
PLCBus Expansion Boards

User�s Manual
019�0047 � 010620�A

PLCBus Expansion Boards User�s Manual

Part Number 019-0047

�

 010620-A � Printed in U.S.A.

© 2001 Z-World, Inc.

 �

 All rights reserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Notice to Users

Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITI-
CAL COMPONENTS IN LIFE-SUPPORT DEVICES OR SYSTEMS
UNLESS A SPECIFIC WRITTEN AGREEMENT REGARDING SUCH
INTENDED USE IS ENTERED INTO BETWEEN THE CUSTOMER
AND Z-WORLD PRIOR TO USE. Life-support devices or systems are
devices or systems intended for surgical implantation into the body or to
sustain life, and whose failure to perform, when properly used in accor-
dance with instructions for use provided in the labeling and user�s manual,
can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present
in a system of any size. In order to prevent danger to life or property, it is the
responsibility of the system designer to incorporate redundant protective
mechanisms appropriate to the risk involved.

Trademarks
� Dynamic C

®
 is a registered trademark of Z-World

� Windows
®

is a registered trademark of Microsoft Corporation

� PLCBus
�

 is a trademark of Z-World

� Hayes Smart Modem
®

is a registered trademark of Hayes Microcom-
puter Products, Inc.

Z-World, Inc.
2900 Spafford Street
Davis, California 95616-6800
USA

Telephone:
Facsimile:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
http://www.z world.com
zworld@zworld.com

User�s Manual Contents s iii

TABLE OF CONTENTS

About This Manual xi

XP8100

Chapter 1: Overview 17
XP8100 Series Overview ... 18

Connector Terminals ... 18
Outputs .. 19
Inputs ... 19
Factory Configurations .. 19

XP8100 Series Default Board Layouts .. 20
XP8100 Hardware Specifications .. 22

Inputs ... 22
Outputs .. 23
Mechanical Dimensions .. 24

Chapter 2: Getting Started 25
XP8100 Series Components .. 26
Connecting Expansion Boards to a Z-World Controller 27

Setting Board Addresses ... 28
Power .. 28

Confirming Communications ... 29

Chapter 3: I/O Configurations 31
XP8100 Series Input/Output Pin Assignments 32
XP8100 Series Inputs .. 34

Protected Digital Inputs .. 34
XP8100 Series Outputs .. 36

Sinking and Sourcing Outputs ... 37
Installing Sourcing Drivers ... 38
TTL/CMOS Outputs ... 39
Using Output Drivers .. 40

Making XP8100 Series I/O Connections ... 41
I/O Jumper Configurations .. 42

iv s Contents PLCBus Expansion Boards

Chapter 4: Field Wiring Terminals 43
FWT38 ... 45
FWT50 ... 46
FWT-Opto .. 48

Chapter 5: Software Reference 51
XP8100 Series Software Input/Output Channel Assignments 52
Software Overview .. 54

Dynamic C Libraries ... 54
Supplied Software ... 55

Digital Inputs/Outputs .. 56
Setting Inputs .. 56
Setting Outputs .. 58

Advanced Programming .. 60
Functions for PLCBus Cycles, Reading and Writing 60
Address Calculation .. 61
Checking for Presence of XP8100 Using Dynamic C Functions 62
Checking for Presence of XP8100 Without Using Dynamic C

Functions .. 64
Reading an Input State Using Dynamic C Functions 65
Reading an Input State Without Using Dynamic C Functions 66
Controlling Outputs Using Dynamic C Functions 67
Controlling Outputs Without Using Dynamic C Functions 68

User�s Manual Contents s v

XP8300

Chapter 6: Overview 71
Features .. 73
Specifications ... 74

Chapter 7: Getting Started 75
Connecting Expansion Boards to a Z-World Controller 76
XP8300 Configuration ... 77

Setting Board Addresses ... 78

Chapter 8: Software Reference 79
Relay Board Addresses .. 80

Physical Addresses .. 80
Logical Addresses ... 80

Software ... 81
Dynamic C Libraries ... 81
How to Use the Relay Boards ... 82

Reset Boards on PLCBus ... 82
Address Target Board ... 83
Operate Relays .. 83

Advanced Programming .. 84
Controlling a Relay ... 84
PLC_EXP.LIB ... 85
PBUS_TG.LIB ... 86
PBUS_LG.LIB ... 86
DRIVERS.LIB ... 87

Sample Projects ... 88
PLCBus Controllers .. 88

Instructions ... 88
Sample Program ... 89

Controllers with Simulated PLCBus ... 90
Instructions for BL1000 and BL1100 ... 90
Sample Program for BL1000 and BL1300 90

vi s Contents PLCBus Expansion Boards

XP8500

Chapter 9: Overview 95
Specifications ... 97

Chapter 10: Getting Started 99
XP8500 Components ... 100
Connecting Expansion Boards to a Z-World Controller 101
Setting Expansion Board Addresses .. 102

XP8500 Addresses .. 102
Power ... 102

Chapter 11: I/O Configurations 103
XP8500 Pin Assignments ... 104
Operating Modes ... 104
Using Analog-to-Digital Converter Boards 105
How to Set Up An XP8500 .. 106

Conditioned Inputs (CH0�CH3) ... 106
Excitation Resistors .. 108
EEPROM .. 108

Unconditioned Inputs (AIN4�AIN10) .. 109
Internal Test Voltages .. 109
Power-Down Mode ... 109
Drift ... 110

Selecting Gain and Bias Resistors ... 111

Chapter 12: Software Reference 117
Expansion Board Addresses .. 118
XP8500 Software ... 119

Dynamic C Libraries ... 119
Initialization Software ... 120
XP8500 Drivers .. 121

Other XP8500 Drivers .. 123
Correcting Readings ... 128

Sample Program .. 128
Advanced XP8500 Programming .. 131

PLCBus-Level Communication .. 131

User�s Manual Contents s vii

XP8800

Chapter 13: Overview 135
XP8800 Overview ... 136

Features ... 136
Specifications ... 137

Chapter 14: Getting Started 139
XP8800 Components ... 140
Connecting Expansion Boards to a Z-World Controller 141
Setting Expansion Board Addresses .. 142

XP8800 Addresses .. 142
Power ... 142

Chapter 15: I/O Configurations 143
XP8800 Pin Assignments ... 144

Header H5 Signals .. 144
Screw Terminal Block H6 Signals .. 145
Sample XP8800 Connections.. 146
Optional Optical Isolation ... 147

Using Expansion Boards .. 148
Resetting XP8800 Expansion Boards ... 148

XP8800 Operation ... 150
PCL-AK Pulse Generator .. 150

Communicating with the PCL-AK .. 151
Registers ... 152

Acceleration/Deceleration Rate (ADR) Register 153
Status Bits ... 154

UCN5804 Motor Driver IC ... 155
Driver Power... 156

Quadrature Decoder/Counter .. 157
Control Register .. 158
PLCBus Interrupts ... 159

Chapter 16: Software Reference 161
XP8800 Board Addresses .. 162

Logical Addresses ... 163
Dynamic C Libraries .. 164
XP8800 Software ... 165

Data Structures .. 165
Interrupts ... 166
XP8800 Driver Functions ... 167
Miscellaneous XP8800 Function Descriptions 169
Sample Program .. 175

viii s Contents PLCBus Expansion Boards

XP8900

Chapter 17: Overview 181
Specifications ... 183

Chapter 18: Getting Started 185
XP8900 Series Components .. 186
Connecting Expansion Boards to a Z-World Controller 187
Setting Expansion Board Addresses .. 188
Power ... 189
Using Digital-to-Analog Converter Boards 190

Chapter 19: I/O Configurations 191
XP8900 Series Pin Assignments .. 192
XP8900 Series Circuitry .. 193

Chapter 20: Software Reference 195
Expansion Board Addresses .. 196

XP8900 Series ... 196
XP8900 Series Software .. 197

Dynamic C Libraries ... 197
Using Digital-to-Analog Converter Boards 198

Reset Boards on PLCBus ... 198
Address Target Board ... 199
Operate Target Board .. 200

Sample Program .. 204

User�s Manual Contents s ix

APPENDICES

Appendix A: PLCBus 209
PLCBus Overview ... 210
Allocation of Devices on the Bus .. 214

4-Bit Devices .. 214
8-Bit Devices .. 215

Expansion Bus Software .. 215

Appendix B: Connecting and Mounting Multiple Boards 221
Connecting Multiple Boards .. 222
Mounting .. 224

Appendix C: Simulated PLCBus Connections 225
BL1000 .. 227
BL1100 .. 228
BL1300 .. 228
BL1400 or BL1500 .. 229

Appendix D: PLCBus States 231
PLCBus State Tables .. 232

Reading State Table D-2 ... 232

Index 235

Schematics

x s Contents PLCBus Expansion Boards

User�s Manual About This Manual s xi

ABOUT THIS MANUAL

This manual provides instructions for installing, testing, configuring, and
interconnecting the Z-World PLCBus expansion boards. Instructions are
also provided for using Dynamic C® functions.

Assumptions
Assumptions are made regarding the user's knowledge and experience in
the following areas:

� Ability to design and engineer the target system that is controlled by a
controller with expansion boards attached to the PLCBus.

� Understanding of the basics of operating a software program and
editing files under Windows on a PC.

� Knowledge of the basics of C programming.

For a full treatment of C, refer to the following texts.

The C Programming Language by Kernighan and Ritchie
C: A Reference Manual by Harbison and Steel

� Knowledge of basic Z80 assembly language and architecture for
controllers with a Z180 microprocessor.

For documentation from Zilog, refer to the following texts.

Z180 MPU User's Manual
Z180 Serial Communication Controllers
Z80 Microprocessor Family User's Manual

� Knowledge of basic Intel assembly language and architecture for
controllers with an Intel�386 EX processor.

For documentation from Intel, refer to the following texts.

Intel�386 EX Embedded Microprocessor User�s Manual
Intel�386 SX Microprocessor Programmer�s Reference
 Manual

$

$

$

PLCBus Expansion Boardsxii s About This Manual

Acronyms
Table 1 lists and defines the acronyms that may be used in this manual.

Icons
Table 2 displays and defines icons that may be used in this manual.

Table 1. Acronyms

Acronym Meaning

 EPROM Erasable Programmable Read-Only Memory

 EEPROM Electronically Erasable Programmable Read-Only Memory

 LCD Liquid Crystal Display

 LED Light-Emitting Diode

 NMI Nonmaskable Interrupt

 PIO Parallel Input/Output Circuit
(Individually Programmable Input/Output)

 PRT Programmable Reload Timer

 RAM Random Access Memory

 RTC Real-Time Clock

 SIB Serial Interface Board

 SRAM Static Random Access Memory

 UART Universal Asynchronous Receiver Transmitter

Table 2. Icons

 Icon Meaning Icon Meaning

 $

 Refer to or see ! Note

 (Please contact 7LS Tip

 Caution High Voltage

 Factory Default

FD

User�s Manual About This Manual s xiii

Conventions
Table 3 lists and defines the typographical conventions that may be used in
this manual.

Pin Number 1
A black square indicates
pin 1 of all headers.

Measurements
All diagram and graphic measurements are in inches followed by millime-
ters enclosed in parenthesis.

Table 3. Typographical Conventions

Example Description

 while Courier font (bold) indicates a program, a fragment of a
program, or a Dynamic C keyword or phrase.

 // IN-01… Program comments are written in Courier font, plain face.

 Italics Indicates that something should be typed instead of the
italicized words (e.g., in place of filename, type a file’s
name).

 Edit Sans serif font (bold) signifies a menu or menu selection.

 . . . An ellipsis indicates that (1) irrelevant program text is
omitted for brevity or that (2) preceding program text may
be repeated indefinitely.

 [] Brackets in a C function’s definition or program segment
indicate that the enclosed directive is optional.

 < > Angle brackets occasionally enclose classes of terms.

 a | b | c A vertical bar indicates that a choice should be made from
among the items listed.

J1
Pin 1

PLCBus Expansion Boardsxiv s About This Manual

X
P

81
00

XP8100

X
P

81
00

XP8100 Overview s 17

X
P

81
00

CHAPTER 1: OVERVIEW

Chapter 1 provides an overview description and board layout for the
XP8100 Series input/output expansion boards.

XP810018 s Overview

X
P

81
00

XP8100 Series Overview
The XP8100 Series consists of compact input/output (I/O) expansion
boards that connect to any Z-World controller supporting a Z-World
PLCBus expansion port. The XP8100 Series expansion boards can more
than double the digital I/O channels of a Z-World controller.

The XP8100�s 32 I/O channels are configured as 16 inputs and 16 outputs.
Other versions of the board are available, as indicated in Table 1-1, for
added flexibility. Up to eight XP8100 boards may be linked together to
provide 256 additional I/O lines.

Because of the similarities, this manual refers to the functionality of all
three XP8100 Series boards. References to all three boards will be made
by referring to them as the XP8100 Series. Individual reference will be
made where needed.

Connector Terminals
Three field wiring terminals (FWT) make it easy to plug and unplug wiring
connections. Table 1-2 lists the FWT available for the XP8100 Series.
Any of the boards in the XP8100 Series can support two FWT of any type.

Refer to Appendix E, �Field Wiring Terminals,� for more
information on how to use the FWT.

Table 1-1. XP8100 Series Features

Model Features

XP8100 16 protected digital inputs and 16 output drivers

XP8110 32 protected digital inputs

XP8120 32 output drivers

Table 1-2. XP8100 Series Options

Option Description

FWT50 Field wiring terminal with twenty 5 mm screw
terminal connectors in two banks of 10 terminals each

FWT38 Field wiring terminal with 0.15 inch (3.81 mm) quick-
release connectors in two banks of 10 terminals each

FWT-Opto Field wiring terminal for inputs only, has optical
isolation, uses 0.15 inch (3.81 mm) quick-release
connectors in two banks of 10 terminals each

$

XP8100 Overview s 19

X
P

81
00

(

Outputs
The high-current outputs are capable of providing up to 500 mA, which is
sufficient to drive inductive loads, relays, and other circuit-driven devices.
The output drivers are socketed to allow a sourcing driver or TTL/CMOS
parts to be added.

Inputs
The TTL/CMOS-compatible inputs can handle input signals between -19
and +20 volts. Input bias resistors may be user-configured to be pull-up or
pull-down. Each input line is protected against transient voltages of -48 to
+48 volts. A low-pass filter also blocks incoming voltage spikes.

Additional protection is possible by adding a field wiring terminal with
optical isolation. See Table 1-2.

Factory Configurations
The XP8100 Series is available from the factory in three standard configu-
rations, as listed in Table 1-1. Depending on the version, the board will
have 32 channels of inputs, outputs or a combination of the two. It is not
possible to change inputs to be outputs, or vice versa.

For ordering information, call your Z-World Sales Representa-
tive at (530) 757-3737.

XP810020 s Overview

X
P

81
00

J2 J4

P1 P2

H1 H3

H2 H4

Heat Sink

J2 J4

J1

P1 P2

H1 H3

H2 H4

U5

U6

Heat Sink

XP8100 Series Default Board Layouts
The default layouts for the XP8100, XP8110 and XP8120 expansion
boards are shown in Figures 1-1, 1-2, and 1-3 for the boards as they are
shipped from the factory. An outline around a particular component
indicates the presence of the part in the default configuration of the board.

Figure 1-1. XP8100 Default Board Layout

Figure 1-2. XP8110 Default Board Layout

XP8100 Overview s 21

X
P

81
00

J4

J1 J3

P1 P2

H1 H3

H2 H4

U5

U6

Heat Sink

U13

U14

Heat Sink

J4

C1

U7

P1 P2

J3

J2

J1

H2

H1

H4

H3

U18

U15

U16

U17

U8

U9

U10

U11

U12

U13

U14

U1

U2

U3

U4

U5

U6

257

138

257

259

259

PAL

PAL

245

7805

Figure 1-3. XP8120 Default Board Layout

Figure 1-4 shows the locations of the various components.

