
RabbitWeb
To Web-Enable Embedded Applications

This document explains the ease with which you can now create a web interface to your Rabbit-based
device. An add-on module available starting with Dynamic C 8.50 introduces an enhanced HTTP server
that, in most cases, eliminates the need for complicated CGI programming while giving the developer
complete freedom in the design of their web page.

The enhanced HTTP server is called RabbitWeb and uses:

• A simple scripting language consisting of server-parsed tags added to the HTML page that contains the
form.

• Dynamic C language enhancements, which includes new compiler directives that can be added to the
application calling the HTTP server.

Section 1.0 presents a simple example to show the power and ease of developing a RabbitWeb server that
presents a web interface to your device. This example gives step-by-step descriptions of the HTML page
and the Dynamic C code. New features will be briefly explained, then linked to their comprehensive
descriptions in Section 2.0 and Section 3.0. These sections are followed by a more complex example in
Section 4.0, which in turn is followed by quick reference guides for both the Dynamic C language exten-
sions and the new scripting language, which is called ZHTML (Appendix A).

1.0 Getting Started: A Simple Example
In this example, we pretend that a humidity detector is connected to your Rabbit-based controller. Your
controller runs a web server that displays a page showing the current reading from the humidity detector.
From this monitoring page there is a link to another page that contains an HTML form that allows you to
remotely change some configuration parameters. This example introduces web variables and user groups.
It also illustrates some new security features and the use of error checking.

This example assumes you have already installed Dynamic C 8.50 (or later) and hooked up the RCM3700.
Instructions for doing so are in the RabbitCore RCM3700 User’s Manual. This user’s manual describes
network connections for your core module, as well as setting IP addresses for running sample programs.
020-0057 Rev. D www.rabbit.com 1

http://www.rabbit.com

1.1 Dynamic C Application Code for Humidity Detector
This section describes the application for our example. The program is shown in its entirety for conve-
nience. It is broken down into manageable pieces on the following pages.

File Name: /Samples/tcpip/rabbitweb/humidity.c
#define TCPCONFIG 1
#define USE_RABBITWEB 1
#memmap xmem
#use “dcrtcp.lib”
#use “http.lib”

#ximport “samples/tcpip/rabbitweb/pages/humidity_monitor.zhtml”
monitor_zhtml

#ximport “samples/tcpip/rabbitweb/pages/humidity_admin.zhtml” admin_zhtml

SSPEC_MIMETABLE_START
SSPEC_MIME_FUNC(".zhtml", "text/html", zhtml_handler),
SSPEC_MIME(".html", "text/html")

SSPEC_MIMETABLE_END

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/index.zhtml", monitor_zhtml),
SSPEC_RESOURCE_XMEMFILE("/admin/index.zhtml", admin_zhtml)

SSPEC_RESOURCETABLE_END

#web_groups admin

int hum;
#web hum groups=all(ro)

int hum_alarm;

#web hum_alarm ((0 < $hum_alarm) && ($hum_alarm <= 100))\
groups=all(ro),admin

int alarm_interval;
char alarm_email[50];

#web alarm_interval ((0 < $alarm_interval) && ($alarm_interval < 30000)) \
groups=all(ro),admin

#web alarm_email groups=all(ro),admin
void main(void){
int userid;
hum = 50;
hum_alarm = 75;
alarm_interval = 60;
strcpy(alarm_email, "somebody@nowhere.org");

sock_init(); // initialize TCP/IP stack
http_init(); // initialize web server

http_set_path("/", "index.zhtml");
tcp_reserveport(80);

sspec_addrule (“/admin”, “Admin”, admin, admin,
 SERVER_ANY, SERVER_AUTH_BASIC, NULL);

userid = sauth_adduser(“harpo”, “swordfish”, SERVER_ANY);
sauth_setusermask(userid, admin, NULL);

while(1) {
http_handler();

}
}

2 www.rabbit.com RabbitWeb

http://www.rabbit.com

The source code walk-through consists of blocks of code followed by line-by-line descriptions. Particular
attention is given to the RabbitWeb #web and #web_groups statements, which are new compiler direc-
tives.

The macro TCPCONFIG is used to set network configuration parameters. Defining this macro to 1 sets
10.10.6.100, 255.255.255.0 and 10.10.6.1 for the board’s IP address, netmask and gateway/nameserver
respectively. If you need to change any of these values, read the comments at the top of
\lib\tcpip\tcp_config.lib for instructions.

The USE_RABBITWEB macro must be defined to 1 to use the HTTP server enhancements. The #define
of USE_RABBITWEB is followed by a request to map functions not flagged as root into xmem. The two
#use statements allow the application the use of the main TCP/IP libraries (all brought in by
dcrtcp.lib) and the HTTP server library (which also brings in the resource manager library,
zserver.lib).

The HTML pages are copied to Rabbit memory using #ximport. The first one is a status page and the
second one is a configuration interface.

Next the MIME type mapping table is set up. This allows zhtml_handler() to be called when a file
with the extension .zhtml is processed. Then the static resource table is set up, which gives the server
access to the files that were just copied in using #ximport. The first parameter is the name of the
resource and the second parameter is its address.

#define TCPCONFIG 1
#define USE_RABBITWEB 1

#memmap xmem

#use “dcrtcp.lib”
#use “http.lib”

#ximport “samples/tcpip/rabbitweb/pages/humidity_monitor.zhtml”
monitor_zhtml

#ximport “samples/tcpip/rabbitweb/pages/humidity_admin.zhtml” admin_zhtml

SSPEC_MIMETABLE_START
SSPEC_MIME_FUNC(".zhtml", "text/html", zhtml_handler),
SSPEC_MIME(".html", "text/html")

SSPEC_MIMETABLE_END

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/index.zhtml", monitor_zhtml),
SSPEC_RESOURCE_XMEMFILE("/admin/index.zhtml", admin_zhtml)

SSPEC_RESOURCETABLE_END
RabbitWeb www.rabbit.com 3

http://rabbit.com

The RabbitWeb server has a concept of user groups, which are created using the compiler directive,
#web_groups. Users can be added to and removed from these groups at runtime by calling the API
functions sauth_adduser() and sauth_removeuser().

The purpose of the user groups is to protect directories and variables from unauthorized access. User
groups are fully described in the section titled, Security Features.

This declares a variable named hum of type integer using normal Dynamic C syntax. It will be used to
store the current humidity reported by the humidity detector. The #web expression registers this C vari-
able with the web server. The read-only attribute is assigned by the “groups=all(ro)” part which gives read-
only access to this variable to all user groups.

More information on registering variables is given in the section titled, Registering Variables, Arrays and
Structures.

This code creates a variable called hum_alarm to indicate the level at which the device should send an
alarm. Unlike the #web statement for hum, there is a guard added when hum_alarm is registered. A
guard is an error-checking expression used to evaluate the validity of submissions for its variable. The
guard given for hum_alarm ensures only the range of values from 1 to 100 inclusive are accepted for this
variable. More information on the syntax of the error-checking expression is in the section titled, Web
Guards. The way error information is used in the HTML form is described in the section titled, Error Han-
dling.

The dollar sign symbol in $hum_alarm specifies the latest submitted value of the variable, not necessar-
ily the latest committed value of the variable. The difference between, and the importance of, the latest
submitted value and the latest committed value of a variable will make more sense when you have read
Section 2.2. Also, $-variables in web guards must be simple variables: for example, int, long, float, char, or
string (char array). They cannot be structures or arrays.

The “admin” group is given full access to the variable (access is read and write by default), while all other
users are limited to read-only access. If no “group=” parameter is given, then anyone can read or write
hum_alarm. The order of group names is important. If “admin” came before “all(ro)” then the admin
group would not have write access.

#web_groups admin

int hum;
#web hum groups=all(ro)

int hum_alarm;
#web hum_alarm \
 ((0 < $hum_alarm) && ($hum_alarm <= 100)) groups=all(ro),admin
4 www.rabbit.com RabbitWeb

http://www.rabbit.com

These lines declare and register an integer variable and a string. The variable alarm_interval gives
the minimum amount of time in minutes between two alarms, thus preventing alarm flooding. The variable
alarm_email gives the email address to which alarms should be sent.

This concludes the compile-time initialization part of the code.

In main(), after the local variable userid is declared, there is run-time initialization of the variables
that will be visible on the HTML page. Then the stack and the web server are initialized with calls to
sock_init() and http_init(), respectively.

int alarm_interval;
char alarm_email[50];

#web alarm_interval \
 ((0 < $alarm_interval) && ($alarm_interval < 30000))\
 groups=all(ro),admin
#web alarm_email groups=all(ro),admin

void main(void)
{
int userid;
hum = 50;
hum_alarm = 75;
alarm_interval = 60;
strcpy(alarm_email, "somebody@nowhere.org");

sock_init(); // initialize TCP/IP stack
http_init(); // initialize web server

http_set_path("/", "index.zhtml");
tcp_reserveport(80);

sspec_addrule (“/admin”, “Admin”, admin, admin, SERVER_ANY,
SERVER_AUTH_BASIC, NULL);

userid = sauth_adduser(“harpo”, “swordfish”, SERVER_ANY);
sauth_setusermask(userid, admin, NULL);

while(1) {
http_handler(); // call the http server

}
}

RabbitWeb www.rabbit.com 5

http://rabbit.com

The function http_init() sets the root directory to “/” and sets the default file name to
index.html. The call to http_set_path() can be used to change these defaults. We only want to
change the default filename, so in the function call we keep the default root directory by passing “/” as the
first parameter and change the default filename by passing index.zhtml as the second parameter. The
reason we want to do this is for when the browser specifies a directory (instead of a proper resource name)
we want to default to using index.zhtml in that directory, if it exists. If we don't use the set path func-
tion, the default is index.html which won't work for this sample because the file index.html
doesn’t exist.

