

019-0088 Rev. B

OP7100
Graphics Engine

OP7100GE Rev. 2.62

019-0088b.doc Rev. 2.62

02-08-2002 Page 2

Table of Contents
OP7100 GRAPHICS ENGINE ..3

PURPOSE ...3
OVERVIEW ..3
HIGH-LEVEL FUNCTIONAL DESCRIPTION..4

Macros...4
Cells and Buttons...4
The Virtual Keyboard ..5
Time/Date entry/readback ...6
Initialization ..6

PROTOCOL..6
RS-232 PACKET FORMAT ...6
MISCELLANEOUS INFORMATION ...8
USE OF FLASH EPROM ..9

FINITE STATE MACHINE ..10
COMMANDS ..11

Control Commands..11
Macro Commands ...13
Graphics Primitives Commands..13
Text Commands ...15
Miscellaneous Commands ...15
Scripting Commands ...18
New (Special) Commands..19

APPENDIX I EXPLANATORY NOTES..20
THE WAY MACROS WORK ...20
INCLUSIVE VS EXCLUSIVE LIMITS ...20
THE WAY THE SCROLL COMMAND WORKS ...20
THE WAY THE XOR BRUSH WORKS... 21

APPENDIX II RESPONSE FORMATS ... 22

APPENDIX III MAXIMUM VALUES...23

APPENDIX IV COMMANDS, WHICH CAN BE INCLUDED IN MACRO ..24

COMMAND INDEX...25

Table of Figures
Figure 1 Command/Response Protocol ..4
Figure 2 Unsolicited Response Option...4
Figure 3 Virtual Keyboard..5
Figure 4 RS-232 Packet Format ...6
Figure 5 x,y Coordinates...8
Figure 6 Cell Numbering Scheme (valid in both Landscape and Portrait).....................................9
Figure 7 Finite State Machine...10
Figure 8 Command handling ..11

019-0088b.doc Rev. 2.62

02-08-2002 Page 3

OP7100 Graphics Engine

Purpose
The primary purpose of the OP7100 Graphics Engine is to allow use of an OP7100
controller from another (not necessarily Z-World) controller via RS232 without requiring
Dynamic C for further programming of the OP7100. An OP7100 with a well-documented
and versatile serial graphics command interpreter is a product that can be useful to people
who don�t use other Z-World controllers and to those who do.

Overview
Because of the extra memory on the OP7100, a large portion of memory is used for storing
bitmaps, fonts and macros, which can be referenced from the remote controller by index
numbers. Three default fonts (small, medium, and large) are provided with the OP7100
Graphics Engine.

Macro and button capabilities give the OP7100 Graphics Engine the ability to run user
interfaces autonomously. An OP7100 Graphics Engine interface can run independently of
the remote controller.

Button hits are detected and sent back to the remote controller in a manner specifiable by the
user. A special pop-up, virtual alphanumeric keypad is predefined to facilitate data entry.

019-0088b.doc Rev. 2.62

02-08-2002 Page 4

High-Level Functional Description
A finite state machine (FSM) runs on the OP7100, which will interpret and execute a
command protocol for displaying graphics and text primitives.

Figure 1 Command/Response Protocol

Graphics commands are sent from a remote controller using the RS-232 serial protocol.
Commands will be ACKed and NAKed. Some commands request data to be sent to the
remote; this data is sent in the response.

Figure 2 Unsolicited Response Option
An unsolicited response can occur with a key-push if the latter has been set up in this
manner.

Macros
The engine has the ability to define and play macros. Macros are collections of drawing or
text commands that can be defined remotely and stored without being drawn. Macros can
call other macros and be recursive. Macros can be played in �loop-back� mode, where they
are played continuously until a StopMacroLoop command is received or played in a macro.
Macros may contain time delays. Complex drawing sequences or whole graphics user
interfaces (GUIs) can be played as macros and initiated by single commands from a remote
host or initiated locally (for example, by another macro)

Cells and Buttons
The 240 x 320 pixel, ¼ VGA OP7100 LCD supports both graphics and text. The touch-
screen divides that area into an 8 x 8 matrix.

• �Cells� are defined as the cells of the 8 x 8 touch-screen matrix and are
predefined by the software and hardware. A Cell, when hit while enabled, sends
a one-byte message corresponding to its coordinate on the grid (upper-left corner
= 1, next in top row = 2, etc). Cells are disabled by default, and must be enabled
by a command from the Remote.