Figure 1-4. XP8100 Series Component Layout

XP810022 s Overview

X
P

81
00

XP8100 Hardware Specifications

Inputs
Table 1-3 summarizes the input specifications for the XP8100 Series
expansion boards.

The inputs will accept a voltage level between -20 and +24 volts with a
logic threshold of 2.5 volts. A 22 kW current-limiting resistor paired with a
CMOS input diode provides input protection. The resistor/capacitor
connection to ground acts as a low-pass filter, where T

RC
 = 220 ms.

Jumpers pull inputs to either +5 volts or ground through a bias resistor in
groups of four or eight.

Figure 1-5 shows a typical XP8100 Series expansion board input.

Figure 1-5. XP8100 Series Input

Table 1-3. Input Specifications

Input Specifications Standard Input

Input Voltage -20 V to +24 V

Logic Threshold 2.5 V

Bias Resistors User-settable "pull up" or "pull down"

Transient Voltage −48 V to +48 V max

Input Protection 22 kΩ current-limiting series resistor, input-
protection diode

Noise-Spike Filter tRC = 220 µs low-pass filter

I/O Connectors Four 10-pin headers

Input Leakage Current 5 µA

+5 V/GND

0.01 µF

Low-Pass Filter

Input

10 kΩ

22 kΩ

XP8100 Overview s 23

X
P

81
00

Outputs
Table 1-4 summarizes the output specifications for the XP8100 Series
expansion boards.

The maximum current is subject to the maximum power dissipation for the
package and the ambient temperature. Make sure that the maximum
current is properly derated for temperature and package power dissipation.

See Chapter 3, �I/O Configurations,� for more information on
derating.

All outputs are arranged in groups of eight and are driven by a ULN2803
sinking driver. If installed, the chip would be located at U5, U6, U13, or
U14, shown in Figure 2-1 and in Chapter 1.

The sinking driver is rated up to a maximum voltage of 48 V and a
maximum current of 500 mA per individual output. When all the outputs
are on simultaneously, thermal limits restrict the current to 100 mA per
output. Similarly, if multiple outputs are activated at the same time, the
driver current should not exceed 350 mA per output.

A UDN2985 sourcing driver is optional. The UDN2985 is rated at 30 V
and 250 mA for an individual output at 25°C. The sourcing drivers would
be installed at U5, U6, U13, or U14 instead of the sinking drivers, and
jumpers on headers J1 and J3 would be reconfigured, as discussed in
Appendix D.

Refer to �Sourcing and TTL/CMOS Outputs� in Chapter 3 for
information on installing and configuring your board for
sourcing outputs and for TTL/CMOS outputs.

Table 1-4. Output Specifications

Output Specifications Default Sinking Driver

Maximum Current 500 mA, single channel ON

Connections (4) 10-pin headers

Noninductive voltage +5 V to +48 V

Inductive Voltage +5 V to +30 V

Switching Response Time 1 µs

Output Leakage Current 100 µΑ max

$

$

XP810024 s Overview

X
P

81
00 Mechanical Dimensions

Figure 1-6. XP8100 Series Board Dimensions

1.1
(27.9)

0.125 typ (3.2)
2.3

(58.4) 3.4
(86.4) 3.525

(89.5)

0.115 dia, 4x
(2.9)

0.187 dia, 4x
(4.7)

0.
25

 (6
.4

)
0.

12
5

(3
.2

)

2.
60

(6
6.

0)
2.

70
8

(6
8.

8)
2.

83
5

(7
2.

0)

~
0.

63
(1

6)

~
0.

5
(1

3)

XP8100 Getting Started s 25

X
P

81
00

CHAPTER 2: GETTING STARTED

Chapter 2 provides instructions for connecting XP8100 Series expansion
boards to a Z-World controller. The following sections are included.

� Expansion Board Components

� Connecting Expansion Boards to a Z-World Controller

� Confirming Communications

XP810026 s Getting Started

X
P

81
00 XP8100 Series Components

The XP8100 Series boards offer protected digital inputs and high-current
driver outputs. Figure 2-1 illustrates the basic layout and orientation of the
expansion boards, including headers and other components. Some headers
and other devices may not be present, depending on the specific board
(XP8100, XP8110, or XP8120).

Figure 2-1. XP8100 Series Board Layout

Pay particular attention to the location of pin 1 of headers J1�J4, as
indicated by a small squares in Figure 2-1. The layout orientation of J1
and J2 is opposite that of J3 and J4, so the pin 1 locations are rotated 180
degrees. Figure 2-1 is referenced throughout the manual.

See Chapter 1, �Overview,� for the exact layouts of the
XP8100, XP8110 and XP8120 expansion boards.

Be careful to orient H1, H3, and the heat sink to the top, as
shown in Figure 2-1, when referring to jumper and header
locations.

$

J2 J4

1

1

1 1

11

1

11

J1

1

J3

P1 P2

H1 H3

H2 H4

Heat Sink

XP8100 Getting Started s 27

X
P

81
00

Connecting Expansion Boards to a Z-World
Controller
Use the 26-conductor ribbon cable supplied with an expansion board to
connect the expansion board to the PLCBus on a Z-World controller. See
Figure 2-2. The expansion board�s two 26-pin PLCBus connectors, P1 and
P2, are used with the ribbon cable. Z-World recommends using the cable
supplied to avoid any connection problems.

Figure 2-2. Connecting XP8100 Expansion Board to Controller PLCBus

Be sure power to the controller is disconnected before adding
any expansion board to the PLCBus.

Follow these steps to connect an expansion board to a Z-World controller.

1. Attach the 26-pin ribbon cable to the expansion board�s P2 PLCBus
header.

2. Connect the other end of the ribbon cable to the PLCBus port of the
controller.

Be sure pin 1 of the connector cable matches up with pin 1 of
both the controller and the expansion board(s).

3. If additional expansion boards are to be added, connect header P2 on
the new board to header P1 of the board that is already connected. Lay
the expansion boards side by side with headers P1 and P2 on adjacent
boards close together, and make sure that all expansion boards are
facing right side up.

See Appendix B, �Connecting and Mounting Multiple
Boards,� for more information on connecting multiple expan-
sion boards.

 Controller
PLCBus Port

P2

Controller With PLCBusXP8100

H1 H3

J4J2

1

1

1 1

11

1

11

J1

P1

H2 H4

Pin 1

$

XP810028 s Getting Started

X
P

81
00 Setting Board Addresses

Z-World has established an addressing scheme for the PLCBus on its
controllers to allow multiple expansion boards to be connected to the
controller.

Every XP8100 Series board is shipped from the factory with a default
address of 7. An XP8100 Series board may be assigned any address
between 0 and 7. Jumpers are placed on the pins of header J4 to configure
the board address. Figure 2-3 shows the jumper settings to set addresses
0�7.

Figure 2-3. J4 Jumper Settings for XP8100 Series PLCBus Addresses

Only the first six pins of the 12-pin header J4 on the XP8100
Series are used to set the board address.

Remember that each expansion board must have a unique PLCBus address
if multiple boards are to be connected. If two boards have the same
address, communication problems will occur that may go undetected by
the controller. A maximum of eight XP8100 boards may be addressed by a
controller at one time.

Power
Z-World�s expansion boards receive power from the controller over the
+24 V line of the PLCBus. An onboard regulator converts this to the +5 V
used by the expansion boards. The expansion boards draw about 110 mA,
which means a power requirement of 1.3 W for a 12 V controller and
2.6 W for a 24 V controller.

Power may be applied to the controller once the controller and the expan-
sion boards are properly connected using the PLCBus ribbon cable.

6

4

J4

3

4

J4

2

6

J4

1

J4

4

2

6

2

J4

5

6

2

4

J4

7

0

J4

6

2

4

J4

12

6

2
4

10
87

5

1
3

11
9

A2
A1
A0

12

2
4

10
87

5

1
3

11
9

A2
A1
A0

12

6

2

10
87

5

1
3

11
9

A2
A1
A0

12

2

10
87

5

1
3

11
9

A2
A1
A0

12
10
87

5

1
3

11
9

A2
A1
A0

12

6

10
87

5

1
3

11
9

A2
A1
A0

12

4

10
87

5

1
3

11
9

A2
A1
A0

12

6
4

10
87

5

1
3

11
9

A2
A1
A0

FD

!

XP8100 Getting Started s 29

X
P

81
00

Confirming Communications
Run the following test program once the XP8100 Series expansion board
is connected to a controller and power is applied. The sample program
will confirm whether the controller and expansion board are communicat-
ing properly.

See the Dynamic C Technical Reference manual for more
detailed instructions.

Use the following steps to run the sample program.

1. Open the sample program XP81ID.C located in the Dynamic C
samples\plcbus subdirectory. This program is designed to locate
and display the address numbers of XP8100 Series boards connected
on the PLCBus.

2. Be sure to �uncomment� the appropriate library at the top of the sample
program for the particular controller being used. Do this by removing
the forward slashes (//) in front of the appropriate #use library.

$
XP81ID.C

#use vdriver.lib
#use eziocmmn.lib
#use eziopbdv.lib
// uncomment #use ezioplc.lib line for PK2100(Rugged
// Giant), PK2200(Little Star), BL1200(Little PLC),
// BL1600(Little G)
//#use ezioplc.lib
// uncomment #use eziomgpl.lib line for BL1400(Micro-G)
// or BL1500(Micro-G2)
//#use eziomgpl.lib
char TITLE[] = {“XP81xx Board Detection”};
main(){

int i;
VdInit();
printf(“%s\n\n”, TITLE);
eioResetPlcBus(); // reset the PLCBus
eioPlcRstWait(); // delay ensures the PLCBus

// boards reset
// locate all possible jumper-set addresses
// from 0 to 7 and display status
for (i = 0; i <= 7; ++i) {

// read to locate the board
if (plcXP81In(i*32)==-1)

printf(“Board %d is not located\n”,i);
else

printf(“Board %d is located\n”,i);
}

}

XP810030 s Getting Started

X
P

81
00 3. Compile the program by pressing F3 or by choosing Compile from the

COMPILE menu. Dynamic C compiles and downloads the program
into the controller�s memory. During compilation, Dynamic C rapidly
displays several messages in the compiling window, which is normal.

4. Run the program by pressing F9 or by choosing Run from the RUN
menu.

5. The STDIO window will display a message once the program is
running. If communication between the XP8100 Series expansion
board and the controller is ok, the message will be Board (#) is
located. If a problem exists with communications, the message will
be Board (#) is not located. Remember that the default address is 7
for XP8100 Series expansion boards.

6. To halt the program, press <CTRL Z>.

7. To restart the program, press F9.

Check the board jumpers, PLCBus connections, and the PC/
controller communications if an error message appears.!

XP8100 I/O Configurations s 31

X
P

81
00

CHAPTER 3: I/O CONFIGURATIONS

Chapter 3 describes the built-in flexibility of the XP8100 Series expansion
boards, and describes how to configure the available inputs/outputs. The
following sections are included.

� Input/Output Pin Assignments

� Inputs

� Outputs

� Making Input/Output Connections

XP810032 s I/O Configurations

X
P

81
00

XP8100 Series Input/Output Pin Assignments
There are two �banks� of inputs/outputs that total up to 32 inputs/outputs
for the XP8100 Series expansion boards. Bank A consists of headers H1
and H2, Bank B consists of headers H3 and H4. Figure 3-1 shows an
outline of input/output Banks A and B.

Figure 3-1. Outline of Input/Output Banks A and B

Banks A and B each have 16 input/output channels. The pins on headers
H1 through H4 will function either as inputs or as outputs, depending on
the specific XP8100 Series model.

Each header (H1�H4) contains a group of 10 pins. The 10 pins on each
individual header function similarly to one another.

Some headers and other devices may or may not be present,
depending on the specific XP8100 Series expansion board.
See Chapter 1, �Overview,� for the exact board layouts.

Bank BBank A

J2 J4

J1

P1 P2

H2 H4

U5

U6

U13

U14
J3

H1 Heat SinkH3

$

XP8100 I/O Configurations s 33

X
P

81
00Table 3-1 lists the functionality of the header pins for the XP8100 Series

expansion boards.

The pin locations are different for the optional field wiring
terminal (FWT) blocks described in Table 1-2. Refer to
Appendix F, �Using FWT Boards,� for the correct header and
pin locations in these circumstances.

!

Table 3-1. Header I/O Designations

I/O Bank A I/O Bank B

H1 H2 H3 H4

XP8100 8 outputs 8 outputs 8 inputs 8 inputs

XP8110 8 inputs 8 inputs 8 inputs 8 inputs

XP8120 8 outputs 8 outputs 8 outputs 8 outputs

XP810034 s I/O Configurations

X
P

81
00

XP8100 Series Inputs

Protected Digital Inputs
The XP8100 and XP8110 boards are equipped with protected digital
inputs designed as logical data inputs, returning a 1 or 0. The inputs
accept voltages between -20 V and +24 V DC, with a logic threshold of
2.5 V DC. This means that an input returns a 0 if the input voltage is
below 2.5 V, and a 1 if the input voltage is above 2.5 V DC.

A low-pass filter on each input channel has a time constant of:

T
RC

 = 220 ms at 4.5 kHz.

If the XP8100 Series board has inputs, they may be configured as �pull-
up� or �pull-down� in groups of fours and eights. The configuration of
each input should be determined by normal operating conditions,
powerdown mode, and possible failure modes, including open or shorted
conditions. These factors will influence decisions about whether to
configure the inputs as �pull-up� or �pull-down.�

The factory default is for inputs to be pulled up to +5 V.

Inputs may be pulled up to +5 V or pulled down to ground by configuring
jumpers on headers J2 and J4.

See Figure 3-1 to help locate headers J2 and J4.

The jumpers on headers J2 and J4 configure the inputs on Bank A (H1 and
H2) and Bank B (H3 and H4) as pull-up or pull-down To pull down an
input from the factory default (pull-up), place a jumper across the appro-
priate two pins of J2 and/or J4, as shown in Figures 3-2 and 3-3 for the
XP8100 and XP8110 expansion boards.

Input lines connected to opto-isolator devices must be config-
ured as �pull-up.� Otherwise, the expansion board may be
damaged.

FD

$

XP8100 I/O Configurations s 35

X
P

81
00

Bank A Inputs

12

7

65

1

3

2

4

J4

10

8

11

9

1

6

78

12

10

11

9

J2

3

5

2

4

Channels
8-15

Channels
0-3

Channels
4-7

Bank B Inputs

12

7

65

1

3

2

4

J4

10

8

11

9

1

6

78

12

10

11

9

J2

3

5

2

4

Channels
8-15

Channels
4-7

Channels
0-3

Pull-Down Configurations Function

Note: Other jumpers may be
present on J2 and J4.
The J2 and J4 jumper
configurations relate to Bank A
inputs 0-15.

Note: Other jumpers may be
present on J2 and J4.
The J2 and J4 jumper
configurations relate to Bank B
inputs 0-15.

Pull-Up Configurations Function

Note: Other jumpers may be
present on J2 and J4.
The J2 and J4 jumper
configurations relate to Bank A
inputs 0-15.

Note: Other jumpers may be
present on J2 and J4.
The J2 and J4 jumper
configurations relate to Bank B
inputs 0-15.

Bank A Inputs

12

7

65

1

3

2

4

J4

10

8

11

9

1

6

78

12

10

11

9

J2

3

5

2

4

Channels
8-15

Channels
0-3

Channels
4-7

FD

12

7

65

1

3

2

4

J4

10

8

11

9

1

6

78

12

10

11

9

J2

3

5

2

4

Bank B Inputs

Channels
8-15

Channels
0-3

Channels
4-7

FD

Figure 3-2. XP8100 Series Jumper Pull-Up Configurations

Figure 3-3. XP8100 Series Jumper Pull-Down Configurations

Note that board address jumpers occupy the top three rows of
header J4 (pins 1�6) as seen relative to the heat sink being at
the top of the board.

!

XP810036 s I/O Configurations

X
P

81
00

XP8100 Series Outputs
The XP8100 Series expansion boards are shipped from the factory with the
outputs configured with �sinking� drivers. The sinking drivers are rated up
to a maximum output voltage of 48 V and a maximum current of 500 mA
per individual output when only one output in a particular bank is active at
once.