The call to sspec_addrule() configures the web server to give write and read access to the directory
/admin to any members of the admin group and to require basic authentication for any access to this
directory. The call to sauth_adduser() adds the user named harpo with a password of swordfish
to the list of users kept by the server. The next function call, sauth_setusermask(), adds the user
named harpo to the user group named admin. This sequence of calls allows you to restrict access to the
file humidity_admin.zhtml. Only members of the user group admin,which in this case is the one
user named harpo, can get the server to display a file resource that starts with /admin. Recall that the
file humidity_admin.zhtml was copied to memory by the #ximport directive and given the label
admin_zhtml. The file was then added to the static resource table and given the name
/admin/index.zhtml. This is the name by which the server recognizes the file and the name by
which access to it is restricted.

The web server is driven by the repeated call to http_handler().

The second part of our example requires additions to the HTML page that is served by our web server. The
use of the new scripting language will be explained as it is encountered in the sample pages. Regular
HTML code will not be explained, as it is assumed the reader has a working knowledge of it. If that is not
the case, refer to one of the numerous sources that exist (on the web, etc.) for information on HTML.
6 www.rabbit.com RabbitWeb

http://www.rabbit.com

1.2 HTML Pages for Humidity Detector
This sample requires two HTML files: one to display the current humidity to all users, and another page
that contains the form that allows some parameters to be changed.

1.2.1 The Monitor Page
The first HTML file is humidity_monitor.zhtml. The “.zhtml” suffix indicates that it contains
special server-parsed HTML tags. That is, the server must inspect the contents of the HTML file for spe-
cial tags, rather than just sending the file verbatim.

File name: humidity_monitor.zhtml

The above code displays the current humidity reading. The new server-parsed tags begin with “<?z” and
end with “?>”. “print ($hum)” displays the given variable (that must have been registered with #web).

This code sets up a hyperlink that the user can click on to change the device settings. Note that since it is in
the “/admin” directory, the user will need to enter a username and password (“harpo” and “swordfish”)
to access the file. The username and password requirement was determined by the call to
sspec_addrule() in humidity.c. Also note that the reference to the second HTML file uses the
name that was given to humidity_admin.zhtml when it was entered into the static resource table in
humidity.c.

Figure 1. Web Page Served by
RabbitWeb

This web page is very simple, as shown in
Figure 1, but you are free to create more
complex web pages (probably containing
more variables to monitor). HTML editors
such as Netscape’s Composer, Hotdog Pro-
fessional, and Macromedia Dreamweaver
can be used to create these web pages.

<HTML>
<HEAD><TITLE>Current humidity reading</TITLE></HEAD>
<BODY>

<H1>Current humidity reading</H1>
The current humidity reading is (in percent):

<?z print($hum) ?>
<P>
Change the device settings

</BODY>
</HTML>
RabbitWeb www.rabbit.com 7

http://rabbit.com

1.2.2 The Configuration Page
The second HTML file is known to the server as “/admin/index.zhtml.” Using error() and some
conditional code allows multiple display options with the same HTML file. Again, the file is shown in its
entirety for convenience. It is broken down on the following pages.

File name: Samples/tcpip/rabbitweb/pages/humidity_admin.zhtml

<HTML>
<HEAD><TITLE>Configure the humidity device</TITLE></HEAD>
<BODY>
<H1>Configure the humidity device</H1>
<?z if (error()) { ?>

ERROR! Your submission contained errors. Please correct
the entries marked in red below.

<?z } ?>
<FORM ACTION=”/admin/index.zhtml” METHOD=”POST”>

<P><?z if (error($hum_alarm)) { ?>

<?z } ?>
Humidity alarm level (percent):
<?z if (error($hum_alarm)) { ?>

<?z } ?>
<INPUT TYPE=”text” NAME=”hum_alarm” SIZE=3

VALUE=”<?z print($hum_alarm) ?>”>
<P><?z if(error($alarm_email)) { ?>

<?z } ?>
Send email alarm to:
<? if (error($alarm_email)) { ?>

<?z } ?>
<INPUT TYPE=”text” NAME=”alarm_email” SIZE=50

VALUE=”<?z print($alarm_email) ?>”>

<P><?z if (error($alarm_interval)) { ?>

<?z } ?>
Minimum time between alarms (minutes):
<?z if (error($alarm_interval)) { ?>

<?z } ?>
<INPUT TYPE=”text” NAME=”alarm_interval” SIZE=5

VALUE=”<?z print($alarm_interval) ?>”>
<P><INPUT TYPE=”submit” VALUE=”Submit”>

</FORM>
Return to the humidity monitor page

</BODY>
</HTML>
8 www.rabbit.com RabbitWeb

http://www.rabbit.com

After the usual opening lines of an HTML page, is our first server-parsed tag.

Without any parameters, error() returns TRUE if there were any errors in the last form submission.
When the submit button for the form is clicked, the POST request goes back to the zhtml page specified by
the line:

Since this refers back to itself, if there were any errors in the last form submission, the page is redisplayed
and along with it the error message inside the if statement.

Figure 2. Web Page with Error Message

There are five actions the user can take on this page. The Submit button was discussed above and the link
to the monitor page is a common HREF link. The other three actions are the input fields of the form. These
are text fields created by the INPUT tags.

Notice how, with the use of print(), the value of the text fields are filled in by the server before the
page is given to the browser.

<?z if (error()) { ?>
ERROR! Your submission contained errors. Please correct
the entries marked in red below.

<?z } ?>

<FORM ACTION=”/admin/index.zhtml” METHOD=”POST”>

<INPUT TYPE=”text” NAME=”hum_alarm” SIZE=3
VALUE=”<?z print($hum_alarm) ?>”>
RabbitWeb www.rabbit.com 9

http://rabbit.com

Before the INPUT tag there is some code that displays text to describe the input field, along with some
error checking:

Instead of calling error() with no parameters, the variable whose input field we are considering is
passed to error(). Used with an if statement, this call to error() lets us change the font color to red if
the value for that variable was invalid in the last form submission. Note that it is the text we have used to
describe the web variable on the HTML page that is shown in red, not the value of the web variable itself.
Also note that it is necessary to call error() twice, the second call is to close the FONT tag.

If in the last form submission the web variable had a valid value, the code above will still display the
descriptive text but its font color will not be changed.

If there were no errors with any of the web variables in the last form submission, the page display reflects
this status.

Figure 3. Web Page with No Error Message

<?z if (error($hum_alarm)) { ?>

<?z } ?>
Humidity alarm level (percent):
<?z if (error($hum_alarm)) { ?>

<?z } ?>
10 www.rabbit.com RabbitWeb

http://www.rabbit.com

2.0 Dynamic C Language Enhancements for RabbitWeb
This section describes the language enhancements of the RabbitWeb module and how to make use of them
to create a RabbitWeb server. These language enhancements are designed to interact with the ZHTML
scripting language, (described in the section titled ZHTML Scripting Language). They work together to
provide an easy-to-program web-enabled interface to your device.

2.1 Registering Variables, Arrays and Structures
Registering variables, arrays or structures with the web server is easy. First, we’ll look at the simple case
of an integer variable.

int foo;
#web foo

The variable foo is declared as an integer in the first expression and then registered with the web server in
the second. Variable registration can only be done at compile-time.

Arrays and structures are registered in the same way as variables.

int temps[20];
#web temps

Strings, which are character arrays, can also be registered:

char mystring[20];
#web mystring

Strings receive special handling by RabbitWeb. The bounds are always checked when updating a string
through a RabbitWeb interface, which means that the character buffer will not overflow.

It is permissible to register an array element without registering the entire array. For example,

int temps[20];
#web temps[0]

will register temps[0] but not temps[1], temps[2], etc. The same holds true for structure members.

struct foo2 {
int a;
int b;

};
struct foo2 bar;
#web bar

The above #web statement is functionally the same as:

#web bar.a
#web bar.b

Registering structure members or array elements separately lets you assign separate error-checking expres-
sions to them, a topic covered in the section titled, Web Guards.
RabbitWeb www.rabbit.com 11

http://rabbit.com

It is also possible to have arrays of structures:

struct foo2 bar[3];
#web bar

Arrays of structures can contain structures that contain arrays:

struct foo {
 int a;
 int b[2];
};

struct foo bar[3];
#web bar

And so on, and so on...

2.1.1 Selection-type Variables
Defining variables that can take on one of a list of variables is done with the select() feature at com-
pile time.

int color;
#web color select(“blue”, “red”, “green”)

The select() feature is useful when creating a drop-down menu or a set of radio buttons. It is similar to
an enumerated type. In this case, the actual variable, color, is an int and holds one of the values 0, 1, or
2 corresponding to the strings “blue,” “red” and “green,” respectively. To specify starting numbers other
than zero, do the following:

int color
#web color select(“blue” = 5, “red”, “green” = 10)

This causes “blue” to be 5, “red” to be 6, and “green” to be 10. Unlike an enum, a selection-type variable
can be of type long as well as int.
12 www.rabbit.com RabbitWeb

http://www.rabbit.com

2.2 Web Guards
Registering variables, arrays and structures with the server is not enough—when data is received from the
user, it should be checked for errors before being committed to the actual C variables. The #web syntax
allows an optional expression to be added that is evaluated when the user submits a new value for that
variable.

int foo;
#web foo (($foo > 0) && ($foo < 16))

If the C expression evaluates to TRUE (i.e., !0), the new value is accepted. If it evaluates to FALSE (i.e.,
0), the new value is rejected. The new values are not applied until all variables in a submission have been
checked.