• Buttons are defined as a collection of one or more neighboring cells arranged in a
rectangular pattern. A button must be created by a command from the remote
controller. A button, when hit while enabled, sends a pre-defined two-byte
message, which was defined when the button was created.

Remote
controller

COMMAND

RS-232

RESPONSE

Zworld
OP7100

Remote
controller

Unsolicited
RESPONSE

Z-World
OP7100

019-0088b.doc Rev. 2.62

02-08-2002 Page 5

Buttons can be linked to cells and macros. The graphics engine will make sure that no two
buttons have the same index, and that only the top button is enabled if buttons overlap.
Cells may also be linked to macros and set to send codes to the remote, but putting a button
over a cell disables the cell (a touch will be interpreted as a button hit).

The Virtual Keyboard

The virtual keyboard uses 8 x 5 + 3 keys. It contains 26 letter keys, 10 digit keys, plus caps
lock (CAP), clear entry (CE), enter, space, minus, decimal point, and backspace keys. A
text entry box echoes typed keys. This is a standard way of entering and sending strings and
numeric data. In the command to run the virtual keyboard, the user specifies whether to
send the data to the host and whether to remove the keypad on hitting the enter key. The last
data entered will always be stored locally and can be retrieved by SendString,
SendTod, SendLongInteger, SendFloat and SendByte commands.

Figure 3 Virtual Keyboard

The user can also optionally specify:
• Password mode, where all characters typed are echoed as asterisks
• Data type to be entered (float, long integer, string)
• High and low limits
• Prompt line message
• Text Entry line message

If a wrong type or range of data is entered, the unit will (optionally) beep and display an
error message on the Result line.

� �

��

��

��	

�

����
��������

����������

	���������

��� � � �
 �

� ! "

� � �

$%

&

�

'()*

+

	

,

- . / 0

1

2

3 ��4

019-0088b.doc Rev. 2.62

02-08-2002 Page 6

Time/Date entry/readback
Time/Date (TOD) entry/readback is in the form of a standard Z-World structure

struct tm {
char tm_sec; // 0 – 59
char tm_min; // 0 – 59
char tm_hour; // 0 – 23
char tm_mday; // 1 – 31 (day of the month)
char tm_mon; // 1 – 12
char tm_year; // 0 – 150 (1900 – 2050)
char tm_wday; // 0 – 6 (day of the week, 0 =
Sunday)
};

The Real-Time Clock resident on the OP7100 is set when TOD is set.

Initialization
On power up, prior to receiving the 1st command from the remote controller, an OP7100
equipped with the Graphics Engine will display the message �Graphics Engine,� and the
software version and date. User specified fonts and bitmaps are stored in flash EPROM at
the time they are downloaded, and automatically restored.

Protocol
Commands are transmitted in packets. Most commands can be transmitted in one packet;
some commands (such as font and bitmap data) require continuation packets. Commands
and data are binary.

RS-232 Packet Format
Packets are limited to 255 bytes. All packets have the following format:

S
O
H

L
E
N

C
M
D

F
X
N

S
E
Q

DATA (0 to 248 bytes max)

 CRC

MS | LS

Figure 4 RS-232 Packet Format
The minimum length of the message is 5 bytes. See �Appendix II � Response Formats� for
typical command-response messages.

 LEN

 CRC

019-0088b.doc Rev. 2.62

02-08-2002 Page 7

SOH Start of Header (0x01)
This byte flags the beginning of a packet.

LEN Record Length
The length of the rest of the record, including the CRC but excluding
the 1st two bytes.

CMD Command associated with Record.
Sent from remote to OP7100GE, echoed by OP7100GE in response.

FXN Function or Subcommand (used by remote in Command)
 Used by OP7100GE in Response:

ACK (0x06) Command received successfully.
NAK (0x15) Flags an error.

The error is transmitted in the 1st data byte:
1 = CRC error
2 = Record less than 5 bytes
3 = Command not recognized
4 = Command not implemented as yet
5 = Option not recognized
6 = RTC has failed or is not installed
7 = Command queue full
8 = Command not allowed in a macro
9 = Error adding a macro to the list (probably exceeds

maximum length)
10 = END_MACRO command when not building a macro
11 = A command target (add, delete) does not exist
12 = Memory allocation error
13 = Parameter out of range, or object not found
14 = Command other than STOP_MACRO_LOOP if a macro

is playing
SEQ Sequence Number

Used by remote to provide additional information.