When all outputs are on simultaneously, thermal limits restrict the current
to less than 100 mA per output. Similarly, if multiple outputs are turned on
at the same time, the driver current should not exceed 350 mA per output.
If the temperature exceeds 50°C, derate power dissipation by 55°C/W.

Jumpers across headers J1 and J3 define the sinking or sourcing configura-
tion of the outputs. For the default sinking setting, the jumpers are placed
horizontally across headers J1 and J3, as shown in Figure 3-4. The
XP8100 uses only header J1 and the XP8120 uses both headers J1 and J3.

Figure 3-4. Jumper Configurations
for Sinking and Sourcing Outputs

The factory default is for outputs to be configured with sinking
drivers (ULN2803).FD

J1

8
6
4
2

7
5
3
1

J3

1
3
5
7

2
4
6
8

J1

8
6
4
2

7
5
3
1

J3

1
3
5
7

2
4
6
8

FD

SINKING DRIVER SOURCING DRIVER

XP8100 I/O Configurations s 37

X
P

81
00

Sinking and Sourcing Outputs
Figure 3-5 shows a typical sinking driver output configuration.

Figure 3-5. XP8100 Series Sinking Driver Output

Sourcing outputs are possible by replacing the factory-installed sinking
driver chips with sourcing output drivers (UDN2985). The UDN2985
sourcing driver chip is capable of sourcing a maximum of 250 mA per
output.

Figure 3-6 shows a typical sourcing driver output.

Figure 3-6. XP8100 Series Sourcing Driver Output

ULN2803

K

Jumper

Jumper

External DC Supply

External
Load

Output Line

Freewheel
Diode

External
Load

UDN2985

K

Output Lines

Jumper
External DC
Supply

Freewheel
Diode

Jumper

XP810038 s I/O Configurations

X
P

81
00 Installing Sourcing Drivers

Figure 3-7 shows the location of the drivers and headers with jumpers to
be changed.

Figure 3-7. U5, U6, U13 and U14 Locations of Sinking Drivers

Pay particular attention to the orientation of the jumpers when changing
the driver output from sinking to sourcing. Exercise caution when install-
ing sourcing drivers in the field.

1. Be sure power is removed from the controller, then disconnect the
expansion card from the controller..

2. Remove the ULN2803 sinking drivers from the IC sockets. Note that
the XP8100 has two ULN2803 chips (at U5 and U6) and the XP8120
has four (U5, U6, U13 and U14).

3. Install the jumpers on header J1 in the sourcing configuration, as shown
in Figure C-4, for �Bank A� output channels 0�15. This step applies to
both the XP8100 and the XP8120 expansion boards. Note the location
of pin number 1.

4. For the XP8120 expansion board, install the J3 jumpers in the sourcing
configuration, as shown in Figure D-4, for �Bank B� output channels
0�15. Note the location of pin number 1.

Be sure the jumper settings conform to what is specified.
Failure to install jumpers correctly will cause the expansion
board to fail.

1

1

1 1

11

1

11

P1 P2U5

U6

Heat Sink

1

U13

U14

XP8100 I/O Configurations s 39

X
P

81
00

(

(

5. Install UDN2985 sourcing driver chips into the IC sockets.

Z-World also offers all XP8100 Series expansion boards with
factory-installed sourcing drivers. For ordering information,
call your Z-World Sales Representative at (530) 757-3737.

Tables 3-2 and 3-3 indicate which I/O channels are modified by the
jumpers on the J1 and J3 headers. The tables also list the specific location
of each output chip.

TTL/CMOS Outputs
Z-World also offers TTL- or CMOS-compatible outputs for the XP8100
Series expansion boards. Input and output channels may be configured
independently in any combination. However, the functionality of each
input is not independent; the inputs are still characterized in groups of
eight.

Z-World offers all XP8100 Series expansion boards with
factory-installed TTL- or CMOS-compatible outputs. For
ordering information, call your Z-World Sales Representative
at (530) 757-3737.

Table 3-2. Header J1 I/O Channels

J1 Pins “Bank A” I/O Channels
Modified IC Location

1–4 8–15 U6

5–8 0–7 U5

Table 3-3. Header J3 I/O Channels

J3 Pins “Bank B” I/O Channels IC Location

1-4 8-15 U14

5-8 0-7 U13

XP810040 s I/O Configurations

X
P

81
00 Using Output Drivers

The common supply for the digital output channels supplied by a driver
chip is called �K,� and is available on pin 10 of headers H1, H2, H3, and
H4 when they are configured to operate as digital outputs. �K� must be
used with digital outputs to allow proper operation.

The �K� connection performs two vital functions to the high-voltage driver
circuitry on the XP8100.

1. �K� supplies power to driver circuitry inside the driver chip.

2. �K� also allows a diode internal to the driver chip to �snub� voltage
transients produced during the inductive kick associated with switching
inductive loads such as relays, solenoids, and speakers.

Long leads may present enough induction to also produce large potentially
damaging voltage transients. The anodes of the protection diodes for each
channel are common, and so only one voltage supply can be used for all
high-voltage driver loads.

The following points summarize the functions of �K.�

� K provides power to the driver chip circuitry.

� K provides �clamping� for all high-voltage driver loads.

� It is mandatory to connect K regardless of whether sourcing or sinking.

� The load�s supply must have a common ground with all other supplies
in your system.

� All loads must use same supply voltage.

K must be connected to the power supply used for the high-voltage load as
shown in Figure 3-8.

Figure 3-8. XP8100 K Connections

To XP8100 K Connection

To XP8100 High-Voltage Output

LOAD

To Load Power (+DC source)

Sinking Driver

To XP8100 K Connection

To XP8100 High-Current Output

Sourcing DriverLOAD

To Load Power (+DC source)

XP8100 I/O Configurations s 41

X
P

81
00

Making XP8100 Series I/O Connections
The four 10-pin headers (H1�H4) accept either ribbon-cable connectors or
up to two XP8100 Series FWT blocks for input/output connections. Input
and output lines are wired to the 10-pin headers directly using a custom-
built cable and connector, or by using the FWT connectors available from
Z-World.

The hardware pin assignments for each header are referenced in Fig-
ure 3-9. Note that the first pin, indicated by the square, is labeled zero.

Figure 3-9. XP8100 Series Header H1�H4 Pin Assignments

Note that the hardware pin assignments for Bank B (H3 and
H4) do not match up with the Bank B software input/output
assignments. Both hardware and software assignments are
cross-referenced in Table 4-2 in Chapter 4, �Software Refer-
ence.�

Inputs/outputs may be connected with discrete wires instead of
a ribbon cable. Refer to Appendix E, �Field Wiring Termi-
nals,� for information on the optional FWT connectors.

Pay close attention to the locations of pins on the header when
connecting inputs/outputs.

!

!

H1

4 5 6 7 K

GND0 1 2 3

H2

12 13 14 15 K

GND8 9 10 11

H3

4 5 6 7 K

GND0 1 2 3

H4

12 13 14 15 K

GND8 9 10 11

“Bank A” I/O Channels “Bank B” I/O Channels

XP810042 s I/O Configurations

X
P

81
00

Table 3-4. XP8100 Series I/O Jumper Configurations

Header Pins Connected Configures

XP8100—16 inputs and 16 outputs

J1
Sinking or
sourcing drivers:
see Figure 3-4

“Bank A” Output Channels 0–15

J2 “Bank B” Input Channels 0–7

J4

Pull-up or pull-
down inputs:
see Figures 3-2
and 3-3

“Bank B” Input Channels 8–15
and board address

XP8110—32 inputs

J2
“Bank A” Input Channels 0–7 and
“Bank B” Input Channels 0–7

J4

Pull-up or pull-
down inputs:
see Figures 3-2
and 3-3

“Bank A” Input Channels 8–15, “Bank B”
Input Channels 8–15, and board address

XP8120—32 outputs

J1 “Bank A” Output Channels 0–15

J3

Sinking or
sourcing drivers:
see Figure 3-4 “Bank B” Output Channels 0–15

J4 — Board address only

$

I/O Jumper Configurations
There are four headers for jumper blocks. Depending on the specific
XP8100 Series expansion board, not all the four headers may be installed
on a particular board. Headers J1 and J3 are used to configure outputs,
while headers J2 and J4 are used to configure inputs. Header J4 is present
on all XP8100 Series expansion boards, and is used to configure inputs
and address settings.

Table 3-4 lists the headers that are installed specifically for each XP8100
Series expansion board and provides a reference to the jumper configura-
tions.

See Figure 2-3 in Chapter 2, �Getting Started,� for the jumper
configurations to set board addresses.

XP8100/XP8200 Field Wiring Terminals s 43

X
P

81
00

CHAPTER 4: FIELD WIRING TERMINALS

XP8100/XP820044 s Field Wiring Terminals

X
P

81
00 Discrete input/output lines may be connected to any of the XP8100 Series

expansion boards with field wiring terminal (FWT) modules. This elimi-
nates the need for ribbon cables. The optional quick-disconnect modules
provide screw terminals for simple wiring.

Each module mates to two of the XP8100 Series board headers (H1�H2
and H3�H4). This is equivalent to 16 connections per module. One
XP8100 Series expansion board can accept up to two FWT modules in any
combination. The FWT50, FWT38, and the FWT-Opto modules are
available.

Figures 4-1 and 4-2 show the mounting configuration for the FWT modules.

Figure 4-1. Top View of XP8100 with FWT Modules

The four FWT styles described in this appendix are available
from Z-World. Your application may use a different arrange-
ment than that shown in Figure 4-1.

J2 J4

1

1

1 1

11

11

J1
1

P1 P2

H3

H4

Heat Sink

FWT38

FWT-Opto

!

XP8100/XP8200 Field Wiring Terminals s 45

X
P

81
00

Figure 4-2. FWT Installation

FWT38
The FWT38 has 20 terminals in two groups with 10 terminals each. Each
group of terminals may be removed independently.

Table 4-1 summarizes the specifications for the FWT38.

Figure 4-3 provides the dimensions for the FWT38.

Figure 4-3. FWT38 Dimensions

Standoff

Table 4-1. FWT38 Specifications

Parameter Specification

Total I/O Channels 16

Screw Terminal Pitch 3.81 mm

Maximum Wire Gauge 28-16 AWG

Quick-Disconnect
Capability

Wiring banks can be unplugged from the
board separately (Phoenix Combicon type
connection)

Wire Orientation Top-exiting wires

0.25 typ
(6.4)

2.85
(72.4)

~1
.1

(2
8) ~0

.7
(1

8)
~0

.3
2

(8
.1

)

0.
12

5
(3

.2
)

0.
92

5
(2

3.
5)

0.115 dia, 2x
(2.9)

XP8100/XP820046 s Field Wiring Terminals

X
P

81
00 Figure 4-4 shows the I/O channel assignments and pinouts for the FWT38.

Figure 4-4. FWT38 Pinouts

FWT50
The FWT50 provides 20 screw terminals. The terminal connectors are
fixed to the FWT module and cannot be removed.

Table 4-2 summarizes the specifications for the FWT50.

00
01
02
03
04
05
06
07

GND
K

08
09
10
11
12
13
14
15

GND
K

Bank A
FWT38

Bank B
FWT38

00
01
02
03
04
05
06
07

GND
K

08
09
10
11
12
13
14
15

GND
K

Table 4-2. FWT50 Specifications

Parameter Specification

Total I/O Channels 16

Screw Terminal Pitch 5.00 mm

Maximum Wire Gauge 24-12 AWG

Quick-Disconnect
Capability

Unplugs from the XP8100 board as a single
unit

Wire Orientation Side-exiting wires

XP8100/XP8200 Field Wiring Terminals s 47

X
P

81
00Figure 4-5 provides the dimensions for the FWT50.

Figure 4-5. FWT50 Dimensions

Figure 4-6 shows the I/O channel assignments and pinouts for the FWT50.

Figure 4-6. FWT50 Pinouts

0.25 typ
(6.4)

2.85
(72.4)

0.
12

5
(3

.2
)

0.
92

5
(2

3.
5)

~0
.4

25
(1

0.
8)

~0
.3

2
(8

.1
)

0.115 dia, 2x
(2.9)

~0
.8

1
(2

0.
6)

08
09
10
11
12
13
14
15

GND
K

00
01
02
03
04
05
06
07

GND
K

Bank A
FWT50

Bank B
FWT50

00
01
02
03
04
05
06
07

GND
K

08
09
10
11
12
13
14
15

GND
K

XP8100/XP820048 s Field Wiring Terminals

X
P

81
00 FWT-Opto

The FWT-Opto provides optical isolation to the input channels. The
FWT-Opto is used only for inputs, and is not used with the XP8120
expansion board. All 16 channels must be committed to inputs when an
FWT-Opto module is used.

Every four FWT-Opto inputs share a common return. The
excitation resistors need to be pulled up to +5 V when the
FWT-Opto module is used.

Table 4-3 lists the specifications for the FWT-Opto module.

The FWT-Opto module uses 4.7 kW input resistors to accommodate the
large range of input voltages. This limits the input switching threshold to
±9.5 V. These 4.7 kW input resistors need to be replaced with 1.2 kW input
resistors to handle smaller input voltages such as 5 V logic. If 0.125 W
resistors are used, this will limit the maximum input voltage to ±12.2 V.

!

Table 4-3. FWT-Opto Specifications

Parameter Specification

Total Input Channels 16 optically isolated input channels only

Screw Terminal Pitch 3.81 mm

Maximum Wire Gauge 28-16 AWG

Quick-Disconnect
Capability

Wiring banks can be unplugged from the
board separately (Phoenix Combicon type
connection)

Wire Orientation Top-exiting wires

Input Protection Range 5 kV rms between input and output

Maximum Input Voltage ±40 V

Guaranteed Input
Switching Threshold

±9.5 V

XP8100/XP8200 Field Wiring Terminals s 49

X
P

81
00Figure 4-7 provides the dimensions for the FWT-Opto module.

Figure 4-7. FWT-Opto Dimensions

Figure 4-8 shows the input channel assignments and pinouts for the
FWT-Opto module.

Figure 4-8. FWT-Opto Pinouts

0.925
(23.5)

3.275
(83.2)

4.20
(107)

0.115 dia, 2x
(2.9)

0.
35

(8
.9

)
1.

15
(2

9.
2)

~1
.1

(2
8) ~0

.7
(1

8)
~0

.3
2

(8
.1

)

Bank B
FWT-Opto

Bank A
FWT-Opto

COM3
00
01
02
03

COM4
04
05
06
07

COM1
08
09
10
11

COM2
12
13
14
15

COM1
08
09
10
11

COM2
12
13
14
15

COM3
00
01
02
03

COM4
04
05
06
07

XP8100/XP820050 s Field Wiring Terminals

X
P

81
00 Figure 4-9 shows an FWT-Opto optical isolation circuit.

Figure 4-9. FWT-Opto Optical Isolation Circuit

The opto-isolated inputs share a common return in groups of
four. The software channel assignments remain the same for
Banks A and B.

00

10 kΩ

01
10 kΩ

02

10 kΩ

03

COM1

10 kΩ

+5 V

+5 V

+5 V

+5 V

4.7 kΩ

4.7 kΩ

4.7 kΩ

4.7 kΩ

!

XP8100 Software Reference s 51

X
P

81
00

CHAPTER 5: SOFTWARE REFERENCE

Chapter 5 describes the Dynamic C functions that initialize the XP8100
Series expansion boards, and perform input/output operations. The
following major sections are included.

� Software Input/Output Channel Assignments

� Software Overview

� Digital Inputs/Outputs

� Advanced Input/Output Programming

XP810052 s Software Reference

X
P

81
00

XP8100 Series Software Input/Output Channel
Assignments
Together, the four headers of Banks A and B provide a total of 32 inputs/
outputs. In hardware, the input/output channels are numbered 0�15 for
Bank A and are also numbered 0�15 for Bank B. However, the channels
must have unique software numbers, and so the inputs/outputs for Bank A
retain their numbering of 0�15, but the inputs/outputs for Bank B are
numbered 16�31.