To reference the old, committed (and therefore guaranteed correct) value, reference the variable directly:

int foo;
#web foo ((0 < $foo) && ($foo < foo))

One variable can reference another variable in an error-checking expression:

int low;
int high;

#web low
#web high ($high > $low)
#web low ($low < $high)

Notice that the variable low is registered with the web server before it is used in the error-checking
expression for the variable high. This ordering lets the guard for high know that low is a web variable.

Arrays also need to be considered when doing error checking. The “@” character represents a wild-card
for the index value. It is replaced with the index being checked in the expression:

int temps[20];
#web temps[@] ((50 <= $temps[@]) && ($temps[@] <= 100))

For example, if temps[0] is being checked for errors, the error-checking expression becomes:

((50 <= $temps[0]) && ($temps[0] <= 100))

Alternatively, it is possible to give each array element its own error-checking expression:

int temps[3];
#web temps ((50 <= $temps[0]) && ($temps[0] <= 100) && \
 (60 <= $temps[1]) && ($temps[1] <= 90) && \
 (70 <= $temps[2]) && ($temps[2] <= 80))

Note that the above statement spans lines. The statement is continued on the next line by escaping the end
of the line.
RabbitWeb www.rabbit.com 13

http://rabbit.com

It is also possible to register and check array variables individually:

int temps[3];
#web temps[0] ((50 <= $temps[0]) && ($temps[0] <= 100))
#web temps[1] ((60 <= $temps[1]) && ($temps[1] <= 90))
#web temps[2] ((70 <= $temps[2]) && ($temps[2] <= 80))

Structures are also supported with error checking.

struct foo {
int a;
int b;

};
struct foo bar;
#web bar ((0 < $bar.a) && ($bar.a < 10) && \
 (-5 < $bar.b) && ($bar.b < 5))

Alternatively, each structure element can be specified separately (using the same structure definition as
above) and given its own error-checking expression.

struct foo bar;
#web bar.a ((0 < $bar.a) && ($bar.a < 10))
#web bar.b ((-5 < $bar.b) && ($bar.b < 5))

In the two code sections shown above, two similar methods for registering a structure are presented. The
difference between these two methods is that the first one registers the entire structure as a single web vari-
able, and the second one registers each element as separate web variables. In the first case, a change to any
element of the structure causes the guard expression to be evaluated. In other words, changing either
bar.a or bar.b will cause the guard expression to be evaluated and so both variables will be checked.
In the second case, bar.a and bar.b are registered as independent web variables and so changing one
does not cause the guard expression of the other one to be evaluated.

Structure elements can be specified separately in arrays of structures, as well:

struct foo bar[3];
#web bar[@].a (0 < $bar[@].a)
#web bar[@].b ($bar[@].a > 10)

The same holds true for arrays of structures, in which the structures themselves contain arrays.

struct foo {
int a;
int b[2];

};
struct foo bar[3];
#web bar[@].a (0 < $bar[@].a)
14 www.rabbit.com RabbitWeb

http://www.rabbit.com

Of special note are variables with more than one array index. Which index is “@” referring to? Consider
the following example:

#web bar[@].b[@] ((0 < $bar[@[0]].b[@[1]]) && ($bar[@[0]].b[@[1]] < 10))

In this case, the “@” in the guard is not enough. Instead, a different syntax is used, “@[#]”, where # is the
#th index being referenced. If the user uses a simple “@” for a wildcarded index, it is implicitly replaced
with “@[0]” (since, in general, @ is a shorthand notation for @[0]).

If the error-checking expression is not flexible enough, a user-defined function can be specified instead:

struct (
int a;
intb;

}foo;

#web foo (check_foo($foo.a, foo.b))

Remember that a $-variable must be a simple variable or a string (char array). It would be illegal to call the
above function, check_foo(), with “$foo” since foo is a structure.

Consider the order of evaluation of each of the variable error checks to be undefined, that is, do not depend
on the order. Also, only changed variables are checked for errors. This must be taken into account when
writing guards. For example, in the following code:

#web low
#web high ($high > $low)

let us say the value of high is 60 and the value of low is 40. If these variables are presented in an HTML
form and a value of 65 for low is submitted while the value for high is kept the same, it would be
accepted because low has no guard. Since the value of high did not change, its guard was not activated.
Hence, the guards for interdependent variables must be symmetric.

2.2.1 Reporting Errors
When a variable fails its error-check, the reason for the failure can be displayed in an HTML page by using
the WEB_ERROR() function:

#web foo ((0 < $foo)?1:WEB_ERROR(“too low”))
#web foo (($foo < 16)?1:WEB_ERROR(“too high”))

Note that the checks for the variable foo have been split into two parts; both checks are done during the
error-checking phase. If the check (such as “(0 < $foo)”) succeeds, then the expression evaluates to 1. If
the check fails, then the special WEB_ERROR() function is triggered, which will associate the given error
string with the variable and will return 0.

RWEB_WEB_ERROR_MAXBUFFER, which is 512 by default, defines the size of the buffer for the error
strings. The buffer must be large enough to hold all error strings for a single form submission. To change
it, #define this macro before the #use “http.lib” statement in the application code.

Go to the section titled Error Handling to see how the error string passed to WEB_ERROR() is displayed
in an HTML page.
RabbitWeb www.rabbit.com 15

http://rabbit.com

2.3 Security Features
Various HTTP authentication methods (basic, digest, and SSL) are supported to protect web pages and
variables. Each method requires a username and password for access to the resource. Permissions are
granted based on user groups rather than on individual user ids. User groups are defined at compile-time;
however, users can be added to or removed from a user group at run-time.

The groups are defined at compile-time in this manner:

#web_groups admin,users

This statement creates the two groups, “admin” and “users.” The symbols “admin” and “users” are added
to the global C namespace. These represent unsigned 16-bit numbers. Each group has one of the 16 bits set
to 1, so that the groups can be ORed together when multiple groups need to be referenced. Note that this
limits the number of groups to 16.

The web server does not directly know that “admin” is for administrative users and “users” is for everyone
else. This distinction is made by how the programmer assigns protection to server resources. For example,

#web foo ($foo > 0) groups=users(ro),admin

limits access to the variable foo. This variable is read-only for those in the “users” group. “(rw)” can be
specified to mean read-write for the “admin” group, but this is the default so it is not necessary. The group
“all” is a valid group, which will give access to a variable to all users regardless of group affiliation. By
default, all groups have access to all variables. The “groups=” is used to limit access. Consider the line:

#web foo ($foo > 0) groups=users(ro)

This line causes the admin group to have no access to the variable foo. In other words, if there is a
“groups=” clause then any group that is not mentioned explicitly in it will have no access to the variable to
which it applies.

Also the order of the groups is important if the “all” group is mentioned. For example, the line:

#web foo ($foo > 0) groups=all(ro),admin

gives read/write access to the admin group. But the line

#web foo ($foo > 0) groups=admin,all(ro)

limits the admin group to read-only access.

To add a user to a group, you must first add the user to the list kept by the server by calling
sauth_adduser(). The value returned by sauth_adduser()identifies a unique user. This value is
passed to sauth_setusermask() to set the groups that the user will be in. For example:

id = sauth_adduser(“me”, “please”, HTTP_SERVER);
sauth_setusermask(id, admin|users, NULL);

The user me is now in both the “admin” group and the “users” group. The groups determine what server
resources the user can access. The user information only determines what username and password must be
provided for the user to gain access to that group’s resources.

The web server has no concept of which variables are located on which forms. By allowing certain vari-
ables to be available to certain user groups, it doesn’t matter which variables are located on which forms—
16 www.rabbit.com RabbitWeb

http://www.rabbit.com

any user can update variables through any POST-capable resource as long as a group the user is a member
of has access to that variable.

It may also be important to update certain variables only through certain authentication methods. For
instance, if the data must be secret, you can require that it only be updated via SSL. You can also make cer-
tain variables be read-only for certain user groups.

Valid user groups and authentication methods can be specified as follows:

#web foo(foo > 0) auth=basic,digest,ssl groups=admin,users(ro)

By default, all authentication methods and user groups are allowed to update the variable. That is, to limit
access to the variable, you must include the applicable auth= or groups= parameters when registering the
variable.

“none” is a valid authentication method.

If foo is a structure or array, the protection modes are inherited by all members of the structure or array
unless specifically overridden with another #web statement.

If a received variable fails a security check, then the client browser will be given a “Forbidden access”
page.

2.4 Handling Variable Changes
Receiving, checking, and applying the variable changes works well when the program does not immedi-
ately need to know the new values. For instance, if we are updating a value that represents the amount of
idle time needed on a serial port before sending the queued data over the Ethernet, the program does not
need to know the new interval value immediately—it can just use the new value the next time it needs to
do the calculation. But sometimes the program must perform some action when values have been updated.
For example, if a baud rate is changed on a serial port, then that serial port likely needs to be closed and
reopened. To handle this, and similar situations, a callback function can be associated with an arbitrary
group of variables:

#web_update foo, bar, baz user_callback

If any variable within a group is changed, then the callback function for that group is called. The user pro-
gram, through the callback function, can then take the proper action based on the new value. The above
statement means that if any of the variables foo, bar, or baz are updated, then the function
user_callback() will be called to notify the application. If variables in more than one group are
updated at once, each group’s callback function will be called in turn (with no guarantees on order of
calls). If a variable is in multiple groups and that is the only variable updated, then all update callback
functions are called, although the order in which they are called is unspecified.
RabbitWeb www.rabbit.com 17

http://rabbit.com

There is an important restriction on the use of #web_update for arrays and structures: for an array ele-
ment or structure member registered explicitly (that is, with its own #web statement), the callback func-
tion associated with the array or structure as a whole will not be called when the variable is updated. For
example, consider:

struct foo2 {
int a;
int b;

};
struct foo2 bar;

#web bar
#web bar.a //#web_update variables must be explicitly #web registered

#web_update bar user_callback()
#web_update bar.a differentuser_callback()

If bar.b is updated, user_callback() is called, but if bar.a is updated, the function
differentuser_callback() is called and not user_callback().

