R
#define SD_SPI_DIVREGSHADOW &TAT6RShadow
#define SD_SPI_DIVISOR 0
78 www.rabbit.com FAT File System Module

http://www.rabbit.com

// Macros for enabling and disabling the Card Select control line
#define SD_ENABLECS(DI) BitWrPortI(DI->csport,DI->csportdrShadow, 0,
DI->cspin)

#define SD_DISABLECS(DI) BitWrPortI(DI->csport, DI->csportdrShadow, 1,
DI->cspin)

#define SD_ENABLEPOW(DI) DI // Power enable not used
#define SD_DISABLEPOW(DI) DI

//SD serial port register offsets
#define SD_AR_OFFSET 1
#define SD_SR_OFFSET 3
#define SD_CR_OFFSET 4
#define SD_ER_OFFSET 5

#define SD_SPI_CONTROL_VALUE 0x1c // Selects Port D as RxC alt. input
#define SD_SPI_TXMASK 0x80 // Control bits for starting TX or RX operations
#define SD_SPI_RXMASK 0x40
#define SD_SPI_CLOCK_MODE 0x08 // Sets Reverse Data Bit operation (MSB first)

#use "FAT.lib" // Use the necessary libraries for FAT operation
#use "SD_FAT.lib"

/*** EndHeader */

/*** BeginHeader sd_custom_init */
// This is a custom initialization function; it adds alternate routing of SCLKC to Port D pin 2
// before calling the standard SD initialization function.
// This function would only be required if an alternate routing issue could not be set by the
// definitions above.
int sd_custom_init(mbr_drvr *driver, void *device_list);
/*** EndHeader */

int sd_custom_init(mbr_drvr *driver, void *device_list)
{

// Select SCLKC output on Port D pin 2
WrPortI(PDALR, &PDALRShadow, PDALRShadow & 0xCF);
sd_InitDriver(driver, device_list);

}

FAT File System Module www.rabbit.com 79

http://www.rabbit.com

80 www.rabbit.com FAT File System Module

http://www.rabbit.com

Index

Symbols

\\ ..18
\n ..8
\r ..8
_fat_device_table ..27
µC/OS-II compatibility44, 74

Numerics

2nd copy of FAT ...72

A

attributes of a file ..11

B

back slash ..18
blocking ...1
blocking a non-blocking function13
blocking mode ...5
BPB ...71
bringing up the FAT file system4

C

cached write ..9, 61
carriage return ...8
clusters

assignments ...72
available amount ...40
definition ...70

compatibility with µC/OS-II44, 74
configuration library ...5
costatements ..13–15
creating a file ...8
custom configurations ...76
custom device driver ...5

D

data area ..72
device ..1
device structure ...27
directory ..2

create ...21
default search ...23
delete ...24
entry structure ..22

names .. 73
root .. 72
search conditions ... 22

DLM and FAT .. 17
download manager .. 17
driver ...1
Dynamic C version ... 1

E

error codes ... 2, 5
escape character .. 18

F

FAT and DLM .. 17
FAT API Functions

fat_AutoMount .. 27
fat_Close ... 30
fat_CreateDir ... 31
fat_CreateFile .. 32
fat_CreateTime ... 33
fat_Delete .. 34
fat_EnumDevice ... 35
fat_EnumPartition ... 36
fat_FileSize ... 37
fat_FormatDevice ... 38
fat_FormatPartition ... 39
fat_Free ... 40
fat_GetAttr .. 41
fat_GetName ... 42
fat_Init ... 43
fat_InitUCOSMutex .. 44
fat_LastAccess .. 45
fat_LastWrite .. 46
fat_MountPartition .. 47
fat_Open .. 48
fat_OpenDir .. 50
fat_PartitionDevice ... 51
fat_Read .. 52
fat_ReadDir ... 53
fat_Seek ... 55
fat_SetAttr ... 57
fat_Split ... 58
fat_Status ... 59
fat_SyncFile .. 60
fat_SyncPartition ... 61
FAT File System Module www.rabbit.com 81

http://www.rabbit.com

fat_Tell ..62
fat_tick ...63
fat_Truncate ..64
fat_UnmountDevice ..65
fat_UnmountPartition ..66
fat_Write ..67
fat_xWrite ..68
nf_XD_Detect ...69