Therefore, header H1 consists of software I/O channels 0�7, header H2
consists of software I/O channels 8-15, header H3 consists of software I/O
channels 16�23, and header H4 consists of software I/O channels 24�31.

See Chapter 1, �Overview,� for the board layouts showing the
exact locations of the headers.

Table 5-1 summarizes the software I/O assignments for each header.

$

Table 5-1. I/O Channel Assignments
for XP8100 Series Headers

Header Software I/O
Channels

H1 0–7

H2 8–15

H3 16–23

H4 24–31

XP8100 Software Reference s 53

X
P

81
00Table 5-2 lists the software I/O channel assignments for each header pin.

The table details the software function number assigned to the actual
hardware pin for headers H1�H4. Refer to this table when planning which
channel to activate or read during program development.

Table 4-2. I/O Channel Assignments forXP8100 Header Pins

Bank A Bank BHardware
Headers
H1–H4

 Pin
Channel

Assignment

H1
Software
Channel

Assignment

H2
Software
Channel

Assignment

H3
Software
Channel

Assignment

H4
Software
Channel

 Assignment

0 0 – 16 –

1 1 – 17 –

2 2 – 18 –

3 3 – 19 –

4 4 – 20 –

5 5 – 21 –

6 6 – 22 –

7 7 – 23 –

8 – 8 – 24

9 – 9 – 25

10 – 10 – 26

11 – 11 – 27

12 – 12 – 28

13 – 13 – 29

14 – 14 – 30

15 – 15 – 31

XP810054 s Software Reference

X
P

81
00

Software Overview
This section describes a set of simple software functions to use when
controlling the XP8100 Series expansion board inputs/outputs.

See the section �Advanced Programming� later in this chapter
to get more information on developing applications to meet
tight timing requirements.

Dynamic C Libraries
Several Dynamic C function libraries need to be used with the routines
defined in this chapter. There are three common libraries used by all
Z-World controllers and specific libraries designed for certain controllers.
The chart in Table 5-3 identifies which libraries must be used with particu-
lar Z-World controllers.

Before using one of these libraries in an application, first include the
library name in a #use command. For example, to use functions in the
library EZIOPLC.LIB, be sure there is a line at the beginning of the
program in the following format.

 #use ezioplc.lib

$

Table 4-3. Dynamic C Libraries Required by Z-World Controllers

Library Needed Controller

VDRIVER.LIB All controllers

EZIOCMMN.LIB All controllers

EZIOPBDV.LIB All controllers

EZIOTGPL.LIB BL1000

EZIOLGPL.LIB BL1100

EZIOMGPL.LIB BL1400, BL1500

EZIOPLC.LIB BL1200, BL1600, PK2100, PK2200

EZIOPLC2.LIB BL1700

XP8100 Software Reference s 55

X
P

81
00Supplied Software

These Dynamic C functions are used to initialize the PLCBus. Call these
functions in a program before any code to read inputs or set outputs.

� VdInit()

Initializes the timer mechanism.

LIBRARY: VDRIVER.LIB

� void eioResetPlcBus()

Resets all expansion boards connected to the PLCBus.

When using this function, initialize timers with VdInit() before
resetting the PLCBus. All PLCBus devices must reset before perform-
ing any subsequent operations.

LIBRARY: EZIOPLC.LIB

� void eioPlcRstWait()

Provides a delay long enough for the PLCBus to reset.

This function provides a delay of 1�2 seconds to ensure devices on the
PLCBus reset. This function should be called after resetting the
PLCBus.

LIBRARY: EZIOPBDV.LIB

� long int eioErrorCode

Represents a global bit-mapped variable whose flags reflect error
occurrences.

This register for this variable is initially set to 0. If the application tries
to access an invalid channel, the flag EIO_NODEV (the first bit flag) is
set in this register. Note that the other bits in EIO_NODEV deal with
networked controllers.

XP810056 s Software Reference

X
P

81
00

!

Digital Inputs/Outputs
The following functions provide an easy way to read inputs and activate
outputs. The digital input and output functions are located in the Dynamic C
EZIOPBDV.LIB library.

Setting Inputs
� int plcXP81In(unsigned eioAddr)

Reads the state of an XP8100 Series input channel.

PARAMETER: eioAddr specifies the board address and the input pin
to be read. Use the following formula in the function�s argument to
determine eioAddr.

32*brdNum+pin

The variable brdNum is the board address (the default address is 7, as
explained in Chapter 2) and the variable pin is the input being read
(software pin assignment 0�31).

RETURN VALUE:

� 0 if the board is found and the input channel reads low.

� 1 if the board is found and the input channel reads high.

� Sets the flag EIO_NODEV in eioErrorCode and returns �1 if the
channel does not exist (that is, if eioAddr is greater than 31).

For the XP8100 board, eioAddr is a number ranging from 16
through 31. For the XP8110 board, eioAddr is a number
ranging from 0 through 31.

XP8100 Software Reference s 57

X
P

81
00Program 5-1 demonstrates how to read the status of a digital input.

Program 5-1. Input Demonstration Program

#use vdriver.lib
#use eziocmmn.lib
#use eziopbdv.lib
// uncomment #use ezioplc.lib line below for
// PK2100(Rugged Giant), PK2200(Little Star),
// BL1200(Little PLC) and BL1600(Little G)
// #use ezioplc.lib
// uncomment #use eziomgpl.lib line below for
// BL1400(Micro-G) or BL1500(Micro-G2)
// #use eziomgpl.lib
char TITLE[] = {“XP81xx Digital Input”};
main() {

int channum;
int i, j;
VdInit();
printf(“%s\n\n”, TITLE);
eioResetPlcBus(); // reset the PLCBus
eioPlcRstWait(); // delay ensures the

// PLCBus boards reset
// locate all possible
// jumper-set addresses
// from 0 to 7 and
// display status

for (i = 0; i <= 7; ++i){
if (plcXP81In(i*32)==-1) { // do a read to

// locate the board
printf(“Board %d is not located\n\n”,i);

}
else {

printf(“Board %d is located\n”,i);
//read each channel from 0 to 31 and display status
printf(“Reading all 32 positions\n”);
for (channum = 0; channum <= 31; ++channum) {

j = plcXP81In(i*32+channum);
// read the input of the channel
printf(“HV%d reads %d\n”, channum, j);

}
printf(“\nPress a key to continue...\n”);
while (!kbhit());
getchar();
}

}
}

XP810058 s Software Reference

X
P

81
00 Setting Outputs

� int plcXP81Out(unsigned eioAddr, int state);

Writes to an output channel.

PARAMETERS: eioAddr specifies both the board address and the
output to turn on or off. Use the following formula in the function�s
argument to determine eioAddr.

32*brdNum+pin

The variable brdNum is the board address (the default address is 7, as
explained in Chapter 2) and the variable pin is the output being set
(software pin assignment 0�31).

state is 0 if the corresponding output is to be disabled or turned
�OFF,� state to 1 if the corresponding output is to be enabled or
turned �ON.�

RETURN VALUE:

� 0 if the output is within range.

� Sets the flag EIO_NODEV in eioErrorCode and returns a -1 if
and only if the channel does not exist (that is, if eioAddr is
greater than 31).

XP8100 Software Reference s 59

X
P

81
00Program 5-2 demonstrates how to set the status of a digital output.

Program 5-2. Output Demonstration Program

#use vdriver.lib
#use vdriver.lib
#use eziocmmn.lib
#use eziopbdv.lib
#use ezioplc.lib
// uncomment #use ezioplc.lib line below for
// PK2100(Rugged Giant), PK2200(Little Star),
// BL1200(Little PLC) and BL1600(Little G)
// #use ezioplc.lib
// uncomment #use eziomgpl.lib line below for
// BL1400(Micro-G) or BL1500(Micro-G2)
// #use eziomgpl.lib
char TITLE[] = {“XP81xx Digital Output”};
main() {

int channum;
int i;
VdInit();
printf(“%s\n\n”, TITLE);
eioResetPlcBus(); // reset the PLCBus
eioPlcRstWait(); // delay ensures the

// PLCBus boards reset
// locate all possible
// jumper-set addresses
// from 0-7 and display
// status

for (i = 0; i <= 7; ++i) {
if (plcXP81In(i*32)==-1) { //read to locate board

printf(“Board %d is not located\n\n”,i);
}
else {

printf(“Board %d is located\n”,i);
// enable each chan from 0-31

printf(“Enabling all 32 positions\n”);
or (channum = 0; channum <= 31; ++channum)
plcXP81Out(i*32+channum,1); //wr state to out chan
printf(“Press a key to continue...\n”);
while (!kbhit());
getchar(); // disable each chan from 0-31
printf(“Disabling all 32 positions\n”);
for (channum = 0; channum <= 31; ++channum)
plcXP81Out(i*32+channum,0); //wr state to out chan
printf(“Press a key to continue...\n”);
while (!kbhit());
getchar();

}
printf(“\n”);

}
}

XP810060 s Software Reference

X
P

81
00

Advanced Programming
While the functions described in the last four pages are easy to use to read
and set input/output channels, they may not be able to meet the require-
ments of critical, real-time applications. This section discusses how to
access the inputs/outputs on the XP8100 Series expansion boards more
efficiently. To this, the reader must be familiar with binary arithmetic, C
programming, and low-level PLCBus operations.

Functions for PLCBus Cycles, Reading and Writing
The PLCBus functions described in this section for the XP8100 Series
expansion boards will make a program more abstract and portable.
Dynamic C�s inport and outport statements or in and out assembly
instructions may still be used for controllers that support the PLCBus
directly. However, the expansion boards still have to be reset and a delay
has to be provided to ensure that all resets have occurred.

The following functions are located in EZIOPBDV.LIB.

� unsigned _eioPlcXP81Addr(char BrdAddr)

Converts the logical address into a 12-bit physical address.

PARAMETER: BrdAddr is the jumper-configured board address,
which ranges from 0 to 7. The logical address of the XP8100 Series
expansion boards is 0000 0pqr, where pqr is the binary representa-
tion for a board address of 0 to 7.

The function converts the logical address into a 12-bit physical address,
r000 01pq 0001.

RETURN VALUE: The bit-mingled XP8100 Series physical address.

The following functions are located in EZIOPLC.LIB and can be used to
simplify the multiple writes and reads on the PLCBus.

� void eioPlcAdr12(unsigned addr)

Specifies an address on the PLCBus using the BUSADR0, BUSADR1,
and BUSADR2 cycles. addr is broken into three nibbles, and one
nibble is written during each BUSADRx cycle, with BUSADR0 the
first bus cycle.

addr contains the PLCBus cycle addresses. BUSADR0 contains the
least significant four bits as shown below.
addr: 0000 rxyz 01pq 0001
BUSxxxx:. ADR2 ADR1 ADR0

XP8100 Software Reference s 61

X
P

81
00� void eioPlcAdr4(unsigned addr)

Writes to PLCBus register BUSADR2.

addr is the most significant four bits, rxyz. Here xyz is represented
as a group number. This function writes rxyz only in register
BUSADR2. Table 5-4 on the next page lists the rxyz addresses.

� char _eioReadD0()

This function reads the BUSRD0 register and returns the four data bits
D3�D0 read off the PLCBus.

� char _eioReadD1()

This function reads the BUSRD1 register and returns the four data bits
D3�D0 read off the PLCBus.

� void _eioWriteWR(char ch)

This function writes to the BUSWR register.

ch is the four data bits, D3�D0, written in the BUSWR register.

Address Calculation
Addressing an XP8100 Series expansion board first involves explicitly
determining each bit of the board�s address and then arranging those bits in
a particular order. This form of addressing is more complex than the
simple formula presented in the preceding section.

Let p, q, and r represent the most significant to least significant bits of the
jumper-set address of an XP8100 Series expansion board. The �logical�
address of each board in binary notation is then 0000 0000 0pqr. The
default address of any XP8100 Series expansion board is 7, as explained in
Chapter 2.

The actual address that is passed to advanced PLCBus functions, however,
must be rearranged to a physical address, rxyz 01pq 0001, where xyz
corresponds to either the board identification address or a group number
for the input/output data. The physical address is passed during a PLCBus
cycle by presenting the least-significant nibble, 0001, to the BUSADR0
register, the middle nibble 01pq to the BUSADR1 register, and the most-
significant nibble rxyz to the BUSADR2 register. Table 5-4 on the next
page lists the rxyz addresses.

For convenience, the function _eioPlcXP81Addr described in the
previous section is available to transform the logical address into the
physical address r000 01pq 0001 required by the PLCBus.

XP810062 s Software Reference

X
P

81
00

Checking for Presence of XP8100 Using Dynamic C
Functions
It is possible to verify whether an XP8100 Series expansion board with a
given bus address is actually responding. If the program addresses an
XP8100 with the lowest three bits of the highest nibble cleared, then the
XP8100 at that address will enter an �ID mode.� A correctly identified
board in the ID mode responds with a nibble that has the least significant
bit cleared.

Use the following procedure and sample program with the Dynamic C
functions to check whether a board actually exists on the PLCBus.

1. Calculate the physical PLCBus address of the board using the function

_eioPlcXP81Addr.

The address will automatically be in �ID mode� in the form
r000 01pq 0001. Remember that pqr is the jumper-configured
board address, as explained in Chapter 2.

Table 5-4 lists the software input/output group numbers and the corre-
sponding register BUSADR2 values to use when accessing the XP8100�s
input channels via PLCBus registers BUSRD0 and BUSRD1. The bit
positions of all 32 channels are also included. The input/output channels
are shown as channels 00 through 31.

Table 4-4. Software Input Registers

n (I/O Channels)

Group
Number

BUSADR2
rxyz

PLCBus
Register

D3 D2 D1 D0

0 r000 BUSRD0 X X X 0

BUSRD0 03 02 01 00
0 r100

BUSRD1 07 06 05 04

BUSRD0 11 10 09 08
1 r101

BUSRD1 15 14 13 12

BUSRD0 19 18 17 16
2 r110

BUSRD1 23 22 21 20

BUSRD0 27 26 25 24
3 r111

BUSRD1 31 30 29 28

XP8100 Software Reference s 63

X
P

81
002. Send the physical address to the PLCBus using the function

eioPlcAdr12.

3. Read back the nibble D3-D0 using the function

eioReadD0.

4. Determine whether a board exists on the PLCBus by checking if the
least significant bit D0 is cleared or contains a zero. Refer to Table 5-4
to help determine D0.

Program 5-3, XP81IDX.C, shows how to detect XP8100 expansion boards
connected on the PLCBus using Dynamic C functions. Compile and run
this program from the Dynamic C SAMPLES\PLCBUS subdirectory.

Program 5-3. Board Detection Program

XP81IDX.C

#use vdriver.lib
#use eziocmmn.lib
#use eziopbdv.lib
#use ezioplc.lib

// for PK2100(Rugged Giant), PK2200(Little Star),
// BL1200(Little PLC), BL1600(Little G)
//#use eziomgpl.lib
// for BL1400(Micro-G) or BL1500(Micro-G2)

main(){
int i;
int brdAdr;
VdInit(); // auto hit watch dog
eioResetPlcBus(); // reset PLCBus
eioPlcRstWait(); // delay ensures PLCBus boards reset

// locate all possible jumper-set board addresses from 0 to 7
for (i = 0; i <= 7; ++i) {

brdAdr = _eioPlcXP81Addr(i);
// convert to PLCBus format

eioPlcAdr12(brdAdr); // send board address
if (_eioReadD0()&1) // read nibble, mask bit 0

printf(“Board %d is not located\n”,i);
else

printf(“Board %d is located\n”,i);
}

}

XP810064 s Software Reference

X
P

81
00 Checking for Presence of XP8100 Without Using

Dynamic C Functions
The following steps may be used to check whether a board is connected to
the PLCBus without using Dynamic C functions. The procedure requires
accessing the BUSADR0 and BUSADR1 registers during a PLCBus cycle.
The procedure essentially checks if a board with a specific address exists.