2.4.1 Interleaving Problems
Consider the following scenario: Users A and B are operating a web interface on Device C. User A gets a
form page from Device C and then leaves the computer for a while. User B then gets the same form page
from Device C, updates the data, and then the new values are committed on Device C. Then, User A
comes back to his computer, makes changes to the form that was left on his screen from earlier, and sub-
mits those values. Keep in mind that User A never saw the update done by User B. What should Device C
do? Should it allow A’s update? Or should it tell User A that an interim update has been made, and that he
should thus review his changes in light of that fact?

Ideally, the developer should be in control of how this scenario is handled since different applications have
different needs. One way to avoid trashing a valid update is given here:

int foo;
#web foo ($foo == foo + 1)
#web_update foo increment_value

void increment_value(void) {
foo++;

}

Some client-side JavaScript is needed in the ZHTML file where the foo value is included:

<SCRIPT>
document.write('<INPUT TYPE="hidden" NAME="foo"

VALUE="' + (<?z echo($foo) ?> + 1) + '">')
</SCRIPT>
18 www.rabbit.com RabbitWeb

http://www.rabbit.com

This causes the variable foo to be updated whenever a successful update is made. Here’s how it works:

• The developer gives foo an initial value

• Included in a form is a hidden field that represents the value of foo (see the HTML in the SCRIPT tags
above)

• In the JavaScript above, the “<?z echo($foo) ?>” is first replaced by the HTTP server with the
current value of foo.

• In the browser, the JavaScript is executed, which takes the value of foo and adds one to it. This is the
value of the hidden input field.

• When the form data is submitted, the automatic error-checking will recognize that the value of foo has
been updated along with the other data. If all data passes the error-checking, then the value of foo is
incremented by the user’s increment_value() function.

• If, when the form data is submitted, the current value of foo plus one does not match the submitted
value of foo, then we know that an interim update has occurred. The value of foo is marked as an error
by the server, which can be handled by the developer’s ZHTML page. Note that none of the updated
form values will be committed, since an error was triggered.
RabbitWeb www.rabbit.com 19

http://rabbit.com

3.0 ZHTML Scripting Language
This section describes the ZHTML scripting language: a set of features that can be included in HTML
pages. These features interact with some new features in Dynamic C (described in the section titled,
Dynamic C Language Enhancements for RabbitWeb) to create an enhanced HTTP server.

3.1 SSI Tags, Statements and Variables
The new server-parsed tag is similar to SSI tags prior to Dynamic C 8.50, in that they are included in
HTML pages and are processed by the server before sending the page to the browser.

The new tags all have the following syntax:

<?z statement ?>

That is, a valid statement is preceded by <?z and followed by ?>. This follows the naming scheme for
PHP and XML tags (“<?php” and “<?xml”, respectively) and so follows standard conventions.

To surround a block of HTML, do the following:

<?z statement { ?>
<H1>HTML code here!</H1>
<?z } ?>

The <?z ... ?> tags delimit statements. This means that you cannot put two statements in a single set of
tags. For example,

<?z if (error($foo)) {
echo($foo)

} ?>

is not valid. The if, echo, and “}” statements must be separated by the <?z ... ?> tags like the following:

<?z if (error($foo)) { ?>
<?z echo($foo) ?>

<?z } ?>

Note that “}” is considered a statement in ZHTML (the “close block” statement), and must always be in its
own <?z ... ?> tags.

The simplest use of the new SSI tag simply prints the given variable:

<?z print($foo) ?>

The value of the given variable is displayed using a reasonable default printf() specifier. For example,
if foo is an int, print() uses the conversion specifier %d. foo must be registered with the web
server. How to register a variable with the web server is described under Registering Variables, Arrays and
Structures.
20 www.rabbit.com RabbitWeb

http://www.rabbit.com

A variable must begin with a “$” character to access its last submitted value. This value may or may not
have been committed. The last committed value is accessible using “@,” as in:

<?z print(@foo) ?>

Why is there a distinction between the last submitted value and the last committed one? In other words,
does it matter in the HTML code whether the submission value is valid? It can. See the section titled Error
Handling for more information.

To specify a printf-style conversion specifier, the printf() function can be used, but with the limitation
that it will only accept one variable as an argument:

<?z printf(“%ld”, $long_foo) ?>

Note that the print function does not generate the code for the form widget itself—this is done with the
INPUT tag, an HTML tag that generates a specific form element. Here is an example of using the print
command to display a value in a form widget:

<INPUT TYPE=“text” NAME=“foo” SIZE=10
VALUE= “<?z print($foo) ?>”>

For the value to be updateable, the NAME field must be the name of the variable. Otherwise, when the
form is submitted, the web server will not know where to apply the new value. This is not true of arrays.
When referencing arrays the name must differ somewhat from the C name because the ‘[‘ and ‘]’ symbols
are not valid in the NAME parameter of the INPUT tag due to limitations in HTTP.

The varname() function must be used to make the variable name safe for transmission.

NAME=”<?z varname($foo[3]) ?>”

That is, varname() automatically encodes the variable name correctly.
RabbitWeb www.rabbit.com 21

http://rabbit.com

3.2 Flow Control
In addition to simply displaying variables in your HTML documents, the new ZHTML tag allows some
simple looping and decision making.

3.2.1 Looping
A for loop, when combined with arrays, makes it easy to display lists of variables. The format of the for
loop is as follows:

<?z for ($A = start; $A < end; $A += step) { ?>
<H1>HTML code here!</H1>

<?z } ?>

where:

• A: A single-letter variable name from A-Z. These loop-control variables take on an unsigned int
value.

• start: The initial value of the for loop. The value of the variable will start at this value and count to the
end value.

• end: The upper value of the for loop. The operator may be any one of the following: <, >, ==, <=, >=,
!=.

• step: The number by which the variable will change for each iteration through the loop. The operator
may be any one of the following: ++, --, +=step, -=step. Note that $A++ will increment the vari-
able by 1.

Note that although this for loop looks like the regular Dynamic C for loop, its use is restricted to what is
documented here.

To display a list of numbers in HTML using a for loop, you can do something like this:

<TABLE><TR>
<?z for ($A = 0; $A < 5; $A++) { ?>

<TD><?z print($foo[$A]) ?>
<?z } ?>
</TR></TABLE>

This code will display the variables foo[0], foo[1], foo[2], foo[3], and foo[4] in an HTML
table.

It is also possible to get the number of elements in a one-dimensional array by doing the following:

<?z for ($A = 0; $A < count($foo, 0); $A++) { ?>

The second parameter to count() indicates that we want the upper bound of the nth array index of foo.
(From this you can infer that the first parameter must be an array!) For example, if $foo is a three-dimen-
sional array, then count ($foo, 0) yields the array bound for the first dimension, count ($foo, 1)
yields the array bound for the second dimension and count ($foo, 2) yields the array bound for the
third dimension.
22 www.rabbit.com RabbitWeb

http://www.rabbit.com

3.2.2 Conditional Code
In addition to looping, you can have conditional code with if statements. The if statement is specified as
follows:

<?z if ($A == 0) { ?>
HTML code

<?z } ?>

where:

• A: The variable to check in the conditional. This can be anything that evaluates to a number, whether it
be a normal integral #web-registered variable, a loop variable, a numeric literal, or a count() expres-
sion.

• ==: The relational operator in the if statement. This can be “==”, “!=”, “<“, “>”, “<=”, or “>=”.

• 0: The number to which the variable should be compared. This can be anything that evaluates to a num-
ber, whether it be a normal integral #web-registered variable, a loop variable, a numeric literal, or a
count() expression.

For example:

<?z if ($foo == 0) { ?>
HTML code

<?z } ?>

or

<?z if ($foo == @foo) { ?>
HTML code

<?z } ?>

are both legal.

The table from the previous example was modified to allow one of the values to be displayed in an input
widget, whereas all the other values are simply displayed.

<TABLE><TR>
<?z for ($A = 0; $A < count($foo, 0); $A++) { ?>

<TD>
<?z if ($A == 3) { ?>

<INPUT TYPE=”text” NAME=”<?z varname($foo[$A]) ?>”
VALUE=”<?z print($foo[$A]) ?>”>

<?z } ?>
<?z if ($A != 3) { ?>

<?z print($foo[$A]) ?>
<?z } ?>

<?z } ?>
</TR></TABLE>

if statements can be nested. Even for loops can be nested within other for loops. The nesting level has
an upper limit defined by the macro ZHTML_MAX_BLOCKS, which has a default value of 4.
RabbitWeb www.rabbit.com 23

http://rabbit.com

3.3 Selection Variables
Put together, if statements and for loops are useful for selection-type variables. To iterate through all
possible values of a selection-type variable and output the appropriate “<OPTION>” or “<OPTION
SELECTED>” tags, something like the following can be done:

<?z for ($A = 0; $A < count($select_var); $A++) { ?>
<OPTION

<?z if (selected($select_var, $A)) { ?>
SELECTED

<?z } ?>
>

<?z print_opt($select_var, $A) ?>

This syntax allows for maximum flexibility. In this case, the count() function returns the number of
options in a selection variable. The selected() function takes a selection variable and an index as
parameters. It returns TRUE if that option matches the current value, and FALSE if it doesn’t.