Used by OP7100GE to convey bit-encoded information:
b0 set = data has been entered since last message1
b1 set = cell hit since last message2
b2 set = button hit since last message3
b7 set = error occurred since last message4

This information is kept in global char lastStatus. This is cleared after
transmission so that the user will not get the same information over and over
again.

1 Retrieve data with SendString (etc) command.
2 Retrieve cell push with SendLastPush command.
3 Retrieve button push with SendLastPush command.
4 The error is in the 1st data byte.

019-0088b.doc Rev. 2.62

02-08-2002 Page 8

CRC Cyclic Redundancy Check.
The 16-bit CRC is at the end of the record and computed for all preceding
bytes. The MS CRC comes first at byte [LEN], followed by the LS CRC at
byte [LEN+1]. The CRC is the standard Z-World CRC returned by function
getcrc().

Miscellaneous Information
• Indexes and identifiers (ID) start with 1 (0 is reserved for �no� or �none�, or �)
• The sizes of the three standard fonts are:

6 x 8 fontId = 1
12 x 16 fontId = 2
17 x 35 fontId = 3

• A coordinate pair takes the form:
(int)xx followed by (int)yy,
where xx = x address, yy = y address

0,0

y-axis (239 max)

x-axis (319 max)

Landscape Mode

0,0

y-axis (319 max)

x-axis (239 max)

Portrait Mode

Figure 5 x,y Coordinates

019-0088b.doc Rev. 2.62

02-08-2002 Page 9

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64
Figure 6 Cell Numbering Scheme (valid in both Landscape and Portrait)

Use of Flash EPROM
Fonts and bitmaps sent by the user are stored in Flash EPROM, and restored after RESET.
The user must issue the SuperReset command to a new board in order to initialize this
feature.

Caution: Use of SuperReset after Fonts and Bitmaps have been stored will clear these items.

019-0088b.doc Rev. 2.62

02-08-2002 Page 10

Finite State Machine
The Graphics Engine�s implementation is that of a Finite State Machine (FSM). It is a
concurrent task application using Dynamic C�s costatement feature and functions from the
AASC libraries to buffer incoming commands. Graphics primitives from the OP71HW.LIB
library are used for rendering. Linked lists are used to store bitmaps, fonts, saved regions,
and Macros. Inter-task communication is implemented with queues and global storage.

Figure 7 Finite State Machine
The RS232Task is in charge of receiving the RS-232 packet. It calls the Decode subroutine
to partially parse the Command (some of the commands can be executed directly by the
task) and passes the information to the PlayTask and/or global storage.

The CellTask is in charge of picking up cell pushes and translating them into button pushes
(if necessary).

The PlayTask is in charge of displaying graphics/text command and macros.

The MacroTask is in charge of displaying the macro steps, and to allow the user to queue
more than one macro.

RESET

Initialization

MainLoop

RS232Task

DECODE CellTask

PlayTask

COMMAND

RESPONSE

GLOBAL
STORAGE

MacroTask

Cell Push processing

019-0088b.doc Rev. 2.62

02-08-2002 Page 11

Commands

Figure 8 Command handling
A command is always either ACKed or NAKed. A command is acted on if valid (good
CRC, valid parameters), ignored if not.

Control Commands
In the following table omitted fields are not used (don�t care). Commands in italics are not
implemented.

Command Stream Note
Init

(general)

CMD=10
FXN=0

Reset board, clear screen.

This command is not recommended; the Graphics
Engine software performs an Init on reset. See also the
SuperInit command.

SendStatus CMD=12 Response:
 SEQ = lastStatus:

DATA_ENTERED 0x01
CELL_HIT 0x02
BUTTON_HIT 0x04
ERR_OCCURRED 0x80

 data[0] = lastError (0 if none)

lastStatus is cleared after transmission.

SendLastPush CMD=13
FXN=1

Response data5 = byte index of last cell pushed, 0 =
none (see Figure 6).

SendLastPush CMD=13
FXN=2

Response data5 = (int) buttonId of last button pushed, 0
= none.

5 Cells and buttons are �one-shot�: a code is returned if the item has been pushed; the next inquiry returns a zero.

COMMAND

RESPONSE COMMAND
valid?

IGNORE

CONTINUEACK/NAK

NO

YES

019-0088b.doc Rev. 2.62

02-08-2002 Page 12

Command Stream Note
SendString CMD=14

Send the last string entered with the virtual keyboard or
loaded by SetString. ASCIIZ string returned in data
(could be a NUL string).