1. The physical address is always in the form rxyz 01pq 0001.

The letters pqr stand for the board address, which is 0 to 7, in binary
notation. The letters xyz will always be 000 for �ID mode.� Thus, the
string becomes 0000 0101 0001 for a board address of 2 since the
binary notation for 2 is 010.

2. First write the nibble 0001 in the BUSADR0 register during a PLCBus
cycle.

3. Write 01pq in the BUSADR1 register.

4. Write r000 in the BUSADR2 register (remember xyz is always 000
for ID mode).

5. Read back the data bits D3�D0 from the BUSRD0 register as n.

6. Determine if the least significant bit 0 (D0) of n is cleared. One
method of checking bit 0 is to mask n by performing a �logical and 1�
of n. If the result is zero, the XP8100 board is present.

7. At this point, repeat Steps 3-6 to check for another board only if the
BUSADR0 register has not been accessed, and use an address number
that is different from the one just checked. Then, change pqr to
identify the next board address.

See Appendix D, �PLCBus States,� for detailed states and
transitions for the PLCBus. These will be useful for advanced
programming.

$

XP8100 Software Reference s 65

X
P

81
00Reading an Input State Using Dynamic C Functions

The specific XP8100 Series expansion board will determine how many
inputs are available, if any.

See the board layouts in Chapter 1, �Overview,� to determine
which XP8100 Series expansion board is actually being used.

The XP8100 Series of expansion boards is a 5-bit PLCBus device. Each
read register can return up to four bits during a cycle. There are two read
registers, BUSRD0 and BUSRD1.

The XP8100 Series input channels are organized into four groups, and
each group has eight individual channels. Group 0 corresponds to I/O
channels 0�7, Group 1 corresponds to channels 8�15, Group 2 corre-
sponds to channels 16�23, and Group 3 corresponds to channels 24�31.

Use the following procedure when reading an input state to first select the
proper group of inputs and then read the state of that group�s inputs.

1. Use the function eioPlcXP81Addr to calculate the physical PLCBus
board address (r000 01pq 0001).

2. Use the function eioPlcAdr12 to send the physical address to the
PLCBus.

3. Use the function eioPlcAdr4 to send the selected group number
rxyz. Table 5-4 provides the group numbers for the I/O channels.

4. Use either function _eioReadD0 or eioReadD1, depending on the I/O
channel number, to read the nibble D3�D0.

5. Determine if a board exists on the PLCBus by checking if the I/O
channel number and corresponding bit position contains a one. Refer
to Table 5-4 for corresponding bit positions D3�D0.

6. At this point, the program may do one of the following.

� Go to Step 1 to select another board

� Go to Step 3 to select another group on the same board

� Go to Step 4 to read from the same channel group

The sample program XP81INX.C demonstrates how to read
inputs using the Dynamic C functions supplied. Compile and
run this program from the Dynamic C SAMPLES\PLCBUS
subdirectory.

$

!

XP810066 s Software Reference

X
P

81
00 Reading an Input State Without Using Dynamic C

Functions
The following steps demonstrate how to operate the PLCBus to read an
input without using the supplied Dynamic C functions.

See Appendix D, �PLCBus States,� for detailed states and
transitions for the PLCBus. These will be useful for advanced
programming.

1. Refer to Table 5-4 for the register and channel assignments.

2. The physical address must be in the format

rxyz 01pq 0001.

The board�s address is represented in binary notation as pqr. The
group number is xyz.

3. First write the nibble 0001 in register BUSADR0 during a PLCBus
read cycle.

4. Write 01pq in register BUSADR1.

5. Write rxyz in register BUSADR2.

6. Read back the data bits from the proper register (BUSRD0 and
BUSRD1) as n.

7. Determine if a board exists on the PLCBus by checking if the channel
number and corresponding bit position contain a one.

8. The program may now do one of the following if the BUSADR0 read
cycle has not been accessed using a 0001.

� Go to Step 3 to select another board

� Go to Step 4 to select another group on same board

� Go to Step 5 to read from the same group.

$

XP8100 Software Reference s 67

X
P

81
00Controlling Outputs Using Dynamic C Functions

Controlling outputs using Dynamic C functions is similar to the procedure
for reading an input�s state. The procedure for writing an output also
considers the XP8100 Series expansion board to have four groups of
input/output channels, with each group having eight channels.

However, the output write procedure deals with only one channel for each
PLCBus cycle, unlike the input procedure which handles four input
channels during each PLCBus cycle.

Table 5-5 lists which PLCBus address to use when accessing a group of
eight channels via the PLCBus BUSWR register.

Table 4-5. Software Output Registers

BUSWR

BUSADR2 n

Group
Number

0 1 2 3 Channel Data
state

0=off, 1=on

rxyz r100 r101 r110 r111 D3 D2 D1 D0

0 0 0 0
00 08 16 24

0 0 0 1

0 0 1 0
01 09 17 25

0 0 1 1

0 1 0 0
02 10 18 26

0 1 0 1

0 1 1 0
03 11 19 27

0 1 1 1

1 0 0 0
04 12 20 28

1 0 0 1

1 0 1 0
05 13 21 29

1 0 1 1

1 1 0 0
06 14 22 30

1 1 0 1

1 1 1 0

Output

Channel

07 15 23 31
1 1 1 1

XP810068 s Software Reference

X
P

81
00 The following procedure first selects the proper group of outputs and then

writes the state to the group�s output channel.

1. Use the function _eioPlcXP81Addr to calculate the physical address
r000 01pq 0001.

2. Use the function eioPlcAdr12 to send the physical address to the
PLCBus.

3. Use the function eioPlcAdr4 to send the selected group number
rxyz. Table 5-5 lists the output registers for the I/O channel group
numbers.

4. Use _eioWriteWr to send the output state D3�D0. Table 5-5 lists the
output registers for the corresponding bit positions D3�D0 and channel
numbers.

5. At this point, the program may do one of the following.

� Go to Step 1 to select another board

� Go to Step 3 to select another group on same board

� Go to Step 4 to write to the same group.

Controlling Outputs Without Using Dynamic C Functions
The following steps demonstrate how to perform the PLCBus operation of
setting an output without using the supplied Dynamic C functions. Refer
to Table 5-5 for the register, channel and group number assignments.

See Appendix D, �PLCBus States,� for detailed states and
transitions for the PLCBus. These will be useful for advanced
programming.

1. The physical address must be in the format rxyz 01pq 0001. The
board�s address is pqr and the group number is xyz.

2. First write the nibble 0001 in register BUSADR0 during a PLCBus cycle.

3. Write 01pq in register BUSADR1.

4. Write rxyz in register BUSADR2.

5. To turn the output channel on, write the data bits D3�D0 to the
BUSWR register. Refer to Table 5-5 to find the corresponding bit
positions D3�D0.

6. The program may do one of the following if the BUSADR0 cycle has
not been accessed using a 0001.

� Go to Step 3 to select another board

� Go to Step 4 to select another group on the same board

� Go to Step 5 to write to an output of the same group.

$

X
P

83
00XP8300

X
P

83
00

XP8300 Overview s 71

X
P

83
00CHAPTER 6: OVERVIEW

Chapter 6 gives an overview of the XP8300 relay board and its specific
features.

XP830072 s Overview

X
P

83
00

Z-World�s XP8300 expansion boards provide a simple way to add relays to
a control system built around a Z-World controller. These relay output
boards can be connected on the PLCBus in conjunction with other expan-
sion boards. The actuation voltage for the board�s relays comes from the
controller via the PLCBus port. The XP8300�s six relays are high-power
relays.

Figure 6-1 illustrates a system of expansion boards mounted on a DIN rail
and connected to a controller. Chapter 7, �Getting Started,� provides
instructions and illustrations for connecting a relay board to a controller�s
PLCBus port. Appendix D, �Simulated PLCBus Connection,� provides
instructions and illustrations for connecting relay boards to a specific
controller that does not have a PLCBus port.

Figure 6-1. Expansion Board System

XP8300 Overview s 73

X
P

83
00

Relay 5

P1

PAL
U3

Relay 4Relay 0

Relay 1

Relay 2

Relay 3

P2

H1 H2 H4

H3

C14

F4

F2 F5

J2

J1

 LEDs
 LEDs

F1 F3

F0C5

D3

D4

D5

D6

D2

D1

C6

C7

C8

C9

C10

M
O

V
5

M
O

V
4

MOV3MOV2

M
O

V
0 MOV1

Features
The XP8300 board has six 24 V high-power relays installed as standard
equipment: two are configured as SPDT and four are configured as SPST.
All the relays are accessed through screw terminals on headers H1, H2,
and H4 to allow easy connections to external devices. Each relay is
protected with a 10 A fuse. To help eliminate noise transients, a metal
oxide varistor (MOV) and an RC snubber are attached between pin 1 and
pin 3 of each relay.

The inputs (pin 1) and normally open output contacts (pin 3) for all relays
on an XP8300 board are accessible on headers H1 and H2. The normally
closed outputs (pin 4) for relays 4 and 5 are available at header H4.

The XP8300 also has six LEDs that correspond to the six relays. An LED
turns on when the corresponding relay�s coil is energized. However, an
illuminated LED does not verify that the contacts within the relay actually
switch.

The XP8310 is a 12 V version of the XP8300.

Figure 6-2. XP8300 Relay Expansion Board Layout

XP830074 s Overview

X
P

83
00

Table 6-1. XP8300 Specifications

Feature Specification

Board Size
2.835" × 3.525" × 0.78"
(72.0 mm × 89.5 mm × ~20 mm)

Operating Temperature –40°C to +70°C

Humidity 5% to 95%, noncondensing

Input Voltage and Current 24 V DC, 100 mA

Relays

6 SPDT relays—2 used as SPDT relays and
4 used as SPST relays

6 A at 250 V AC or 6 A at 24 V DC

0.187 (4.7) dia.
clear, 4x

P1

0.45
(11)

0.
12

5
(3

.2
)

0.125
(3.2)

0.
12

5
(3

.2
)

2.
83

5
(7

2.
0)

1.
33

(3
3.

8)

0.75
(19)

0.06
(1.5)

P2

3.525
(89.5)

1.
33

(3
3.

8)

0.125
(3.2)

Specifications

Figure 6-3. XP8300 Dimensions

XP8300 Getting Started s 75

X
P

83
00CHAPTER 7: GETTING STARTED

76 s Getting Started XP8300

X
P

83
00

Connecting Expansion Boards to a Z-World
Controller
Use the 26-conductor ribbon cable supplied with the expansion board to
connect the expansion board to the PLCBus on a Z-World controller. See
Figure 7-1. The expansion board�s two 26-pin PLCBus connectors, P1 and
P2, are used with the ribbon cable. Z-World recommends using the cable
supplied to avoid any connection problems.

Figure 7-1. Connecting XP8300 Expansion Board to Controller PLCBus

Be sure power to the controller is disconnected before adding
any expansion board to the PLCBus.

Follow these steps to connect an expansion board to a Z-World controller.

1. Attach the 26-pin ribbon cable to the expansion board�s P2 PLCBus
header.

2. Connect the other end of the ribbon cable to the PLCBus port of the
controller.

Be sure pin 1 of the connector cable matches up with pin 1 of
both the controller and the expansion board(s).

3. If additional expansion boards are to be added, connect header P2 on
the new board to header P1 of the board that is already connected. Lay
the expansion boards side by side with headers P1 and P2 on adjacent
boards close together, and make sure that all expansion boards are
facing right side up.

See Appendix C, �Connecting and Mounting Multiple Boards,�
for more information on connecting multiple expansion boards.

Controllers with simulated PLCBus ports require special expander cables,
but are as easily connected. Appendix D, �Simulated PLCBus Connec-
tion,� gives detailed illustrated instructions for connecting relay boards to
controllers without PLCBus ports.

Pin 1

P2

 Controller
PLCBus Port

XP8300 Controller With PLCBus

P1

$

XP8300 Getting Started s 77

X
P

83
00

XP8300 Configuration
The XP8300 board holds six high-power relays. Each XP8300 relay has
the following specifications:

� Standard coil voltage 24 V DC.

� Contact ratings:
10 A at 24 V DC
10 A at 120 V AC
7 A at 250 V AC resistive
maximum.

Pin 1 is the common. Pin 5 goes to a high-voltage/high-current driver on
the relay board. Pin 2 is for the actuation voltage. Turning on the driver
allows current to flow through the coil, switching on the relay. Pin 3 is the
normally open contact. Pin 4 is the normally closed contact.

Each relay is protected by a 10 A fuse on pin 1. To help eliminate tran-
sients, a metal oxide varistor (MOV) is attached between pin 1 and pin 3
on each relay. An LED is connected in line with the coil on each relay, and
lights up when current passes through the coil.

Althought the relays are rated at up to 10 A, and are protected
with 10 A fuses, the size of the traces on the printed circuit
boards limits the current through each relay to 6 A.

Headers H1, H2, and H4 are used to connect external devices to the relays.
Pin 1 and pin 3 connections for all relays are provided on headers H1 and
H2. In addition, header H4 provides pin 4 connections for relays 4 and 5,
allowing relays 4 and 5 to be used as SPDT relays. Relays 0 to 3 do not
have their pin 4 available for external connection, and therefore can be
used only as SPST relays.

Figure 7-3 illustrates the pinouts for the relay connection pins on headers
H1, H2, and H4.

Figure 7-3. Relay Connection Pins

1

3 2

4 5

Configuration: SPDT
Coil Actuation
 Voltage: 24 V DC

Figure 7-2. Relay Circuit

Rel 4
pin 4

H1 H2 H4

H3

Rel 0
pin 3

Rel 0
pin 1

Rel 1
pin 3

Rel 1
pin 1

Rel 2
pin 3

Rel 2
pin 1

Rel 3
pin 3

Rel 3
pin 1

Rel 4
pin 3

Rel 4
pin 1

Rel 5
pin 3

Rel 5
pin 1

Rel 5
pin 4

V+
GND

78 s Getting Started XP8300

X
P

83
00

Jumper settings on header J2 determine the actuation voltage for the
board�s relays. When pins 1�2 are connected, the actuation voltage is
supplied by the +24 V line on the PLCBus. When pins 2�3 are connected,
the actuation voltage is supplied by the VCC line on the PLCBus.

When no pins on header J2 are connected, an actuation voltage must be
supplied by connecting a 24 V power supply at sockets V+ and GND on
header H3.

The XP8300 relays require an actuation voltage of 24 V, and
the XP8310 relays require an actuation voltage of 12 V. These
relays will not work with J2 pins 2�3 connected.

Apply a voltage on header H3 only when header J2 is not
jumpered. Applying power to the board when J2 pins 1�2 or
2�3 are connected can damage the relay board and other
boards on the bus.

Setting Board Addresses
Jumpers on header J1 (along with PAL encoding) determine the board�s
bus address. Figure 7-4 shows the jumper settings to set addresses 0�7.

Figure 7-4. J1 Jumper Settings for XP8300 Board PLCBus Addresses

6
4

J1

3

4

J1

2

6
J1

1

J1

4

2
6

2

J1

5

6

2

4

J1

7

0

J1

6

2
4

J1

6

2
4 4

6

2

44

FD

5

1
3

BD0
BD1
BD2 5

1
3

BD0
BD1
BD2 5

1
3

BD0
BD1
BD2 5

1
3

BD0
BD1
BD2

5

1
3

BD0
BD1
BD2 5

1
3

BD0
BD1
BD2 5

1
3

BD0
BD1
BD2 5

1
3

BD0
BD1
BD2

!

 Software Reference s 79XP8300

X
P

83
00CHAPTER 8: SOFTWARE REFERENCE

XP830080 s Software Reference

X
P

83
00

Relay Board Addresses

Physical Addresses
Up to 64 addresses are possible on a single PLCBus. The 12-bit address
of a particular relay board is determined by two factors: (1) the encoding
of the PAL chip installed on the board, and (2) jumper settings on header
J1. Since eight different PALs are available and J1 can be set eight
different ways, 64 unique addresses are possible.

A 12-bit address can be conveniently placed on the bus using 4-bit
addressing. A 12-bit physical address has the following format:

000z 000y pqrx

Jumper bits are defined by the following pin settings:

z = 1 when J1 pins 5�6 are not connected
y = 1 when J1 pins 3�4 are not connected
x = 1 when J1 pins 1�2 are not connected

and

pqr is determined by the PAL.