The print_opt() function outputs the $A-th possible value.

The following is a convenience function that automatically generates the option list for a given selection
variable:

<?z print_select($select_var) ?>

3.4 Checkboxes and RadioButtons
This section describes how to add checkboxes and radiobuttons to your web page.

Checkboxes are a bit tricky because if a checkbox is not selected, then no information on that variable is
sent to the server. Only if it is selected will the variable value (“on” by default, or whatever you have in the
VALUE=“this_is_the_value” attribute) be passed in. In particular this means that if a variable was
checked, but then you uncheck it, the server will not be able to tell the difference between that variable
being unchecked and that variable value simply not being sent. The server would need a notion of the full
list of variables that should be in a specific form, information which RabbitWeb does not have.

However, there is a workaround. If a variable is included in a form multiple times, its value will be submit-
ted multiple times. RabbitWeb will take the last value given as the true value, and ignore all previous ones.
So, to force a default unchecked value, you can include a hidden variable before you do the checkbox
INPUT field. Since you can do ZHTML comparisons with numbers, if you give the variable the value 0 or
1, it can be used in the checkbox INPUT tag.

<INPUT TYPE="hidden" NAME="<?z varname($checkbox[0]) ?>"
VALUE="0">

<INPUT TYPE="checkbox" NAME="<?z varname($checkbox[0]) ?>
VALUE="1"
<?z if ($checkbox[0] == 1) { ?>

CHECKED
<?z } ?>

>

24 www.rabbit.com RabbitWeb

http://www.rabbit.com

So, if the value of $checkbox[0] is 1, then the CHECKED attribute will be included and the checkbox
will be checked. Otherwise, it will be blank. If it is checked when the form is displayed, but you clear the
value, this still works, since the hidden field with a value of 0 will always be sent.

Since a list of radiobuttons is more likely to be subject to different formatting depending on user taste than
something like a pulldown menu, there is no automatic way of generating the list. The best way to generate
a list of radiobuttons is to use a for loop and the count function.

The following page displays both a checkbox and a list of radiobuttons.

<HTML>
<HEAD>
<TITLE>Radio button and checkbox</TITLE>
</HEAD>
<BODY>
<form action="./index.zhtml" method="post" >
<INPUT TYPE="hidden" name="checkboxBoolean" VALUE="0" >
<INPUT TYPE="checkbox"

<?z if($checkboxBoolean==1) { ?>
CHECKED

<?z } ?>
NAME="checkboxBoolean" VALUE="1" >

<?z for ($A = 0; $A < count($radiobutton); $A++){ ?>
<INPUT TYPE="radio" NAME="radiobutton"

VALUE="<?z print_opt($radiobutton, $A) ?>"
OPTION
<?z if (selected($radiobutton, $A)) { ?>

CHECKED
<?z } ?> >

<?z } ?>

<INPUT TYPE="Submit" VALUE="Submit" >
</form>
</BODY>
</HTML>

To take advantage of the above zhtml script, the server code would need something like the following:

int checkboxBoolean, radiobutton;
#web checkboxBoolean
#web radiobutton select("0" = 0, "1", "2", "3", "4", "5", "6", "7")

checkboxBoolean = 0;
radiobutton = 0;
RabbitWeb www.rabbit.com 25

http://rabbit.com

3.5 Error Handling
One of the biggest benefits to the new server-parsed HTML tags is the ability to perform actions based on
whether a user-submitted variable was in error. A natural way of creating an HTML user interface is to
create the form on an HTML page. When the user enters (or changes) values and submits the result, the
server should check the input for errors. If there are errors, then the same form can be redisplayed. This
form can mark the values that are in error and allow the user to update them. With the use of conditionals,
it is possible to create both the original form and the form that shows the errors in the same page.

The destination page of a submitted form can be any page. When the web server receives a POST request
with new variable data, it checks the data using the error-checking expression in the #web statement that
registered the variable. If there is an error, then the destination web page is displayed in error mode. The
following text describes how error mode affects the display of the destination web page.

By default, the print statement displays the new value of the variable when in error mode. To override
the default behavior and show the old, committed value (note that the erroneous value has not been com-
mitted), do the following:

<?z print(@foo) ?>

The “@” symbol specifies the old value of the variable.

To execute some code only when a certain variable has an error, do the following:

<?z if (error($foo)) { ?>
 This value is in error!
<?z } ?>

It is also possible to say: !error($foo).

If a value submitted for a variable has an error, then error(var) used in a print statement evaluates
to an error string if one was defined using the method described in the section titled, Reporting Errors.
Here is an example:

<?z if (error($foo)) { ?>
This value is <?z print(error($foo)) ?>!

<?z } ?>

Although the ZHTML parser can output error messages into the HTTP stream, these messages may not be
visible on a web page depending on how the browser is displaying pages. The surest way to find out
exactly the result of a ZHTML page is to check the source of the page in the browser. For Internet
Explorer, the user can choose the "View/Source" menu item. Other browsers have equivalent functionality.

To display some information if the page is being displayed in error mode, use error() with no parame-
ter. If any variable in the form has an error, error() will return TRUE. Here is an example of its use:

<?z if (error()) { ?>
Errors are in the submission! Please correct them below.

<?z } ?>
26 www.rabbit.com RabbitWeb

http://www.rabbit.com

3.6 Security: Permissions and Authentication
To check if a user has authorization for a specific variable, call the auth() function:

<?z if (auth($foo, “rw”)) { ?>
You have read-write access to the variable foo.

<?z } ?>

“ro” is also a valid second parameter.

To check if the current page is being displayed as the result of a POST request instead of a GET request,
call the updating() function.

<?z if (updating()) { ?>
<?z if (!error()) { ?>

<META HTTP-EQUIV=”Refresh” CONTENT=”0;
 URL=http://yoururl.com/”>

<?z } ?>
<?z } ?>

Both auth() and updating() may be preceded by “1” (the not operator).

4.0 TCP to Serial Port Configuration Example
This section is a step-by-step description of the sample program ethernet_to_serial.c. It is
located in Samples\tcpip\rabbitweb.

This sample program can be used to configure a simple Ethernet-to-serial converter. For simplicity, it only
supports listening on TCP sockets, meaning that Ethernet-to-serial devices can only be started by another
device initiating the network connection to the Rabbit.

Each serial port is associated with a specific TCP port. The Rabbit listens on each of these TCP ports for a
connection. It then passes whatever data comes in to the associated serial port, and vice versa.

4.1 Dynamic C Application Code
The program starts with a configuration section:

This #define statement sets the predefined TCP/IP configuration for this sample. If the default network
configuration of 10.10.6.100, 255.255.255.0 and 10.10.6.1 for the board’s IP address, netmask and gate-
way/nameserver respectively are not acceptable, change them before continuing. See
LIB\TCPIP\TCP_CONFIG.LIB for instructions on how to change the configuration.

#define TCPCONFIG 1
RabbitWeb www.rabbit.com 27

http://rabbit.com

Each element in array ports_config corresponds to a serial port. In the following code, the size of this
array will be used in for loops to identify, initialize and monitor the serial ports. A buffer is defined that
will hold the data that is being passed from the Ethernet port to the serial port. The number of server
instances is set to one and the number of socket buffers is set to the number of server instances plus the
number of serial ports. The last two defines will be used later to allocate space for the receive and transmit
buffers used by the serial port drivers.

This is the end of the configuration section.

This block of code asks the compiler to map functions not declared as root to extended memory. Setting
the macro USE_RABBITWEB to one enables the use of the scripting language and the HTTP enhance-
ments. (Other macros that affect these features are described in the reference section.) Next the TCP/IP
libraries are brought in, as well as the HTTP library. The HTML page that contains the configuration inter-
face to the serial ports is copied into memory with the #ximport directive.

HTTP servers require MIME type mapping information. This information is kept in the MIME table,
which is set up by the SSPEC_MIME_* macros.

The SSPEC_RESOURCE* macros set up the static resource table for this server. The resource table is a
list of all resources that the server can access. In this case, the server has knowledge of two resources

const char ports_config[] = { 'E', 'F' };

#define E2S_BUFFER_SIZE 1024
#define HTTP_MAXSERVERS 1

#define MAX_TCP_SOCKET_BUFFERS (HTTP_MAXSERVERS +
sizeof(ports_config))

#define SERINBUFSIZE 127
#define SEROUTBUFSIZE 127

#memmap xmem

#define USE_RABBITWEB 1

#use "dcrtcp.lib"
#use "http.lib"

#ximport "samples/tcpip/rabbitweb/pages/config.zhtml"
config_zhtml

SSPEC_MIMETABLE_START
SSPEC_MIME_FUNC(".zhtml", "text/html", zhtml_handler),
SSPEC_MIME(".html", "text/html"),
SSPEC_MIME(".gif", "image/gif")

SSPEC_MIMETABLE_END

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/", config_zhtml),
SSPEC_RESOURCE_XMEMFILE("/index.zhtml", config_zhtml)

SSPEC_RESOURCETABLE_END
28 www.rabbit.com RabbitWeb

http://www.rabbit.com

named “/” and “/index.zhtml”. When either of these is requested, the config.zhtml file is
served. The file extension (zhtml) identifies the file as containing server-parsed tags.