FAT module version ...1
fat_AutoMount ..6
fat_config.lib ...5
fat_dirent ...22
fat_Init ...6
fat_part ..6, 27
fat_part_mounted ..6, 21, 27
FAT_USE_FORWARDSLASH18
file

attributes ..11, 41, 57
create ...8, 21
delete ...24
names ...73
open ...8, 18
read ..9, 19
seek ..20
size ...37
state ..13
write ...8, 19

flash types supported ...2
flush cached file information60
flush cached writes ..61
forward slash ...18

H

hot-swapping
SD card ..75
xD card ..74

I

initialization ..6

L

line feed ...8

M

max number of characters read9
MBR ..70
mbr_dev ..27
Micro C/OS-II ...44, 74
multitasking compatibility44, 74

N

names ..73
non-blocking ...1, 12

num_fat_devices ... 6

O

opening a file .. 8

P

partition ... 1
partition structure .. 6, 27
partitioning .. 16–17
path separator .. 18
prealloc .. 5

R

reading a file ... 9
reading max number of characters9
removable device advice ... 9
reserving file space ... 5
result code (rc) .. 5

S

sector ... 70
SF1000 .. 74
shell program .. 10
software version ..1
state of file .. 13
subdirectory .. 2
supported flash types .. 2

U

ucos2 ... 44, 74
udppages.c ... 10
unsupported FAT features 75
using the FAT file system ... 7

V

version of software .. 1

W

write-back cache ... 9
writing a file .. 8
82 www.rabbit.com FAT File System

http://www.rabbit.com

	FAT File System
	1. Overview of Document
	2. Running Your First FAT Sample Program
	2.1 Bringing Up the File System
	2.2 Using the File System

	3. More Sample Programs
	3.1 Blocking Sample
	3.2 Non-Blocking Sample
	3.2.1 Costatement that Writes a File
	3.2.2 Costatement that Reads and Displays a File

	4. FAT Operations
	4.1 Format and Partition the Device
	4.1.1 Default Partitioning
	4.1.2 Creating Multiple Partitions
	4.1.3 Preserving Existing Partitions
	4.1.4 FAT and DLM Partitions

	4.2 File and Directory Operations
	4.2.1 Open and Close Operations
	4.2.2 Read and Write Operations
	4.2.3 Going to a Specified Position in a File
	4.2.4 Creating Files and Subdirectories
	4.2.5 Reading Directories
	4.2.6 Deleting Files and Directories

	4.3 Error Handling

	5. FAT API Functions
	fat_AutoMount
	fat_Close
	fat_CreateDir
	fat_CreateFile
	fat_CreateTime
	fat_Delete
	fat_EnumDevice
	fat_EnumPartition
	fat_FileSize
	fat_FormatDevice
	fat_FormatPartition
	fat_Free
	fat_GetAttr
	fat_GetName
	fat_Init
	fat_InitUCOSMutex
	fat_LastAccess
	fat_LastWrite
	fat_MountPartition
	fat_Open
	fat_OpenDir
	fat_PartitionDevice
	fat_Read
	fat_ReadDir
	fat_Seek
	fat_SetAttr
	fat_Split
	fat_Status
	fat_SyncFile
	fat_SyncPartition
	fat_Tell
	fat_tick
	fat_Truncate
	fat_UnmountDevice
	fat_UnmountPartition
	fat_Write
	fat_xWrite
	nf_XD_Detect

	Appendix A. More FAT Information
	A.1 Clusters and Sectors
	A.2 The Master Boot Record
	A.3 FAT Partitions
	A.4 Directory and File Names
	A.5 µC/OS-II and FAT Compatibility
	A.6 SF1000 and FAT Compatibility
	A.7 Hot-Swapping an xD Card
	A.8 Hot-Swapping an SD Card
	A.9 Unsupported FAT Features
	A.10 References

	Appendix B. Custom Configurations
	B.1 Adding SD Card Interface

	Index