The physical addresses correspond to the following PLCBus addresses.

000z�BUSADR0
000y�BUSADR1
pqrx�BUSADR2

Logical Addresses
PLCBus expansion boards have �logical addresses.� Relay-specific
software defines 64 integer board addresses, 0�63. The formula mapping
physical address to logical address is defined by the following equation:

logical address = pqr × 8 + zyx

The PAL encoding (pqr) and jumper bits (z, y, x) are defined above.

For example, a relay board that has PAL FPO4550 (pqr = 101) and J1 pins
5 and 6 connected (zyx = 011) would have the following addresses.

physical address: 000z 000y pqrx = 0000 0001 1011 = 0x01B.

logical address: 101
B
 × 8 + 011

B
 = 43 = 0x2B.

Certain library functions expect a logical relay address.

 Software Reference s 81XP8300

X
P

83
00

Software

Dynamic C Libraries
Several Dynamic C function libraries are used with the routines defined in
this section. Table 8-1 identifies which libraries are used with specific
Z-World controllers.

Before using a library in an application, first include the library name in a
#use command. For example, to use functions in the library
EZIOPLC.LIB, insert the following line at the beginning of the program:

 #use ezioplc.lib

Table 8-1. Dynamic C Libraries for Controllers

Library Controller

EZIOCMMN.LIB All controllers

EZIOPBDV.LIB All controllers

EZIOTGPL.LIB BL1000

EZIOLGPL.LIB BL1100

EZIOMGPL.LIB BL1400, BL1500

EZIOPLC.LIB BL1200, BL1600, PK2100, PK2200

EZIOPLC2.LIB BL1700

EZIOBL17.LIB BL1700

XP830082 s Software Reference

X
P

83
00

How to Use the Relay Boards
1. Send a reset command to all boards on the PLCBus.

2. Place the address of the target board on the PLCBus.

3. Operate the relays.

Reset Boards on PLCBus
These Dynamic C functions are used to initialize the PLCBus. Use these
functions in a program before introducing any code to operate the relays.

� VdInit()

Initializes the timer mechanism.

LIBRARY: VDRIVER.LIB

� void plcBusReset()

Resets all expansion boards connected to the PLCBus.

When using this function, initialize timers with VdInit() before
resetting the PLCBus. All PLCBus devices must reset before perform-
ing any subsequent operations.

LIBRARY: EZIOPBDV.LIB

� void eioPlcRstWait()

Provides a delay long enough for the PLCBus to reset.

This function provides a delay of 1�2 seconds to ensure devices on the
PLCBus reset. Call this function after resetting the PLCBus.

LIBRARY: EZIOPBDV.LIB

� long int eioErrorCode

Represents a global bit-mapped variable whose flags reflect error
occurrences.

This register for this variable is initially set to 0. If the application tries
to access an invalid channel, the flag EIO_NODEV (the first bit flag) is
set in this register. Note that the other bits in EIO_NODEV deal with
networked controllers.

 Software Reference s 83XP8300

X
P

83
00

Address Target Board

� unsigned _eioPlcRelayAddr(unsigned BrdAddr);

Converts bit pattern 00000000 00pqrabc to pqrc 000b 000a
where pqr is the PAL number and abc is the address of the selected
board.

PARAMETERS: The low byte of BrdAddr should contain the logical
address (8*PAL# + Board#). The board number is 0�63 (0�7 if only
the factory default PAL is used).

RETURN VALUE: The bit-mingled BUSADR address pqrc 000b
000a for the XP8300 board.

LIBRARY: EZIOPBDV.LIB

Operate Relays

� int plcXP83Out(unsigned address, int state);

Energizes a relay on an XP8300 expansion board.

PARAMETERS: address is 8*Board# + Relay#. The board number
is 0�63 (0�7 if only the factory default PAL is used). The relay number
range is 0�5.

state indicates whether the relay should be energized�the specified
relay is energized when state is non-zero, but is not energized when
state is zero.

RETURN VALUE: 0 if the specified XP8300 and relay exist, other-
wise �1. If the specified relay/board do not exist, the global variable
eioErrorCode is bit-ored with the constant EIO_NODEV.

LIBRARY: EZIOPBDV.LIB

The plcXP83Out driver implements other function calls such as
eioPlcAdr12, eioPlcAdr4, eioReadD0, eioReadD1, and
eioWriteWR.

Refer to Appendix A, �PLCBus,� for a description of these
other functions.$

XP830084 s Software Reference

X
P

83
00

Advanced Programming

Controlling a Relay
Once a relay�s address is placed on the bus (the most recent address on the
bus remains in effect), relays can be switched indefinitely. Use the
BUSWR bus cycle to place four bits of data on the bus. Table 8-2 shows
the relay physical addresses and states.

A formula for turning on a relay is

relay# << 1 | 1

The following code fragments illustrate how to turn on a relay using this
formula for a BL1200, PK2200, or PK2100.

 #define ON 1
#define OFF 0
#define BOARD 0x0301 // board address is

// 0x0103
#define REL3 6 // 3 << 1 = 6
set12adr(BOARD); // select the board
outport(BUSWR, REL3|ON); // turn relay 3 on

 (or)

 write12data(BOARD, REL3|ON);

Table 8-2. Relay Addresses and States

Data Bits
Relay

D3 D2 D1 D0

0 0 0 0 0 = relay off

1 0 0 1 1 = relay on

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

 Software Reference s 85XP8300

X
P

83
00

Use the following code for a BL1100 or BL1000.

 #define ON 1
#define OFF 0
#define BOARD 0x0301 // board address is

// 0x0103
#define REL3 3
PBus_Addr(BOARD); // select the board
PBus4_Write(REL3|ON); // turn on relay 3

PLC_EXP.LIB
The PLC_EXP.LIB library supports PLCBus controllers when operating
PLCBus expansion boards. This library provides general bus functions
and specific functions for the XP8300expansion boards.

There are four groups of functions in this library. Table 8-3 lists the two
groups used by relay boards. Analogous functions exist in other libraries.

� int plc_poll_node(int board)

Returns 1 if the board identified by physical address board can be
found on the PLCBus and 0 if not.

� void plc_set_relay(int board, int relay,
byte state)

Switches a relay on an XP8300 board.

PARAMETERS: relay must be from 0�7 (0�5 on an XP8300 board).

state must be 1 (on) or 0 (off).

board must be a logical board address (0�63).

� void Reset_PBus()
void rset_pbus_wait()

The function Reset_PBus resets the PLCBus. The function
Reset_PBus_Wait provides the necessary delay (~450 ms) for the
bus to reset.

� int plcrel_addr(int board)

Returns the (nibble-interchanged) bus address for a relay board
identified by a logical address (0�63).

Table 8-3. PLC_EXP.LIB Groups

Group Functions

General plc_poll_node, Reset_PBus, Reset_PBus_Wait

Relay plc_set_relay

XP830086 s Software Reference

X
P

83
00

PBUS_TG.LIB
The PBUS_TG.LIB library allows the BL1000 to operate Z-World�s relay
expansion boards. The PBUS_TG.LIB library does not support any other
expansion boards.

The functions in this library are identical (except for internal details) to
those in the PBUS_LG.LIB library.

PBUS_LG.LIB
The PBUS_LG.LIB library allows the BL1100 to operate Z-World�s relay
expansion boards. This library does not support any other expansion
boards.

There are three groups of functions in this library. The two groups used by
relay boards are listed in Table 8-4. Analogous functions exist in other
libraries. For example, reset_pbus in PLC_EXP.LIB is used with con-
trollers with a PLCBus and performs the same function as Reset_PBus in
this library, which is used with the BL1100 and the BL1300.

� void PBus12_Addr(int addr)

Places a 12-bit address on the PLCBus, in 4-bit mode. That is, it
places three 4-bit nibbles on the bus. The first and third nibbles of
addr must be interchanged: if the bus address is 0x125, addr must be
0x521.

� int PBus4_Read0()
int PBus4_Read1()
int PBus4_ReadSp()

Carries out a bus read cycle. These functions correspond to bus cycles
BUSRD0, BUSRD1 and BUSSPARE, respectively.

� void PBus4_Write(byte value)

Carries out a BUSWR cycle.

Table 8-4. PBUS_LG.LIB Groups

Group Functions

General

PBus12_Addr, PBus4_Write, PBus4_Read0,

PBus4_Read1, PBus4_ReadSp, Reset_PBus,

Reset_PBus_Wait, Poll_PBus_Node

Relay Relay_Board_Addr, Set_PBus_Relay

 Software Reference s 87XP8300

X
P

83
00

� int Poll_PBus_Node(int addr)

Returns 1 if there is a board at addr on the PLCBus, and 0 if not. The
first and third nibbles of addr must be interchanged: if the bus address
is 0x125, addr must be 0x521.

� int Relay_Board_Addr(int board)

Returns the (nibble-interchanged) bus address for a relay board
identified by a logical address (0-63).

� void Reset_Pbus()
void Reset_Pbus_Wait()

The function Reset_PBus resets the PLCBus. The function
Reset_PBus_Wait provides the necessary delay (~450 ms) for the
bus to reset.

� void Set_PBus_Relay(int board, int relay,
int state)

Switches a relay on an XP8300 board. relay must be from 0�7.
state must be 1 (on) or 0 (off). board must be specified by a logical
board address (0�63).

DRIVERS.LIB
The functions set12adr, read12data, and write12data in
DRIVERS.LIB use 12-bit bus addresses. When using the functions in the
drivers library, swap the first and third nibbles of the address before pass-
ing the address to the function. For example, if the address is 0x125, pass
0x521.

XP830088 s Software Reference

X
P

83
00

Sample Projects
The following two sample programs activate the relays on one or more
XP8300 boards attached to a controller. Two versions of the program are
shown: one for PLCBus controllers, and one for the BL1100 and BL1300.

The following instructions tell how to set up a system, write and compile a
program, and run a sample program to operate relay boards on a bus.

PLCBus Controllers

Instructions
1. Power up the controller and make sure it is working properly. If you

encounter problems, consult the controller�s reference manual.

2. Disconnect power from the controller.

3. Using a PLCBus ribbon cable, connect header P2 of the relay board to
the PLCBus on the controller. Make sure both boards are right-side up,
with their input and output headers facing toward you. If you have
additional relay boards, chain them to the first board with PLCBus
ribbon cables.

4. Check the jumpers on headers J1 and J2 on the relay boards. With only
one board, leave J1 unjumpered. With more than one board, leave J1
unjumpered on the first board and set J1 with a different and unique
address on each additional board. On every relay board, connect pins
1�2 on J2. This connection causes each board to draw its relay-
actuation voltage from the +24 V provided over the PLCBus by the
controller.

When using the standard XP8300 with 24 V relays, the
controller must be powered by a 24 V supply or 24 V must be
brought in externally in order to actuate the relays reliably.

5. Power up the controller and bring up Dynamic C on your PC. If you
encounter problems reestablishing communications between your PC
and the controller, consult the controller�s reference manual.

6. Open and run the sample program. Refer to the Dynamic C Technical
Reference manual for detailed instructions on running a program.

7. The LEDs on the relay board(s) will begin flashing to indicate the
relays are actuating.

!

 Software Reference s 89XP8300

X
P

83
00

Sample Program
The relay board demonstration program can be used to locate all XP8300
expansion boards. The program then loops, activating the relays on each
board. For each board, the program concludes with an all-on/all-off
sequence. To locate each board, the program polls all 64 possible ad-
dresses, then displays the logical address in Dynamic C�s STDIO window
for each board that responds.

/**
 Relay Board Demo for XP8300 and XP8400
**/
#define ON 1
#define OFF 0
main(){

int board,relay,found,list[64];
Reset_PBus(); // always do this, first thing
delay(1000); // pause 1000ms for reset

// Locate relay boards. Build list
// and print board IDs

found=0;
printf("\nLogical relay addresses found: ");
for(board=0; board<64; board++){

if(plc_poll_node(plcrel_addr(board))){
list[found++] = board;
printf(" %d ",board);
if(found%10 == 0) printf("\n");

}
}

// Activate relays on each board
// found

while(1){ // loop forever
for(board=0; board<found; board++){

for(relay=0; relay<8; relay++){
plc_set_relay(list[board],relay,ON);
delay(333);
plc_set_relay(list[board],relay,OFF);

}
for(relay=0; relay<8; relay++){

plc_set_relay(list[board],relay,ON); // all
}
delay(750);
for(relay=0; relay<8; relay++){

plc_set_relay(list[board],relay,OFF);// all
}

}
}

}
delay(int ms){ // Max delay time = 2375 ms

unsigned int ival, i, j;
ival = (int)(ms * 27.30667) + 1;
for(i=0; i<ival; i++) j = j;

}

XP830090 s Software Reference

X
P

83
00

Controllers with Simulated PLCBus

Instructions for BL1000 and BL1100
1. Power up the BL1000 or BL1100 and make sure it is working properly.

If you encounter problems, consult the controller�s technical reference
manual.

2. Disconnect power from the controller.

3. Using the appropriate cable, connect the XP8300 to the PIO port on the
controller. See Appendix D, �Simulated PLCBus Connection,� for
detailed information regarding this cable. With more than one relay
board, chain the additional boards to the first one with PLCBus ribbon
cables. Make sure all relay boards are positioned with headers facing
the same direction.

4. Check header J1 on the relay board(s) for correct jumper setting(s).
With only one board, leave J1 unjumpered. With more than one board,
leave J1 unjumpered on the first board and set J1 with a different and
unique address on each additional board.

5. Make sure that header J2 has no pins connected. Connect a wall
transformer or equivalent 24 V direct current power supply to the
V+and GND terminals on header H3 (when using XP8300).

6. Power up the controller and bring up Dynamic C on the host PC. If a
problem reestablishing communication occurs, consult Dynamic C
Technical Reference manual.

7. Open and run the program. See the Dynamic C Technical Reference
manual for details on opening and running programs.

8. The LEDs on the relay board(s) will begin flashing to indicate that the
relays are actuating.

Sample Program for BL1000 and BL1300

 Software Reference s 91XP8300

X
P

83
00

The program locates all XP8300 boards attached to the PLCBus. The
program then loops, activating the relays on each board. For each board,
the program concludes with an all-on/all-off sequence. To locate boards,
the program polls all 64 possible addresses. The integer (logical) address
of each board that responds is displayed in Dynamic C�s STDIO window.

/**
Relay Board Demo - for BL1100

**/
#define ON 1
#define OFF 0
main(){
 int board,relay,found,list[64];
 Reset_PBus(); // always do this, first thing
 Stall(3000); // pause ~1sec for reset

// Locate relay boards. Build list
// and print board IDs

 found=0;
 printf("\nLogical relay addresses found: ");
 for(board=0; board<64; board++){
 if(Poll_PBus_Node(Relay_Board_Addr(board))){
 list[found++] = board;
 printf(" %d ",board);
 if(found%10 == 0) printf("\n");
 }
 } // Activate relays on each board

// found
 while(1){ // loop forever
 for(board=0; board<found; board++){
 for(relay=0; relay<8; relay++){
 Set_PBus_Relay(list[board],relay,ON);
 Stall(1000);
 Set_PBus_Relay(list[board],relay,OFF);
 }
 for(relay=0; relay<8; relay++){
 Set_PBus_Relay(list[board],relay,ON); // all
 }
 Stall(2000);
 for(relay=0; relay<8; relay++){
 Set_PBus_Relay(list[board],relay,OFF);// all
 }
 }
 }
}

XP830092 s Software Reference

X
P

83
00

X
P

85
00

XP8500

X
P

85
00

XP8500 Overview s 95

X
P

85
00

CHAPTER 9: OVERVIEW

Chapter 9 provides an overview and description of the XP8500 analog-to-
digital conversion expansion boards.

XP850096 s Overview

X
P

85
00

(

The XP8500 provides 11 channels of 12-bit analog-to-digital (A/D)
conversion, with onboard signal conditioning for four of these channels to
match the input voltage range between 0 V and 10 V. Gain and bias
resistors may be selected and installed by the user to determine the voltage
ranges of the conditioned input signals.