These are the function declarations. They will be defined later in the program.

The SerialPort structure has fields for the configuration information for each serial port and TCP port
pair. The serial_ports array (and its copy) stores configuration information about the serial ports.
serial_ports_copy[] is used to determine which port information changed when the update func-
tion is called.

The first #web statement is registration for the TCP port. Note that the only rule in the guard is that the
new value must be greater than zero. The next #web statement registers the character representing the
serial port, in this case, “E” or “F.”

These two #web statements correspond to the baud rate. The guards are split into two so that the
WEB_ERROR() feature can be used. The string passed to WEB_ERROR() can later be used in the
ZHTML scripting to indicate why the guard statement failed.

void restart_socket(int i);
void update_tcp(void);
void restart_serial(int i);
void update_serial(void);
void serial_open(int i);
void e2s_init(void);
void e2s_tick(void);

struct SerialPort {
word tcp_port;
struct {

char port;
long baud;
int databits;
int parity;
int stopbits;

} ser;
};

struct SerialPort serial_ports[sizeof(ports_config)];
struct SerialPort serial_ports_copy[sizeof(ports_config)];

#web serial_ports[@].tcp_port ($serial_ports[@].tcp_port > 0)
#web serial_ports[@].ser.port

#web serial_ports[@].ser.baud(($serial_ports[@].ser.baud >= 300)? \
1:WEB_ERROR("too low"))

#web serial_ports[@].ser.baud(($serial_ports[@].ser.baud <= 115200)? \
1:WEB_ERROR("too high"))
RabbitWeb www.rabbit.com 29

http://rabbit.com

These are selection variables. They limit the available options for serial port configuration parameters.

The #web_update feature will initiate a function call when the corresponding variables are updated.
Note that update_tcp() will be called when the TCP port changes, and update_serial() will be
called when any of the other serial port configuration parameters are updated.

These set the receive and transmit buffer sizes for the serial ports. In this example only serial ports “E” and
“F” are being used, but here, as well as in the function e2s_init(), code is included for all possible
serial ports. In this way it is relatively easy to change the serial ports being used simply by changing the
character array, ports_config[].

These are symbols representing different states in the Ethernet-to-serial state machine.

#web serial_ports[@].ser.databits select("7" = 7, "8" = 8)
#web serial_ports[@].ser.parity select("None" = 0, "Even", "Odd")
#web serial_ports[@].ser.stopbits select("1" = 1, "2" = 2)

#web_update serial_ports[@].tcp_port update_tcp
#web_update serial_ports[@].ser.baud,serial_ports[@].ser.databits,\

serial_ports[@].ser.stopbits update_serial

#define AINBUFSIZE SERINBUFSIZE
#define AOUTBUFSIZE SEROUTBUFSIZE
#define BINBUFSIZE SERINBUFSIZE
#define BOUTBUFSIZE SEROUTBUFSIZE
#define CINBUFSIZE SERINBUFSIZE
#define COUTBUFSIZE SEROUTBUFSIZE
#define DINBUFSIZE SERINBUFSIZE
#define DOUTBUFSIZE SEROUTBUFSIZE
#define EINBUFSIZE SERINBUFSIZE
#define EOUTBUFSIZE SEROUTBUFSIZE
#define FINBUFSIZE SERINBUFSIZE
#define FOUTBUFSIZE SEROUTBUFSIZE

enum {
E2S_INIT,
E2S_LISTEN,
E2S_PROCESS

};
30 www.rabbit.com RabbitWeb

http://www.rabbit.com

The e2s_state array of structures holds critical information for each socket/serial port pair, namely the
socket structures that are used when calling TCP/IP functions and the various serial port functions that
access the serial ports or set serial port parameters.

The first member of the structure (state) is the value of the variable that determines which state of the
Ethernet-to-serial state machine will execute the next time e2s_tick() is called.

This is a temporary buffer for copying data between the serial port buffers and the socket buffers.

Now we will look at the functions that were declared earlier in the program.

The function restart_socket() displays a screen message and then aborts the socket. The state vari-
able for the Ethernet-to-serial state machine is set to the initialization state, which will cause the socket to
be opened for listening the next time the state machine tick function is called.

struct {
int state; // Current state of the state machine
tcp_Socket sock; // Socket associated with this serial port

// The following members are function pointers for accessing this serial port
int (*open)();
int (*close)();
int (*read)();
int (*write)();
int (*setdatabits)();
int (*setparity)();

} e2s_state[sizeof(ports_config)];

char e2s_buffer[E2S_BUFFER_SIZE];

void restart_socket(int i)
{
printf("Restarting socket %d\n", i);

// Abort the socket
sock_abort(&(e2s_state[i].sock));

// Set up the state machine to reopen the socket
e2s_state[i].state = E2S_INIT;

}

RabbitWeb www.rabbit.com 31

http://rabbit.com

The function update_tcp() is called when a TCP port is updated via the HTML interface. It deter-
mines which TCP port(s) changed, and then restarts them with the new parameters.

The function restart_serial() closes and then reopens the serial port specified by its parameter.

The function update_serial() is called when a serial port is updated via the HTML interface. It
determines which serial port(s) changed, and then restarts them with the new parameters.

void update_tcp(void){
auto int i;

// Check which TCP port(s) changed
for (i = 0; i < sizeof(ports_config); i++) {

if (serial_ports[i].tcp_port != serial_ports_copy[i].tcp_port)
{

// This port has changed, restart the socket on the new port
restart_socket(i);

// Save the new port, so we can check which one changed on the next update
serial_ports_copy[i].tcp_port = serial_ports[i].tcp_port;

}
}

}

void restart_serial(int i){
printf("Restarting serial port %d\n", i);
e2s_state[i].close(); // Close the serial port
serial_open(i); // Open the serial port

}

void update_serial(void){
auto int i;

// Check which serial port(s) changed
for (i = 0; i < sizeof(ports_config); i++)
{

if (memcmp(&(serial_ports[i].ser),
&(serial_ports_copy[i].ser),
sizeof(serial_ports[i].ser)))

{
// This serial port has changed, so re-open the serial port with the new parms
restart_serial(i);

// Save the new parameters, so we can check which one changed on the next update
memcpy(&(serial_ports_copy[i].ser),

&(serial_ports[i].ser),
sizeof(serial_ports[i].ser));

}
}

}

32 www.rabbit.com RabbitWeb

http://www.rabbit.com

The function, serial_open(), is called from the function that initializes the Ethernet-to-serial state
machine, e2s_init(). It does all of the work necessary to open a serial port, including setting the num-
ber of data bits, stop bits, and parity.

The first statement opens the serial port using the baud rate value that was initialized in main(). In the
rest of the code, the values for the other serial port parameters, which are also initialized in main(), are
used to determine the correct bitmask to send to the serial port functions serXdatabits() and
serXparity(). (The bitmasks, PARAM_*, are defined in the serial port library, RS232.lib.)

void serial_open(int i)
{
// Open the serial port
e2s_state[i].open(serial_ports[i].ser.baud);

// Set the data bits
if (serial_ports[i].ser.databits == 7) {

e2s_state[i].setdatabits(PARAM_7BIT);
}
else {

e2s_state[i].setdatabits(PARAM_8BIT);
}
// Set the stop bits
if (serial_ports[i].ser.stopbits == 1) {

if (serial_ports[i].ser.parity == 0) { // No parity
e2s_state[i].setparity(PARAM_NOPARITY);

}
else if (serial_ports[i].ser.parity == 1) { // Even parity

e2s_state[i].setparity(PARAM_EPARITY);
}
else { // Odd parity (== 2)

e2s_state[i].setparity(PARAM_OPARITY);
}

}
else { // 2 stop bits

e2s_state[i].setparity(PARAM_2STOP);
}

}

RabbitWeb www.rabbit.com 33

http://rabbit.com

The above function initializes the Ethernet-to-serial state machine: first by setting the variable that is used
to travel around the state machine (e2s_state[i].state), then by setting the function pointers used
to access the serial ports. For example, serAopen() is a function defined in RS232.lib that opens
serial port A.

The switch statement has cases for serial ports B, C and D that are not shown here. They are function-
ally the same as the above code for serial port A. If the chip on the target board is a Rabbit 3000, there are
cases for serial ports E and F as well. The default case is an error condition that will cause a run-time error
if encountered.

The last statement in the for loop is a call to serial_open(). This function, which was described ear-
lier, makes calls to the appropriate serial port functions using the function pointers that were just initial-
ized.

void e2s_init(void)
{
auto int i;
for (i = 0; i < sizeof(ports_config); i++) {

e2s_state[i].state = E2S_INIT; // Initialize the state

// Initialize the serial function pointers
switch (ports_config[i]) {

case 'A':
e2s_state[i].open = serAopen;
e2s_state[i].close = serAclose;
e2s_state[i].read = serAread;
e2s_state[i].write = serAwrite;
e2s_state[i].setdatabits = serAdatabits;
e2s_state[i].setparity = serAparity;
break;

. . .

default:
// Error--not a valid serial port
exit(-1);

}
// Open each serial port
serial_open(i);

}
}

34 www.rabbit.com RabbitWeb

http://www.rabbit.com

The function, e2s_tick(), drives the Ethernet-to-serial state machine. Each time this tick function is
called, it loops through all of the serial ports, first grabbing the socket structure that associates a particular
serial port with a TCP port, then determining which state is active for that TCP port. There are three states
in the Ethernet-to-serial state machine, identified by:

• E2S_INIT

• E2S_LISTEN

• E2S_PROCESS

The first state, E2S_INIT, opens the socket with a call to tcp_listen() and then sets the state vari-
able to be in the listen state. The next time the tick function is called the E2S_LISTEN state will execute.
The state machine will stay in this listen state until a connection to the socket is attempted, a condition
determined by a call to sock_waiting().