SendLongInteger CMD=15

Send the last integer entered with the virtual keyboard
or loaded by SetLongInteger. Integer returned in data.

SendFloat CMD=16

Send the last float entered with the virtual keyboard or
loaded by SetFloat. Float returned in data.

SendChar CMD=17 Send the last character entered with the virtual
keyboard or loaded by SetChar. Char returned in data.
Char is one-shot; the next command returns a 0.

SendTod CMD=18 Send the date and time of day from the RTC in the
form of the 7-byte struct tm (see page 6).

ClearString
Buffer

CMD=20 Set string buffer count to zero. Clears Text Entry line
if the Virtual Keyboard is active.

DeleteBitMap CMD=21
FXN=0
SEQ= index

Delete the bit map identified by the index.

LoadBitMap

(start)

CMD=21
FXN=1
SEQ= index
data = (int)dx,dy

Specifies size of bitmap (must be followed by FXN=2
records). Indexes 251 to 255 are reserved for internal
use.

See SuperReset command.

LoadBitMap

(continue)

CMD=21
FXN=2
SEQ= index
data = packed pixel

data

Pixel data consists of 1-bit values, packed in bytes in
the order of ms-bit on left to ls-bit on right. The
number of continuation records is determined by the
size of the bit map:
size = ((dx * dy) + 7) / 8 bytes.

DeleteFont CMD=22
FXN=0
SEQ=index (4+)

Delete the font identified by the index. Cannot delete
default font (index = 1 to 3).

LoadFont

(start)

CMD=22
FXN=1
SEQ=index (4+)
data =

(byte)width,h
eight,
startChar,
endChar

This cannot be used with the default font indexes
(which have the values of 1, 2, 3). Font indexes must
be in the range of 4 to 20.

A font may not have a startChar of 0 (ASCII NUL is
not displayable)

See SuperReset command.

019-0088b.doc Rev. 2.62

02-08-2002 Page 13

Command Stream Note
LoadFont

(continue)

CMD=22
FXN=2
SEQ= index
data = (byte)font

data

The number of continuation records is determined by
the size of the font:
size = ((w+7)/8 * h * (end � start + 1)) bytes

DisableCells CMD=24
FXN=0

Ignore all cell hits.

DisableCells CMD=24
FXN=cell index

Ignore specific cell hit (see Figure 6).

EnableCells CMD=25
FXN=0

Activate all cell hits.

EnableCells CMD=25
FXN=cell index

Activate specific cell hit.

SuperReset CMD=26 Clear all bitmap, macro and font lists except default
fonts and Virtual Keyboard.

This command must be used at least once for a
board to enable loading of bit maps and fonts.

Macro Commands
Command Stream Note
StartMacro CMD=30

FXN,SEQ=ID6
This command starts a group of commands, which are
included in the macro. Macros are limited to 1000
bytes, but one macro may play another (nested). See
�The way Macros work.�

EndMacro CMD=31
FXN,SEQ=ID

This command ends a group of commands, which are
included in the macro.

Graphics Primitives Commands
Command Stream Note
ClearScreen CMD=40 Sets the screen to all 0�s (white)

SetBrushType CMD=41
FXN= 0 CLEAR
 1 SET
 2 XOR

Set brush to 1 of 3 types. The brush applies to all of
the commands following the SetBrushType command.
The board is initialized to use the SET brush. See �The
way the XOR brush works� for additional information
on the XOR brush.

Pixel CMD=42
data=xxyy

Draws one pixel, using brush.

6 The byte pair FXN,SEQ form an integer (in little-endian order) defining the Macro ID.

019-0088b.doc Rev. 2.62

02-08-2002 Page 14

Command Stream Note
Line CMD=43

data= xxyy0 xxyy1
Draws a line, using brush (limits are inclusive).

Circle CMD=44
FXN= 0 not filled
 0xFF filled
data= xxyy0

 (int)radius

Draws a circle, using brush.

Rectangle CMD=45
FXN= 0 not filled
 0xFF filled
data=xxyy0

 xxyy1
(inclusive).

The boundaries are parallel to the axes.
 xxyy0

 xxyy1

Polygon CMD=46
FXN= 0 not filled
 0xFF filled
SEQ= number of

sides n
data=xxyy0

 xxyy1
� xxyyn-1

 xxyy0

 xxyy1

 xxyy2

Polygon

(same command,
different data.)