The XP8500 may be operated either in a ratiometric mode (a mode that
reduces errors arising from power-supply variations) or in an absolute
mode (where an onboard precision voltage reference assures accurate
measurements). The printed circuit board has space for optional sensor-
excitation resistors.

Each XP8500 has its zero offset and gain for the four conditioned channels
stored in an onboard, serial EEPROM. An application can use library
functions to access the EEPROM�s calibration constants to correct
measurements for offset and gain error.

The XP8500 receives its power from the PLCBus +24 V and +5 V. An
onboard voltage regulator develops a clean +5 V supply for the board�s
analog circuitry from the +24 V PLCBus. The same version of the
XP8500 works with both +12 V and +24 V controllers.

Like other Z-World expansion boards, the XP8500 boards can be installed
in modular plastic circuit-board holders attached to a DIN rail. The
XP8500 boards can also be mounted, with plastic standoffs, on any surface
that will accept screws. Up to 16 XP8500 boards addresses are possible
on a single PLCBus.

For ordering information, call your Z-World Sales Representa-
tive at (530) 757-3737.

XP8500 Overview s 97

X
P

85
00

Table 9-1. XP8500 Specifications

Board Size
2.835" × 2.125" × 0.75"
(72 mm × 54 mm × 19 mm)

Operating Temperature Range -40°C to +70°C

Humidity 5% to 95%, noncondensing

Power (quiescent, no output) 24 V DC, 32 mA

Inputs Eleven 12-bit analog inputs

• 4 channels with signal conditioning

• 7 unconditioned channels

2.
83

5
(7

2)

0.
12

5
ty

p
(3

.2
)

0.187 dia, 4x
(4.7)

~0
.7

5
(1

9)

~0
.6

(1
5)

2.125
(54)

0.125 typ
(3.2)

1.
0

(2
5)

0.3
(7.6)

Specifications
Table 9-1 summarizes the specifications for the XP8500 expansion board.

Figure 9-1 shows the dimensions of the XP8500 expansion board.

Figure B-1. XP8500 Board Dimensions

XP850098 s Overview

X
P

85
00

XP8500 Getting Started s 99

X
P

85
00

CHAPTER 10: GETTING STARTED

Chapter 10 provides instructions for connecting XP8500 expansion boards
to a Z-World controller. The following sections are included.

� XP8500 Components

� Connecting Expansion Boards to a Z-World Controller

� Setting Expansion Board Addresses

� Power

XP8500100 s Getting Started

X
P

85
00

XP8500 Components
The XP8500 boards offer eleven channels of 12-bit analog-to-digital
conversion. Figure 2-1 illustrates the basic layout and orientation of
components, headers, and connectors.

Figure 10-1. XP8500 Board Layout

P1
P2

H1

U1

J2 J1

H2

Regulator

U8

PAL

U9

C11J3

U5

U2

U7

U3

U6

J4J5

RP4

RP3

Gain and Bias
Resistors

XP8500 Getting Started s 101

X
P

85
00

Connecting Expansion Boards to a Z-World
Controller
Use the 26-conductor ribbon cable supplied with an expansion board to
connect the expansion board to the PLCBus on a Z-World controller. See
Figure 10-2. The expansion board�s two 26-pin PLCBus connectors, P1
and P2, are used with the ribbon cable. Z-World recommends using the
cable supplied to avoid any connection problems.

Figure 10-2. Connecting XP8500 Expansion Board to Controller PLCBus

Be sure power to the controller is disconnected before adding
any expansion board to the PLCBus.

Follow these steps to connect an expansion board to a Z-World controller.

1. Attach the 26-pin ribbon cable to the expansion board�s P2 PLCBus
header.

2. Connect the other end of the ribbon cable to the PLCBus port of the
controller.

Be sure pin 1 of the connector cable matches up with pin 1 of
both the controller and the expansion board(s).

3. If additional expansion boards are to be added, connect header P2 on
the new board to header P1 of the board that is already connected. Lay
the expansion boards side by side with headers P1/H1 and P2/H2 on
adjacent boards close together, and make sure that all expansion boards
are facing right side up.

See Appendix C, �Connecting and Mounting Multiple
Boards,� for more information on connecting multiple expan-
sion boards.

 Controller
PLCBus Port

Controller With PLCBus
H1

U1

H2

U8

PAL

U9

C
11

J3

U5

U2

U7

U3

U6

P1

XP8500

P2

1

Pin 1

$

XP8500102 s Getting Started

X
P

85
00

4. Each expansion board comes with a factory-default board address. If
more than one expansion board of each type is to be used, be sure to set
a unique address for each board.

The following section on �Setting Expansion Board Ad-
dresses,� and Chapter 4, �Software Reference,� provide details
on how to set and use expansion board addresses.

5. Power may be applied to the controller once the controller and the
expansion boards are properly connected using the PLCBus ribbon
cable.

See Appendix D, �Simulated PLCBus Connection,� for details
on the special connections that enable XP8500 expansion
boards to be used with BL1400 and BL1500 controllers.

Setting Expansion Board Addresses
Z-World has established an addressing scheme for the PLCBus on its
controllers to allow multiple expansion boards to be connected to a
controller.

Remember that each expansion board must have a unique
PLCBus address if multiple boards are to be connected. If two
boards have the same address, communication problems will
occur that may go undetected by the controller.

XP8500 Addresses
XP8600 expansion boards are shipped from the factory with no pins on
header J4 or J5 connected. Four different PALs are available. There are
four different ways to configure the pair of pins on header J4 and J5, and
so up to 16 XP8500s may be addressed individually over a single PLCBus.

See Chapter 4, �Software Reference,� for further details on
how to determine the physical address for XP8500 expansion
boards based on whether the pins on header J4 or header J5 are
connected.

Power
Z-World�s expansion boards receive power from the controller over the
+24 V line of the PLCBus. An onboard regulator converts this to the +5 V
reference used by the XP8500. The XP8500 draws 32 mA at +24 V.

The XP8500 may be used with +12 V controllers without having any
modifications.

$

$

!

$

XP8500 I/O Configurations s 103

X
P

85
00

CHAPTER 11: I/O CONFIGURATIONS

Chapter 11 describes the built-in flexibility of the XP8500 expansion
boards, and describes how to configure the available inputs/outputs. The
following sections are included.

� XP8500 Pin Assignments

� Operating Modes

� Using A/D Converter Boards

� How to Set Up an XP8500

� Selecting Gain and Bias Resistors

XP8500104 s I/O Configurations

X
P

85
00

XP8500 Pin Assignments
The XP8500�s eleven 12-bit analog-to-digital converter channels are ac-
cessed through Wago connector H1 (conditioned channels CH0�CH3) and
header H2 (unconditioned channels AIN4�AIN10), as shown in Fig-
ure 11-1. The bias voltage set by J1, VREF+, is available on header H2,
and +5 V (analog) is available on both Wago connector H1 and header H2.

Figure 11-1. XP8500 Pin Assignments

Operating Modes
The XP8500 operates in an absolute mode (as configured in the factory),
or in a ratiometric mode. Jumpers J1 and J2 configure the XP8500 to
operate in either the absolute or ratiometric mode. J1 selects the reference
voltage supplied to the op-amps bias networks, and J2 selects the reference
voltage supplied to the A/D converter chip. Figure 11-2 summarizes the
jumper connections.

Figure 11-2. XP8500 Jumper Settings for Absolute or Ratiometric Modes

H1

GND

CH0

CH1

GND

CH2

CH3

GND

+5ANA

10

12

1 2

3 4

5 6

7 8

9

11

13 14

GND

GND

GND

GND

GND

VREF+

+5ANA

AIN10

AIN9

AIN8

AIN7

AIN6

AIN5

AIN4

H2

J1

Absolute Mode
J2

FD

J1
J2

Ratiometric Mode

XP8500 I/O Configurations s 105

X
P

85
00

Jumpers pins 1�2 of both headers J1 and J2 are used to select the absolute-
conversion mode where the input signal is compared against an accurate
fixed voltage reference. With this setting, 2.5 V from the precision voltage
reference goes to both the A/D converter chip and to the op-amp bias
networks.

Jumper pins 2�3 on both headers J1 and J2 are used to select the ratiomet-
ric conversion mode where both the voltage reference and the input will
fluctuate with fluctuations in power because they both use the same power
source. With this setting, a voltage divider derives 2.5 V from the analog
+5 V supply for the A/D converter chip, and the analog +5 V now goes to
the op-amp bias networks. (The 2.5 V from the voltage divider cannot
power the op-amp bias networks directly because it is not a low-impedance
source and the op-amp bias networks would put too large a load on the
divider.)

Using Analog-to-Digital Converter Boards
These steps summarize how to use the A/D converter boards.

1. Send a reset command to all boards on the PLCBus.

2. Place the address of the A/D converter board on the PLCBus.

3. Read an input channel, allowing time for the multiplexer to settle and
for the digital output to be determined.

4. Allow the controller to use the digital information to calculate a
meaningful value for the quantity measured.

5. Use the data to control relays, switches, or other devices with the
controller.

These steps rely on software drivers in Dynamic C function libraries. Use
DRIVERS.LIB and PLC_EXP.LIB for controllers with a PLCBus port.
The XP8500 will also work with BL1400 and BL1500 controllers.

XP8500106 s I/O Configurations

X
P

85
00

(

–

+

CH0–CH3

VREF+

A/D
converter

+5ANA

10 kΩ

10 kΩ

U3

U2

VREF+

+5ANA

RP2

+5ANA
0.01 µF

RP3
RP4

RP3
RP4

Rg

Rbias

VRn-

VRn+

AIN0�AIN3

How to Set Up An XP8500

Conditioned Inputs (CH0�CH3)
Signals from devices connected to a conditioned input channel on H1 go to
an inverting input on one of the four op-amps in U2, as shown in Fig-
ure 3-3. User-selectable precision resistors R1 through R8 (R

g
 and R

bias
)

set the gain and bias voltages of the op-amps to match the voltage range of
the input to the fixed 2.5 V range of the A/D converter chip.

Figure 11-3. Schematic of XP8500 Signal Conditioning

The 10 kW input resistors, RP3 or RP4, are fixed; 0.01 µF feedback
capacitors roll off the high-frequency response of the op-amps to attenuate
noise. Equation (11-1) gives the 3 dB corner frequency.

For the factory default, where the gain is 0.25 using R
g
 = 2370 W, the 3 dB

corner frequency is 6715 Hz.

Strip sockets accommodate resistors R1�R8, as shown in Figure 11-4. The
factory-installed gain resitors and bias resistors are 2370 W and 39.2 kW,
respectively, and provide a range of 0 V to 10 V for the inputs to be
conditioned.

Z-World offers the XP8500 with customer-specified surface-
mounted gain and bias resistors installed at R1�R8. For
ordering information, call your Z-World Sales Representative
at (530) 757-3737.

F01.0R2

1
f

g
3db µπ ××

= (11-1)

XP8500 I/O Configurations s 107

X
P

85
00

Table 11-1. Gain and Bias Resistors for a Selected Range
of Input Voltages

Rbias (kΩ)
Input Range

(V)
Gain

Rg

(kΩ) Absolute
Mode

Ratiometric
Mode

-10.0 to +10.0 0.125 1.18 8.06 2.87

-5.0 to +5.0 0.250 2.37 6.65 2.49

-2.5 to +2.5 0.500 4.75 4.99 2.00

-2.0 to +2.0 0.625 5.90 4.53 1.82

-1.0 to +1.0 1.250 11.8 2.87 1.27

-0.5 to +0.5 2.500 23.7 1.69 0.787

-0.25 to +0.25 5.000 47.5 0.931 0.442

-0.10 to +0.10 12.500 118 0.392 0.196

0 to + 10.0* 0.250* 2.37* 39.2* 6.49

0 to +5.0 0.500 4.75 20.0 4.99

0 to +2.5 1.000 9.53 10.0 3.32

0 to +1.0 2.500 23.2 4.02 1.69

* These are the factory defaults.

Figure 11-4. Location of XP8500 Gain and Bias Resistors

Table 11-1 provides values for the gain and bias resistors for a range of
input voltages. The section on �Selecting Gain and Bias Resistors� at the
end of this chapter provides a detailed explanation on how to calculate
these values for a particular range of input voltages.

R8

R7

CH3

R6

R5

CH2

R4

R3

CH1

R2

R1

CH0

Bias Resistors

Gain Resistors

XP8500108 s I/O Configurations

X
P

85
00

Excitation Resistors
Some transducers, such as thermistors, require an excitation voltage, par-
ticularly in some ratiometric applications. These excitation voltages are
set using excitation resistors in the RP2 sockets, as shown in Figure 11-5.
Either a resistor pack or individual resistors may be used.

Figure 11-5. Optional XP8500 Excitation Resistors

EEPROM
The jumpers on header J3 write-protect the calibration contents stored in
the upper half of the EEPROM�the lower half cannot be write-protected.
Figure 11-6 shows the jumper settings for the EEPROM.

Figure 11-6. XP8500 EEPROM Jumper Settings for Header J3

See Chapter 12, �Software Reference,� for details on how to
read and write the EEPROM contents.

+5 V +5 V +5 V +5 V

CH3CH2CH1CH0

RP2 RP2 RP2 RP2

J3 Write-Protect

FD

J3
Write-Enable

$

XP8500 I/O Configurations s 109

X
P

85
00

Unconditioned Inputs (AIN4�AIN10)
The seven unconditioned input channels, AIN4�AIN10, use 10 kW
pulldown resistors at R9�R15 as shown in Figure 11-7 to keep the inputs
from floating when they are not being used.

Figure 11-7. Schematic of XP8500 Unconditioned Inputs

These channels are accessed with software by inserting the desired channel
number in the library functions that control the XP8500. These channels
are located on header H2. For optimum results, drive these channels with
low-impedance (< 50 W) voltage sources such as LM660 op-amps. High-
impedance signal sources are susceptible to coupled noise and will become
distorted when loaded by the 10 kW pulldown resistors. In addition, only a
low-impedance source can charge the sampling capacitors accurately
within the A/D converter. When designing the signal sources to drive the
extra channels, be sure to consider whether the op-amps can handle the
capacitance of the cable used to connect them to header H2.

Internal Test Voltages
In addition to the 11 external input channels of the A/D converter chip,
three additional internal channels exist to measure reference points within
the chip. The A/D converter compares its internal nodes to REF+ and
REF- so the conversions yield either all 1s or all 0s. These channels are
accessed using ordinary library routines by specifying the appropriate
channel address when calling the functions.

See Chapter 12, �Software Reference,� for further details on
Channels 11, 12, 13, and 14.

Power-Down Mode
If Channel 14 on the A/D converter chip is called by the software, the chip
enters a power-down mode in which all circuits in the chip go into a low-
current, standby mode. The chip also goes into the power-down mode
when it is first powered on and before the first A/D conversion. The chip
remains in the power-down mode until a channel other than Channel 14 is

U3

AIN[4–10]

VREF+
+5ANA

10 kΩ

A/D
Converter

$

XP8500110 s I/O Configurations

X
P

85
00

selected. The normal operating current of the A/D converter chip is 1 mA
to 2.5 mA. This consumption drops to 4 µA to 25 µA when the chip is in a
power-down mode. The reduction represents only about 10�20 percent of
the XP8500 board�s analog supply current and none of its digital supply
current

Drift
The AD680JT voltage reference experiences a voltage drift of 10 ppm/°C
(typ) to 30 ppm/°C (max). This drift corresponds to 25 mV/°C to 75 mV/°C,
or 1.75 mV to 5.25 mV over the temperature range of 0°C to 70°C.

The LMC660C op-amp has an offset-voltage drift of 1.3 µV/°C (typ), or
91 µV over the temperature range of 0°C to 70°C.

A greater contribution to overall drift arises from differences in the
temperature coefficients of the gain and bias resistors, and the fixed 10 kW
resistors in resistor packs RP3 and RP4. These resistor networks and the
one used for the ratiometric voltage divider have a temperature coefficient
of 200 ppm/°C. Because the packages are small, the resistors within each
package are always at essentially the same temperature and their deviations
track closely.