As noted in the code comments above, once a connection is attempted there are several stages it can be in,
which one will determine the next state of the Ethernet-to-serial state machine.

void e2s_tick(void)
{
auto int i;
auto int len;
auto tcp_Socket *sock;

for (i = 0; i < sizeof(ports_config); i++) {
sock = &(e2s_state[i].sock);
switch (e2s_state[i].state) {

case E2S_INIT:
tcp_listen(sock, serial_ports[i].tcp_port, 0, 0, NULL, 0);
e2s_state[i].state = E2S_LISTEN;
break;

case E2S_LISTEN:
if (!sock_waiting(sock)) {

// The socket is no longer waiting
if (sock_established(sock)) {

// The socket is established
e2s_state[i].state = E2S_PROCESS;

}
else if (!sock_alive(sock)) {

//The socket was established but then aborted by the peer
e2s_state[i].state = E2S_INIT;

}
else {
//socket was opened, but is now closing. Go to PROCESS state to read any data.

e2s_state[i].state = E2S_PROCESS;
}

}
break;
RabbitWeb www.rabbit.com 35

http://rabbit.com

The E2S_PROCESS state checks to make sure the user did not abort the connection since the last time the
tick function was called. If there was no abort, an attempt is made to read data from the socket buffer. If an
error is returned from sock_fastwrite(), the connection is aborted and we go back to the init state
the next time the tick function is called. If data was read, it is written to the serial port. If no data was read,
then nothing happens.

Next an attempt is made to read data from the serial port. If data was read, it is then written out to the TCP
socket. If the data read from the serial port was not written successfully to the TCP socket, the connection
is aborted and we go back to the init state the next time the tick function is called.

If no data was read from the serial port, the process state will execute again the next time the tick function
is called.

case E2S_PROCESS:
// Check if the socket is dead
if (!sock_alive(sock)) {

e2s_state[i].state = E2S_INIT;
}
// Read from TCP socket and write to serial port
len = sock_fastread(sock, e2s_buffer, E2S_BUFFER_SIZE);
if (len < 0) { //Error

sock_abort(sock);
e2s_state[i].state = E2S_INIT;

}
if (len > 0) {

// Write the read data to the serial port--Note that for simplicity,
// this code will drop bytes if more data has been read from the TCP
// socket than can be written to the serial port.
e2s_state[i].write(e2s_buffer, len);

}
else { /* No data read, do nothing */ }

// Read from the serial port and write to the TCP socket
len = e2s_state[i].read(e2s_buffer, E2S_BUFFER_SIZE,

(unsigned long)0);

if (len > 0) {
len = sock_fastwrite(sock, e2s_buffer, len);
if (len < 0) { //Error

sock_abort(sock);
e2s_state[i].state = E2S_INIT;

}
}

break;
}

}
}

36 www.rabbit.com RabbitWeb

http://www.rabbit.com

In the main() function, the configuration parameters for the serial ports are given initial values which are
then copied for later comparison. After initialization of the stack, the web server and finally the state
machine, the while loop allows us to wait for a connection.

void main(void)
{
auto int i;

// Initialize the serial_ports data structure
for (i = 0; i < sizeof(ports_config); i++) {

serial_ports[i].tcp_port = 1234 + i;
serial_ports[i].ser.port = ports_config[i];
serial_ports[i].ser.baud = 9600;
serial_ports[i].ser.databits = 8;
serial_ports[i].ser.parity = 0;
serial_ports[i].ser.stopbits = 1;

}

// Make a copy of the configuration options to be compared against when
// the update functions are called
memcpy(serial_ports_copy, serial_ports, sizeof(serial_ports));

// Initialize the TCP/IP stack, HTTP server, and Ethernet-to-serial state machine.
sock_init();
http_init();
e2s_init();

// This is a performance improvement for the HTTP server (port 80),
// especially when few HTTP server instances are used.

tcp_reserveport(80);

while (1) {
// Drive the HTTP server
http_handler();

// Drive the Ethernet-to-serial state machine
e2s_tick();

}
}

RabbitWeb www.rabbit.com 37

http://rabbit.com

4.2 HTML Page for TCP to Serial Port Example
The file config.zhtml that was copied into memory at the beginning of this program contains the
HTML form that is presented when someone contacts the IP address of the Rabbit that is running the
above application code. config.zhtml uses the ZHTML scripting language that interacts with the code
above to create the web interface to a Rabbit-based controller board.

File name: Samples/tcpip/rabbitweb/pages/config.zhtml

After the usual opening lines of an HTML page, the first server-parsed tag we encounter is used with the
call to error() to display a form submission error message, the same way we did in the humidity detec-
tor example in Section 1.2.2. Next is an example of a for loop used to print additional, more focused,
error messages regarding the local TCP port number and the baud rate for each serial port. Again,
error() is used with an if statement to verify the submission of particular web variables and display
whatever error messages are chosen.

<HTML><HEAD>
<TITLE>Ethernet-to-Serial Configuration</TITLE></HEAD>
<BODY>

<H1>Ethernet-to-Serial Configuration</H1>

Reload the page with committed values

<P>
<?z if (error()) { ?>
There is an error in your data! The errors are both listed below
and marked in red.

<?z for ($A = 0; $A < count($serial_ports, 0); $A++)
{ ?>

<?z if (error($serial_ports[$A].tcp_port))
{ ?>

Serial Port <?z echo($serial_ports[$A].ser.port) ?>
TCP port is in error (must be greater than 0)
(committed value is
<?z echo(@serial_ports[$A].tcp_port)?>)

<?z } ?>

<?z if (error($serial_ports[$A].ser.baud))
{ ?>

Serial Port <?z echo($serial_ports[$A].ser.port) ?>
baud rate is in error
(<?z echo(error($serial_ports[$A].ser.baud)) ?>)
(must be between 300 and 115200 baud)
(committed value is
<?z echo(@serial_ports[$A].ser.baud) ?>)

<?z } ?>
<?z } ?>

<?z } ?>
38 www.rabbit.com RabbitWeb

http://www.rabbit.com

The form is defined next. Another for loop allows us to have the same form entries for each serial port in
turn.When displayed without errors, the page looks like this:

Figure 4. Web Page Served by
RabbitWeb

There are two tables, one for serial
port E and, if you could scroll
down in Figure 4, you would see
that it is followed by a table for
serial port F. Each table consists of
five rows and two columns. Of the
five rows, two have text entries
and three have drop-down menus,
one for each of the three selection
variables defined in the Dynamic
C application code shown above
on page 30. We will not show the
rest of the HTML code here
because it is too repetitive and we
have seen similar code in the
humidity detector example. There
are two lines, however, that are
worth further discussion.

The two text fields in the above form are created with INPUT tags like the one shown here. Recall that the
NAME attribute does not allow the use of “[” or “].” The call to varname() solves that problem for us.

The SELECT tag is used to create a drop-down menu in HTML, which is a convenient way to display a
RabbitWeb selection-type variable.

<FORM ACTION="/index.zhtml" METHOD="POST">
<?z for ($A = 0; $A < count($serial_ports, 0); $A++) { ?>

<H2>Serial Port <?z echo($serial_ports[$A].ser.port) ?> Setup
</H2>

<TABLE>

<INPUT TYPE="text"
NAME="<?z varname($serial_ports[$A].tcp_port) ?>"
SIZE=5 VALUE="<?z echo($serial_ports[$A].tcp_port) ?>">

<SELECT NAME="<?z varname($serial_ports[$A].ser.parity) ?>">
<?z print_select($serial_ports[$A].ser.parity) ?>

</SELECT>
RabbitWeb www.rabbit.com 39

http://rabbit.com

Appendix A. RabbitWeb Reference
This appendix is the repository of some specialized details, such as the grammars that describe the script-
ing language and the Dynamic C enhancements. It is also intended as a way to quickly find descriptions of
particular components of the RabbitWeb module.

A.1 Language Enhancements Grammar
Terminals are in bold, “[]” indicate optional parts, and “|” indicates an OR in the statement.

web-extension -> #web-statement |
#web_groups-statement |
#web_update-statement

#web-statement -> #web variable expression [authorization]

End-of-line escaping must be used for the #web statement to span lines.

variable -> case-insensitive-C-variable
expression -> modified-C-expression |
 select (select-list)
select-list -> “string“ [= numeric-literal] [, select-list]

variable is a C variable in the global scope. Due to details of how variables are transferred over HTTP,
the variable name must be treated as case-insensitive. We can catch variables that conflict because of case-
insensitivity at run-time.

modified-C-expression is a regular C expression, with an optional “$” symbol preceding C vari-
ables which is used to reference the newest value of the variable.

authorization -> [authorization] [auth-method] [valid-groups]

auth-method -> auth = auth-type-list

auth-type-list -> ssl | basic | digest [, auth-type-list]

valid-groups -> groups = valid-groups-list

valid-groups-list -> group [(group-rights)] [, valid-groups-list]

group-rights -> ro | rw

#web_groups-statement -> #web_groups groups-list

groups-list -> group-name [, groups-list]

group-name follows the same rules of a C variable name (it will, in fact, be in the namespace as a C
variable).

#web_update-statement -> #web_update variable-list function-spec

variable-list -> variable [, variable-list]

function-spec is the name of a previously declared C function.
40 www.rabbit.com RabbitWeb

http://www.rabbit.com

A.2 Configuration Macros
There are several macros that can be used when setting up a RabbitWeb server.