CMD=46
FXN= 0 not filled
 0xFF filled
SEQ= number of

sides n
data=xxyy0

 xxyy1
� xxyyn-1

This figure utilizes convex angles and must be closed
(the last xxyy is the same as the first xxyy). In this
case, n = 6.

����� �����

����� �����

����������

BlankRegion CMD=47

FXN=0 to clear
FXN= 1 to set
data=xxyy0 xxyy1

Clears or sets the contents of a rectangular region.

InvertRegion CMD=48
data=xxyy0 xxyy1

Inverts contents of rectangular region.

StoreRegion CMD=49
SEQ=index
data=xxyy0

 xxyy1

Up to 255 rectangular regions indexed by SEQ can be
stored and restored.

019-0088b.doc Rev. 2.62

02-08-2002 Page 15

Command Stream Note
RestoreRegion CMD=50

SEQ=index
data=xxyy0
(top left corner)

A stored region does not have to be restored at the
place from which it was stored. A new top left-corner
coordinate can be specified (-1,-1 = use stored
coordinate). The size of the region was specified with
StoreRegion.

The StoreRegion-RestoreRegion commands work in
pairs, and RestoreRegion may not be used a 2nd time on
the same region because the memory is freed.

PutBitMap CMD=51
SEQ=index
data= xxyy0
(top left corner)

The bit map loaded with the LoadBitMap is drawn at
upper-left corner coordinate xxyy0.

ScrollRegion CMD=52
FXN= 1 up
 2 down
 3 right
 4 left
data= (int)n,
 xxyy0

 xxyy1

Data: (int)number of pixels to scroll, followed by
rectangular region (exclusive).
See �The way the SCROLL command works�.

Text Commands
Command Stream Note
SetFont CMD=60

SEQ=index
Command ignored and error flag set if index not valid.

PutText CMD=63
data= xxyy0

followed by
ASCIIZ
string.

Coordinate is at upper-left corner of text.

SetTextDir CMD=64
FXN= 0 rightward
 1 leftward
 2 upward
 3 downward

The user must specify the font appropriate to the
direction. When drawing a text line, the program
commences at the specified point, and draws text in the
specified direction. If direction = 1, a string �1234�
will be printed as �4321�.

Miscellaneous Commands
Command Stream Note
BackLight CMD=70

FXN= 0 light off
FXN= 1 light on

The Graphics Engine initializes the back-light to on.

019-0088b.doc Rev. 2.62

02-08-2002 Page 16

Command Stream Note
SetContrast

CMD=71
data = (byte)value

Contrast values range from 0 to 63. A higher number
reduces the contrast.

Beep CMD=72
data = (int)duration

data = duration in milliseconds.
0 = default value (100 msec)

SetCellActive CMD=74
FXN=Cell index
data=(byte)flags

Flags:
b0 set = Cell-hit sends unsolicited response to host.
b1 set = Beep on cell-hit.

all bits 0 = set cell inactive

Cells are used internally if the Virtual Keyboard is
active.

DefineButton

(defines the
button but does
not display it)

A button consists
of an integral
number of cells,
placed on a cell
boundary.

See Figure 6 for
the cell
numbering
scheme.

CMD=75
FXN=flags
data

Flags:
b0 set = Button-hit sends unsolicited response to host.
b1 set = Beep on button-hit.
b2 set = Frame button
b3 set = Rounded corners7
b4 set = Invert when button is pushed; normal when
button released.
b5 set = Check box is normally inverted
b6 set = Button text follows8
b7 set = Button bitmap follows9
Data bytes in the following order:
first two bytes: the buttonId
next: index of upper left corner cell
next: index of lower right corner cell
next if b7 set: bitmap index
next if b6 set: ASCIIZ button text

DeleteButton CMD=76
data=(int)buttonId

Data: the buttonId to be deleted from the button list.

DisplayButton CMD=77
data=(int)buttonId

The engine saves the area underneath a button when it
is displayed, restores it when it is removed. Button is
enabled.

RemoveButton CMD=78
data=(int)buttonId

Disables the button and restores the background.
Opposite of DisplayButton.

DisableButton CMD=79
FXN=0
data=(int)buttonId

The button is disabled (no changes in display).

7 Requires b2 to be set.
8 The text is centered in the button, subject to text direction. Include �\n� (line feed) character(s) for multi-line text. If
any text line won�t fit in the button using the default medium (2) font, it is displayed using the default small (1) font. It
is thus possible to mix font sizes in buttons with multi-line text.
9 The bit map is drawn starting at the top-left-hand corner.

019-0088b.doc Rev. 2.62

02-08-2002 Page 17

Command Stream Note
EnableButton CMD=79

FXN=1
data=(int)buttonId

Re-enable the button (no changes in display). Opposite
of DisableButton.

DisableButtons
Area

CMD=79
FXN=2
data

Disable all buttons that are at least partially in the
designated touch-screen area (no changes in display).

Data bytes in the following order:
1st byte: index of upper left corner cell
2nd byte: index of lower right corner cell

EnableButtons
Area

CMD=79
FXN=3
data

Enables all buttons that are at least partially in the
designated touch screen area which were previously
disabled (no changes in display). Opposite of
DisableButtonsArea.

Data bytes in the following order:
1st byte: index of upper left corner cell
2nd byte: index of lower right corner cell

LinkCellTo
Macro

CMD=80
FXN= 1 link
FXN= 0 unlink
data=
(int)cell index,
(int)macro index

After this command is executed, pushing the specified
cell will cause the macro to be played.

LinkButtonTo
Macro

CMD=81
FXN= 1 link
FXN= 0 unlink
data=
(int)button index,
(int)macro index

After this command is executed, pushing the specified
button will cause the macro to be played. A button
takes precedence over a cell. Set macro index = 0 for
unlink.

StopMacroLoop CMD=82 Halt macro loop-back. and the execution of the macro
itself.

SetString CMD=84
data = ASCIIZ

string.

Load a string into the �default value� buffer. This text
is displayed in the Text Entry line of the Virtual
Keyboard if the latter is active. Setting a NUL string
will clear the line.

If the Virtual Keyboard is not active, the text is stored
and displayed when it becomes active.

SetLongInteger CMD=85
data=(long)integer

Load a long integer into the �default value� buffer.
This is converted to ASCII and displayed as in
�SetString.�

SetFloat CMD=86
data=4-byte float

Load a float into the �default value� buffer. This is
converted to ASCII and displayed as in �SetString.�

019-0088b.doc Rev. 2.62

02-08-2002 Page 18

Command Stream Note
SetChar CMD=87

data=char
Append a single character to the �default value� buffer.
This is displayed as in �SetString�.

SetTod CMD=88
data=struct tm

Load the date and time of day and set the Real Time
Clock accordingly.

Remove
KeyboardMacro

CMD=89
FXN=0

Removes the keyboard macro shown in Figure 3.

PlayKeyboard
Macro

CMD=89
FXN=1
SEQ=flags
data

Displays the keyboard macro shown in Figure 3.
Flags:
b0 set: �Enter� sends unsolicited response to host. This

response is in the same form as the SendString
command (terminated by CR, NUL).

b1 set: Remove keyboard when �Enter� pushed.
b2 set: Password mode (echo stars)
b3-b4= data entry type
 00 = string (any entry is OK)
 01 = long int (check limits)
 10 = float (check limits)
b5 set: not used
b6 set: data entry subject to low limit
b7 set: data entry subject to high limit

Data:10
(byte)not used (must be supplied)
(union)(float or long int)low limit
(union)(float or long int)high limit
(byte)Prompt Line ASCIIZ string, NUL if none

Scripting Commands
Command Stream Note
DrawMacro CMD=100

FXN,SEQ=ID
This command executes the macro specified by
macroId.

ShiftDrawMacro CMD=101
FXN,SEQ=ID
data=xxyy offset

The x,y coordinates of all script commands in the
macro are offset by xxyy.

DeleteMacro CMD=102
FXN,SEQ=ID

Deletes the macro specified by macroId.

10 Some or all of the data may remain unused. Specify a 0 of appropriate length if not used.

019-0088b.doc Rev. 2.62

02-08-2002 Page 19

Command Stream Note
DelayPlay CMD=105

data=(long int)
delay in
msec

Insert a time delay of nnnn milliseconds into the
command execution stream. Effective because
commands are queued.

LoopMacro CMD=106 Loop back mode to beginning of macro.

New (Special) Commands
Command Stream Note
DisplayButtonQ CMD=107

FXN= 1 normal
FXN= 2 inverted
data=(int)buttonId

When FXN = 1, the button display is normal; when
FXN = 2, the button display is inverted (inverse video).
The engine saves the area underneath a button when it
is displayed, restores it when it is removed. Button is
enabled.