USE_RABBITWEB

Define to 1 to enable the HTTP extensions, including the ZHTML scripting language. Defaults
to 0.

RWEB_POST_MAXBUFFER

This defines the size of a buffer that is created in xmem. This buffer stores POST requests that
contain variable updates. Hence, this macro limits the size of POST requests that can be pro-
cessed. Defaults to 2048.

RWEB_POST_MAXVARS

This macro defines the maximum number of variables that can be processed in a single POST
request. That is, it limits the number of variables that can be updated in a single request. Each
variable requires 20 bytes of root memory for bookkeeping information, so the total memory
usage is 20 * RWEB_POST_MAXVARS. Defaults to 64.

RWEB_ZHTML_MAXBLOCKS

This macro determines the number of if and for blocks that can be nested in ZHTML. Each
additional block allowed adds 11 bytes for each HTTP server instance (defined by
HTTP_MAXSERVERS). Defaults to 4.

RWEB_ZHTML_MAXVARLEN

This defines the size of a root buffer that is used to store variable values, and hence limits the
maximum length of a variable value. Only string values can be larger than 4 bytes, so realisti-
cally this macro only affects strings. Defaults to 256.

RWEB_WEB_ERROR_MAXBUFFER

This macro defines the size of a buffer in xmem that is used to hold WEB_ERROR() error mes-
sages. This buffer limits the total size of the error messages associated with a single form up-
date. Defaults to 512.
RabbitWeb www.rabbit.com 41

http://rabbit.com

A.3 Compiler Directives
The RabbitWeb compiler directives are summarized here.

#web

Registers a variable, array or a structure with the server. For more information, see Section 2.1.

The #web statement has several optional parts that can be used when a variable (or array or
structure) is registered. The optional parts are:

• An error-checking expression to limit the acceptable values that are submitted. For more
information see Section 2.2. A macro called WEB_ERROR can be included in the error-
checking expression to associate a string with an error. For more information, see
Section 2.2.1.

• The “auth=” parameter is a comma separated list of acceptable authentication methods.
The possible choices are basic, digest and ssl. For more information, see Section 2.3.

• The “groups= “ parameter is a comma separated list of user groups that are allowed
access to the web variable (or array or structure). For more information, see Section 2.3.

One or more of the optional parts can be used in a #web statement.

#web_groups

This directive defines a web group. For more information, see Section 2.3.

#web_update

This directive identifies a user-defined function to call in response to a variable update. For
more information, see Section 2.4.
42 www.rabbit.com RabbitWeb

http://www.rabbit.com

A.4 ZHTML Grammar
Terminals are in bold, “[]” indicate optional parts, and “|” indicates an OR in the statement.

zhtml-tag -> <?z statement ?>
statement -> print-function | printf-function |

varname-function | print_opt-function |
print_select-function | if-statement | for-loop

print-function -> print(variable)

variable -> $ registered-variable | loop-variable

registered-variable is an array, structure or variable that is registered with the web server.

loop-variable -> $ A-Z

loop-variable is a one-letter variable (A-Z) defined in the for loop, and can be used as the index for
an array.

printf-function -> printf (printf-specifier , variable)

The printf-specifier is like a C printf specifier, except that it is limited to a single variable.

varname-function -> varname(variable)
print_opt-function -> print_opt(variable , number) |
 print_opt(variable , loop-variable)
print_select-function -> print_select(variable)

count-expression -> count(variable, number) | count(variable)

Note that in the first option variable is an array; in the second option it is a selection-type variable.

numeric-expression -> loop-variable | integral-variable |
count-expression | numeric-literal

integral-variable refers to a registered #web variable of integral (int or long, signed or
unsigned) type.

if-statement -> if (if-expression) { html-code }

if-expression ->numeric-expression operator numeric-expression |
 [!] error(variable) |
 [!] auth(variable , “ group-rights “) |
 [!] updating()

operator -> == | != | > | < | >= | <=

group-rights -> ro | rw

for-loop -> for (loop-variable = numeric-expression ;
 loop-variable operator numeric-expression ;
 loop-variable for-inc) { html-code }
for-inc -> ++ | -- | += numeric-expression | -= numeric-expression

ro stands for read-only

rw stands for write-only
RabbitWeb www.rabbit.com 43

http://rabbit.com

A.5 RabbitWeb Functions
This section lists all of the functions that can be called within ZHTML tags.

auth()

This function is used to check if a user has authorization for accessing a specific variable.

<?z if (auth($foo, “rw”)) { ?>
You have read-write access to the variable foo.

<?z } ?>

This function can be preceded by “!” (the not operator).

count()

This function is for arrays and selection-type variables.

If the first parameter is an array, the second parameter specifies an array dimension. For a one-
dimensional array, the second parameter must be zero. For a two-dimensional array, the second
parameter must be zero or one. And so on. If the first parameter is an array, the return value of
the function is the upper bound for the specified array dimension.

If the first parameter is a selection variable, there is no second parameter. The count() func-
tion returns the number of options for a selection variable.

The return value of count() can be used in a for loop to cycle through all elements of an
array.

 <?z for ($A = 0; $A < count($foo, 0); $A++) { ?>

echo(), print()

These are display functions to make web variables visible on an HTML page. They display
the variable passed to them using a default conversion specifier. The function echo() is an
alias for print().

<?z print($foo) ?>

error()

The error() function can be called both with and without a parameter. If it is called without
a parameter it will return TRUE if there were any errors in the form submission and FALSE oth-
erwise. To call error() with a parameter, you must pass it the name of a web variable. The
function will return TRUE if that variable did not pass its error check, and FALSE otherwise.

It can be used to print out the WEB_ERROR() message:

print(error($foo))
44 www.rabbit.com RabbitWeb

http://www.rabbit.com

printf()

This is a display function to make web variables visible on an HTML page. With printf()
you can display a variable of type int or long:

<?z printf(“%ld”, $long_foo) ?>

print_opt()

This is a display function to make selection-type web variables visible on an HTML page. It
takes two parameters. The first parameter is a selection-type variable and the second parameter
is the index into the list of possible values for the selection-type variable.

<?z print_opt($select_var, $A) ?>

print_select()

This is a display function to make selection-type web variables visible on an HTML page. It
automatically generates the option list for a given selection variable:

<?z print_select($select_var) ?>

selected()

The selected() function takes two parameters. The first parameter is a selection variable
and the second parameter is an integer index into the array of options for the specified selection
variable. The function returns TRUE if the option indicated by the index parameter matches the
currently selected option, and FALSE if it doesn’t.

For example, to iterate through all possible values of a selection-type variable and output the
appropriate “<OPTION>” or “<OPTION SELECTED>” tags, something like the following can
be done:

<?z for ($A = 0; $A < count($select_var, 0); $A++) { ?>
<OPTION
<?z if (selected($select_var, $A)) { ?>

SELECTED
<?z } ?>
>

<?z print_opt($select_var, $A) ?>

The page Samples/tcpip/rabbitweb/pages/selection.zhtml uses the
selected() function.
RabbitWeb www.rabbit.com 45

http://rabbit.com

updating()

This function can be used with an if statement to test whether the current page is being dis-
played as the result of a POST request instead of a GET request. This is useful to redirect to
another page on a successful form submission. Use this function as follows:

<?z if (updating()) { ?>
<?z if (!error()) { ?>

<META HTTP-EQUIV=”Refresh” CONTENT=”0;
 URL=http://yoururl.com/”>

<?z } ?>
<?z } ?>

This function can be preceded by “!” (the not operator).

varname()

This is a convenience function that gets around the limitation of no square brackets in the
NAME attribute of the INPUT tag in HTML.

<INPUT TYPE=”text” NAME=”<?z varname($foo[3]) ?>
”VALUE=” <?z echo($foo[3]) ?>”>
46 www.rabbit.com RabbitWeb

http://www.rabbit.com

	RabbitWeb
	1.0 Getting Started: A Simple Example
	1.1 Dynamic C Application Code for Humidity Detector
	1.2 HTML Pages for Humidity Detector
	1.2.1 The Monitor Page
	1.2.2 The Configuration Page

	2.0 Dynamic C Language Enhancements for RabbitWeb
	2.1 Registering Variables, Arrays and Structures
	2.1.1 Selection-type Variables

	2.2 Web Guards
	2.2.1 Reporting Errors

	2.3 Security Features
	2.4 Handling Variable Changes
	2.4.1 Interleaving Problems

	3.0 ZHTML Scripting Language
	3.1 SSI Tags, Statements and Variables
	3.2 Flow Control
	3.2.1 Looping
	3.2.2 Conditional Code

	3.3 Selection Variables
	3.4 Checkboxes and RadioButtons
	3.5 Error Handling
	3.6 Security: Permissions and Authentication

	4.0 TCP to Serial Port Configuration Example
	4.1 Dynamic C Application Code
	4.2 HTML Page for TCP to Serial Port Example

	Appendix A. RabbitWeb Reference
	A.1 Language Enhancements Grammar
	A.2 Configuration Macros
	USE_RABBITWEB
	RWEB_POST_MAXBUFFER
	RWEB_POST_MAXVARS
	RWEB_ZHTML_MAXBLOCKS
	RWEB_ZHTML_MAXVARLEN
	RWEB_WEB_ERROR_MAXBUFFER

	A.3 Compiler Directives
	#web
	#web_groups
	#web_update

	A.4 ZHTML Grammar
	A.5 RabbitWeb Functions
	auth()
	count()
	echo(), print()
	error()
	printf()
	print_opt()
	print_select()
	selected()
	updating()
	varname()