BufferDisplay
Enable

CMD=108
FXN= 0 disable
FXN= 1 enable

When FXN = 0, the screen buffer lock count is
incremented to disable display updates; when FXN = 1
the screen buffer lock count is decremented, and when
the lock count reaches zero it enables display updates.

019-0088b.doc Rev. 2.62

02-08-2002 Page 20

Appendix I Explanatory Notes

The way Macros work
Start the macro with a START_MACRO command. This command is very simple and all
you specify is the command and macroId.

Continue the macro with any command listed in the table in Appendix III. Commands,
which are not in the table, are rejected. There is a maximum of 1000 bytes in a macro,
including the START_MACRO and END_MACRO commands. The software stuffs the
commands into the macro it�s building and gives an error 9 if storage is exceeded. While
checking the length limit, it keeps the space for END_MACRO in reserve, so that you can
issue an END_MACRO if you get error 9. Since a macro can be called up from inside a
macro, this is not a problem. You can also start all over by issuing a DELETE_MACRO.

End the macro with a END_MACRO command. Anything between the START_MACRO
and END_MACRO commands is considered to be stuff which goes into the macro

Caution: Make sure not to use a START_MACRO without an END_MACRO.

Play the macro with a DRAW_MACRO command. If a macro is playing, attempts to send
commands other than STOP_MACRO_LOOP result in error 14.

Inclusive vs Exclusive limits
Inclusive limits apply if both endpoints are included. For example, in the RECTANGLE
command, if x0 = 40, and x1 = 80, then the number of columns is 41 (counting the limits).

Exclusive limits apply if the right endpoint is excluded. For example, in the
SCROLL_REGION command, if x0 = 40, and x1 = 80, then the number of columns scrolled
is 40 (counting the x0 limit, but not counting the x1 limit).

The way the SCROLL command works
The SCROLL command specifies a rectangular region and the number of pixels to scroll
within that region. For example, to scroll a region bounded by x0, y0 and x1, y1 n pixels to
the right

Data within this
region is scrolled n
pixels to the right
filled with 0�s
from the left

 n

 x0, y0

 x1, y1

019-0088b.doc Rev. 2.62

02-08-2002 Page 21

The SCROLL command is restricted to byte-aligned boundaries in the x direction. That is
to say, that x0 and the width (x1 � x0) must be evenly divisible by 8. Limits are inclusive, so
a specification of, let�s say, x0=40 and x1=80 scrolls 40 bytes from 40 to 79.

The way the XOR brush works
This brush works slightly differently, depending on whether a graphic figure (line, circle,
etc) or a bitmap is being drawn. In either case, the exclusive-or algorithm works the
following way:

0 xor 0 = 0 (white) same values, result is white
0 xor 1 = 1 (black) different values, result is black
1 xor 0 = 1 (black) different values, result is black
1 xor 1 = 0 (white) same values, result is white

If a graphic figure is being drawn with a SET brush, it is specified to be drawn with black
(pixel = 1) at all times regardless of the background (previous contents of the screen). In
this case, it will show up if the background is white, but not show up if the background is
black.

If a graphic figure is being drawn with an XOR brush, it is presumed drawn with black
(pixel = 1) and inverts the previous contents of the screen. In this case, it will show up as
black if the background is white, and white if the background is black.

If a bitmap is drawn with an XOR brush, then the contents of the bitmap are XORed with the
previous contents of the screen. Thus, if a bitmap is drawn on top of the same bitmap, it will
make the image �disappear�, i.e. go all white (0 xor 0 = 0, 1 xor 1 = 0).

The best way to invert a bitmap is to draw it on top of a previously drawn bitmap that has all
1�s (1 xor 0 = 1, 1 xor 1 = 0).

019-0088b.doc Rev. 2.62

02-08-2002 Page 22

Appendix II Response Formats
The message returned by OP7100GE in response to a command takes one of several
formats:

1. Most commands return 5 bytes. The bytes returned are as follows:
LEN = 5
CMD = same as in command
FXN = ACK (0x06)
SEQ = lastStatus;

2. If there is an error:
LEN = 6
CMD = same
FXN = NAK (0x15)
SEQ = 0x80 (an error occurred)
data[0] = the error

3. Some commands (SEND_STRING, etc) return data:
LEN = 5 + number of data bytes
CMD = same
FXN = ACK (0x06)
SEQ = lastStatus
data = the data

In any, case, lastStatus is cleared after the response and will be zero at the next response
(unless an event happened before then).

019-0088b.doc Rev. 2.62

02-08-2002 Page 23

Appendix III Maximum values
Maximum (and in some cases minimum) values are imposed on some of the program
parameters:
Parameter Min/Max values Comments
Display Queue size 100 entries max When commands are decoded, the display

commands are passed to the display task via
the Display Que. Since the transmission
time for a command is much shorter than the
display time, the queue can become full,
resulting in error 7.

Macro Queue size 50 entries max DrawMacro commands are queued in the
Macro Queue in order to be able to specify
the display of several macros. Error 7 also
occurs if the macro queue becomes full.

fontId 1 � 20 can be specified
4 � 20 can be loaded

A total of 20 fonts can be accommodated:
fonts 1 through 3 are default fonts and
cannot be loaded

macroId 1 � 32767
bitmapId 1 � 250 251 � 255 are used internally
buttonId 1 � 32725 32726 � 32767 are used internally
Prompt string 0 � 24 Limited by the length of the line in the

Virtual Keyboard (Landscape mode)
Longest allowable
macro size

1000 bytes max Macros can be nested to overcome this
limitation

Polygon size 32 Maximum number of vertices in a polygon

019-0088b.doc Rev. 2.62

02-08-2002 Page 24

Appendix IV Commands, which can be included in macro
Not all commands can be included in a macro. The following commands are allowed:

BACK_LIGHT

BEEP

BLANK_REGION

BUFFER_DISPLAY_ENABLE

CIRCLE

CLEAR_SCREEN

CLEAR_STRING_BUFF

DELAY_PLAY

DIS_ENA_BUTTON

DISPLAY_BUTTON

DISPLAY_BUTTON_Q

DISABLE_CELLS

DRAW_MACRO

ENABLE_CELLS

INVERT_REGION

LINE

LINK_BUTTON_TOMACRO

LINK_CELL_TOMACRO

LOOP_MACRO

NULL_LOOP

PIXEL

PLAY_KEYBOARD_MACRO

POLYGON

PUT_BIT_MAP

PUT_TEXT

RECTANGLE

REMOVE_BUTTON

RESTORE_REGION

SCROLL_REGION

SEND_CHAR

SEND_FLOAT

SEND_LAST_PUSH

SEND_LONG_INT

SEND_STATUS

SEND_STRING

SEND_TOD

SET_BRUSH_TYPE

SET_CELL_ACTIVE

SET_CHAR

SET_CONTRAST

SET_CURSOR

SET_CURSOR_MODE

SET_FLOAT

SET_FONT

SET_LONG_INTEGER

SET_STRING

SET_TEXT_DIR

SET_TOD

SHIFT_DRAWMACRO

STOP_MACRO_LOOP

STORE_REGION

019-0088b.doc Rev. 2.62

02-08-2002 Page 25

Command Index

BackLight, 15
Beep, 16
BlankRegion, 14
BufferDisplayEnable, 19
Circle, 14
ClearScreen, 13
ClearStringBuffer, 12
DefineButton, 16
DelayPlay, 19
DeleteBitMap, 12
DeleteButton, 16
DeleteFont, 12
DeleteMacro, 18
DisableButton, 16
DisableButtonsArea, 17
DisableCells, 13
DisplayButton, 16
DisplayButtonQ, 19
DrawMacro, 18
EnableButton, 17
EnableButtonsArea, 17
EnableCells, 13
EndMacro, 13
Init, 11
InvertRegion, 14
Line, 14
LinkButtonToMacro, 17
LinkCellToMacro, 17
LoadBitMap, 12
LoadFont, 12
LoopMacro, 19

Pixel, 13
PlayKeyboardMacro, 18
Polygon, 14
PutBitMap, 15
PutText, 15
Rectangle, 14
RemoveButton, 16
RestoreRegion, 15
ScrollRegion, 15
SendChar, 12
SendFloat, 12
SendLastPush, 11
SendLongInteger, 12
SendStatus, 11
SendString, 12
SendTod, 12
SetBrushType, 13
SetCellActive, 16
SetChar, 18
SetContrast, 16
SetFloat, 17
SetFont, 15
SetLongInteger, 17
SetString, 17
SetTextDir, 15
ShiftDrawMacro, 18
StartMacro, 13
StopMacroLoop, 17
StoreRegion, 14
SuperReset, 13