XP8500 I/O Configurations s 111

X
P

85
00

Selecting Gain and Bias Resistors
The section �How to Set Up An XP8500� provided representative values
of gain and bias resistors for the XP8500�s conditioned channels. This
section provides a detailed explanation on how to calculate these values
for a particular range of input voltages. Figure 11-8 shows a schematic
representation of the signal conditioning for channels CH0�CH3.

Figure 11-8. Schematic of XP8500 Signal Conditioning

Step 1. Select Gain Resistor

The gain and bias resistors, R1�R8 (R
g
 and R

bias
 in Figure 11-8), determine

the input signal�s voltage relative to ground, as well as its range. For
example, assume the XP8500 must handle an input signal spanning -5 V to
+5 V. First select gain resistor R1 to suit a voltage range of 10 V.

The gain of the amplifier is the ratio of its maximum output-voltage swing
to the swing in the software application�s maximum input voltage. The
2.5 V input range of the TLC2543 A/D converter chip (U3) limits the
LMC660 (U2) op-amps� output swings to 2.5 V. Therefore. Equation (11-
2) expresses an amplifier�s gain in terms of the range of its input voltage.

where g is the gain, V
INmax

 is the maximum input voltage, and V
INmin

 is the
minimum input voltage.

The ratio of the user-specified gain resistor R
g
 (R

g
 = R1, R3, R5, or R7) to

its associated fixed input resistor (RP4A, RP4C, RP3A, or RP3C) deter-
mines an amplifier�s gain. Equation (11-3) provides the gain for the
configuration shown in Figure 11-8 with the input resistor fixed at 10 kW.

–

+

CH0–CH3

VREF+

A/D
converter

+5ANA

10 kΩ

10 kΩ

U3

U2

VREF+

+5ANA

RP2

+5ANA
0.01 µF

RP3
RP4

RP3
RP4

Rg

Rbias

VRn-

VRn+

AIN0�AIN3

minmax ININ VV

V2.5
g

−
= (11-2)

Ω
=

000,10

R
g

g (11-3)

XP8500112 s I/O Configurations

X
P

85
00

Given a range of 10 V for the input voltage, Equation (E-1) fixes the
amplifier�s gain at 0.25. This gain correctly scales the input signal�s range
to the op-amp�s 2.5 V maximum output range. Therefore, R

g
 must be

2500 W.

Step 2. Calculate Bias Resistance

Next, if the op-amp is to servo its output properly around the desired
center voltage, the appropriate bias voltage needs to be established at the
op-amp�s noninverting input. Select the bias resistor, R

bias
, to position the

input-voltage range correctly with respect to ground�in this example, -
5 V to +5 V.

The value for R
g
 has already been selected, and so the maximum input

voltage, V
INmax

, determines the maximum voltage seen at the amplifier�s
summing junction (inverting input)�circuit nodes VR0� to VR4�.
Compute VR0� to VR4� using Equation (11-4).

The bias voltage, V
bias

, must equal its corresponding VRn� for each op-
amp. A voltage divider, which consists of a bias resistor, R

bias
 (R

bias
 = R2,

R4, R6, or R8), and a fixed 10 kW resistor (RP4B, RP4D, RP3B or RP3D),
derive this bias voltage, V

bias
 (V

bias
 = VR0+, VR1+, VR2+, or VR3+), from

VREF+. Note that VREF+ is not necessarily the same as REF+. (REF+ is
the positive reference voltage the A/D converter chip uses.)

The XP8500�s conversion mode determines which reference voltage the
op-amps uses. When the XP8500 operates in the absolute mode, VREF+
is 2.5 V and R

bias
 is

When the XP8500 operates in the ratiometric mode, VREF+ is +5 V, and

Continuing the example, the gain is 0.25 and V
INmax

 = +5 V; V
bias

 is then
1.0 V using Equation (11-4) R

bias
, therefore, is 6667 W in the absolute

mode and 2500 W in the ratiometric mode.

Step 3. Choose Best Standard Resistor Values

The calculated resistor values, of course, will not always be available. In
these cases, use the nearest standard resistor value. For example, use
6650 W (1% resistors) instead of 6667 W, or use 6800 W (5% resistors).







+

×=−
g1

g
VVR

maxINn (11-4)

.
V-V

000,10V
R

bias

bias
bias 2.5

Ω×
= (11-5a)

.
V-V0.

000,10V
R

bias

bias
bias 5

Ω×
= (11-5b)

XP8500 I/O Configurations s 113

X
P

85
00

Step 4. Bracket Input Range

To be sure of measuring signals accurately at the extremes of the range of
input voltages, be aware of the interaction between the 10 kW fixed
resistors, RP3�RP4, and the gain and bias resistors, R1�R8. Ideally, a
signal at the minimum input level would be output to the A/D converter�s
input at the maximum expected value of 2.5 V (remember that U2 is an
inverting op-amp).

But real-world resistor values vary within their rated tolerances. Thus, if
the fixed input resistor has a resistance lower than its nominal value, and
the installed resistors have a resistance slightly higher than their nominal
value, the actual input to the A/D converter chip would be greater than
2.5 V. A loss of accuracy then results because the A/D converter input
would reach its maximum input value before the true signal input reaches
the minimum expected input level.

Similarly, a deviation from nominal values in the bias network could skew
the A/D converter�s input voltage away from the theoretically computed
value. For example, a small positive or negative deviation of the bias
voltage arising from variances in the resistor divider would offset the A/D
converter�s input voltage. This offset would be positive or negative,
tracking the deviation�s sign, and would be equal to the bias deviation
multiplied by the amplifier�s gain plus one. Both of these effects could
occur in the same circuit.

Step 5. Pick Proper Tolerance

Use care when compensating for discrepancies. For example, if standard
5% resistors are used for R1�R8, the values are spaced approximately 10%
apart. If the gain is too high by just a small amount, then going to the next
smallest standard 5% value could decrease the gain, and there would be an
A/D converter excursion approaching 10%. The same caveat applies to
the bias network. Use 1% resistors to have a more precise choice of
values.

Figure E-2 shows the result of adjusting the resistor values such that the
input to the A/D converter stays within its specified 2.5 V range.

Step 6. Confirm Performance

For critical measurements, always check the setup after installing resistors
by measuring test signals at and near the input-voltage limits. See if the
U2 op-amp output voltages fall within the A/D converter�s input range or if
accuracy is lost because of over-excursions at the A/D converter input.

The resistance of the 10 kW fixed input resistors can be measured after
installing the gain and bias resistors by measuring the voltages at the op-
amps� inputs and outputs. Using Channel 0 as an example, ground the
CH0 input at pin 2 of Wago connector H1.

XP8500114 s I/O Configurations

X
P

85
00

Figure 11-9. Effects on A/D Converter Input from Adjusting Resistor Values

Then measure the voltages at VR0- and at the U2 op-amp output. Because
the currents through the input resistor and R

g
 are essentially identical, the

ratio of the voltages across the resistors is equivalent to the ratio of the
resistances. Therefore, the gain is

Again using Channel 0 as an example, measure the voltage VREF and the
voltage at VR0+ (see Figure 11-8). Because the current into the op-amp
input is negligible, the resistance ratio of the two resistors in the voltage
divider alone determines VR0+. The value of the fixed resistor in the
divider can then be calculated based on R

bias
 and the value of VR0+.

0
10

2.5

XP8500 Input (V)

A
/D

 C
on

ve
rt

er
 In

pu
t (

V
)

Op-amp output voltage
deviation arising from
resistor variations

Out of range

Out of range

A/D converter's
input voltage
limit

.
R

R

-VR0

-VR0V(U2)
g

IN

gOUT =
−

=

XP8500 I/O Configurations s 115

X
P

85
00

Step 7. Calibrate the A/D Converter

Regardless of whether the mathematically derived resistance values or the
scaled resistance values are found, the inherent component-to-component
variations of 5% or 1% resistors can completely swamp the 0.25%
resolution of the A/D converter. To achieve the highest accuracy possible,
the A/D converter itself must be calibrated.

The software drivers for the A/D converter provide routines to compute
calibration coefficients, given two reference points, and then to store the
calibration coefficients in a defined location in nonvolatile memory. Each
reference point consists of a pair of values: the actual applied test voltage
and the raw converted A/D value (a 12-bit integer). Z-World�s software
will automatically use these calibration coefficients to correct all subse-
quent A/D readings.

Op-Amp Test Points

The factory-installed gain and bias resistors (R1, R3, R5, R7 = 2370 W and
R2, R4, R6, R8 = 39.2 kW) have a 2% tolerance. These resistors yield a
gain of 0.25 for a unipolar input-signal range of 0 V to 10 V.

Figure 11-10 shows some convenient points at which to make voltage
measurements of the op-amp.

Figure 11-10. XP8500 LMC660 Op-Amp Test Points

AN0 AN1 AN2 AN3

 AGND AGND AGND AGND

VR0- VR1- VR2- VR3-

 VR0+ VR1+ VR2+ VR3+

XP8500116 s I/O Configurations

X
P

85
00

Step 8. Recalibrate the XP8500

To recalibrate an XP8500, apply two known test voltages to each channel,
chan, to be used. Get the converted reading for each test voltage and pass
the readings and the test voltages, to the function adc4_compute to
calculate the conversion coefficients, zero_offset and invgain, for
that channel. adc4_compute will automatically store the coefficients in
an adc4coeff structure (be sure to declare an adc4coeff structure for
each channel to be calibrated). Lastly, pass the new conversion coeffi-
cients to the function adc4_writecoeff to store them in the appropriate
locations in the XP8500�s EEPROM.

The sample program ADC4SMP3.C in the Dynamic C SAMPLES\PLCBUS
subdirectory shows how to calibrate the first four channels of an XP8500
board manually, assuming test voltages of 1.00 V and 9.00 V.

XP8500 Software Reference s 117

X
P

85
00

CHAPTER 12: SOFTWARE REFERENCE

Chapter 12 describes the Dynamic C functions used to initialize the
XP8500 expansion boards and to control the resulting analog-to-digital
conversions. The following major sections are included.

� Expansion Board Addresses

� XP8500 Software

� Advanced XP8500 Programming

XP8500118 s Software Reference

X
P

85
00

Expansion Board Addresses
Up to 16 XP8500s may be addressed individually over a single PLCBus.
Each XP8500 has a 12-bit address. The address is determined by the
encoding of PAL chip U9 on the board and by the jumper connections on
headers J4 and J5.

Four different PALs are available and the jumpers can be set four different
ways, giving 16 unique addresses in the form

0000 1100 pqxy

where the PAL determines pq while and the jumper connections on headers
J5 and J4 determine x and y, respectively. x and y are zero when their
corresponding jumpers are installed on the headers, and are one when the
jumpers are removed.

The address can be placed on the bus using 4-bit addressing. The func-
tions set12adr, read12data, and write12data (in DRIVERS.LIB) use
12-bit bus addresses.

When using these, and certain other functions, swap the first and third
nibbles of the address before passing the address to the function. For
example, if the address is 0x125, pass 0x521. The function
eioPlcADC4Addr in EZIOPBDV.LIB is available to do this swap.

� unsigned _eioPlcADC4Addr(char BrdAddr)

Swaps bit pattern from 0000 0000 pqxy to pqxy 1100 0000.

PARAMETERS: BrdAddr is the logical address (4*PAL# +
Jumper_number) with a bit pattern of 0000 pqxy, where pq is deter-
mined by the PAL, and xy is determined by the jumper setting.

XP8500 Software Reference s 119

X
P

85
00

Table 12-1. Dynamic C Libraries Required by Z-World Controllers

Library Controller

VDRIVER.LIB All controllers

EZIOCMMN.LIB All controllers

EZIOPBDV.LIB All controllers

EZIOTGPL.LIB BL1000

EZIOLGPL.LIB BL1100

EZIOMGPL.LIB BL1400, BL1500

EZIOPLC.LIB BL1200, BL1600, PK2100, PK2200, ZB4100

EZIOPLC2.LIB BL1700

PLC_EXP.LIB BL1200, BL1600, PK2100, PK2200

XP8500 Software
This section describes a set of simple software functions to use when
controlling the XP8100 Series expansion board inputs/outputs.

Dynamic C Libraries
Several Dynamic C function libraries need to be used with the routines
defined in this chapter. There are specific libraries designed for certain
controllers and there are three common libraries used by all Z-World
controllers. Table 12-1 identifies which libraries must be used with
particular Z-World controllers.

The Dynamic C library EZIOPLC.LIB replaces
PLC_EXP.LIB, and is planned to support most Z-World
controllers introduced in the future.

Before using one of these libraries in an application, first include the
library name in a #use command. For example, to use functions in the
library EZIOPLC.LIB, be sure there is a line at the beginning of the
program in the following format.

 #use ezioplc.lib

!

XP8500120 s Software Reference

X
P

85
00

Initialization Software
These Dynamic C functions are used to initialize the PLCBus. Call these
functions before using other expansion board functions.

� VdInit()

Initializes the timer mechanism.

LIBRARY: VDRIVER.LIB

� void eioResetPlcBus()

Resets all expansion boards connected to the PLCBus.

When using this function, initialize timers with VdInit() before
resetting the PLCBus. All PLCBus devices must reset before perform-
ing any subsequent operations.

LIBRARY: EZIOPLC.LIB

� void eioPlcRstWait()

Provides a delay long enough for the PLCBus to reset.

This function provides a delay of 1�2 seconds to ensure devices on the
PLCBus reset. This function should be called after resetting the
PLCBus.

LIBRARY: EZIOPBDV.LIB

� long int eioErrorCode

The global variable lso needs to be defined. eioErrorCode repre-
sents a global bit-mapped variable whose flags reflect error occur-
rences.

This register for this variable is initially set to 0. If the application tries
to access an invalid channel, the flag EIO_NODEV (the first bit flag) is
set in this register. The other bits in EIO_NODEV deal with networked
controllers.

XP8500 Software Reference s 121

X
P

85
00

XP8500 Drivers
Use the software drivers in this section to interface with the XP8500.

� int plcXP85Init(unsigned Addr)

Resets the selected XP8500 and reads back the associated calibration
coefficients into an internal array.

PARAMETER: Addr is the jumper-selected address of the board (0�
7).

RETURN VALUE: 0 if the reset is successful, -1 if the board cannot
be found.

LIBRARY: EZIOPBDV.LIB

� int plcXP85In(unsigned int address)

Reads an XP8500 A/D converter channel. Note that this function reads
back only the raw value�use plcXP85InC to read back a calibrated
value.

PARAMETER: address is 16*board_address +
channel_number. board_address ranges from 0�3, depending on
the address jumpers, and channel_number ranges from 0�10,
depending on the A/D channel number.

RETURN VALUE: whole number from 0 to 4095, �1 if the XP8500
board is not found. The global variable eioErrorCode is bit-ored
with EIO_NODEV if the board is not found.

LIBRARY: EZIOPBDV.LIB

� float plcXP85InC(unsigned int address)

Reads an XP8500 A/D converter channel and converts the value to a
calibrated value using the constants read by eioAdc4Init. Note that
eioAdc4Init must be called before plcXP85InC. Use plcXP85In
to read back a raw value.

PARAMETER: address is 16*board_address +
channel_number. board_address ranges from 0�3, depending on
the address jumpers, and channel_number ranges from 0�10,
depending on the A/D channel number.

RETURN VALUE: floating-point number that represents the cali-
brated value read by the A/D channel. The global variable
eioErrorCode is bit-ored with EIO_NODEV if the board is not found.

LIBRARY: EZIOPBDV.LIB

XP8500122 s Software Reference

X
P

85
00

� int eioAdcMakeCoeff(struct _eioAdcCalib *cnvrsn,
unsigned d1, unsigned d2, float f1, float f2)

Takes raw values and actual values of two data points, and computes the
calibration coefficients. The function assumes the data points are linear.

PARAMETERS: cnvrsn is a pointer to a calibration structure that
stores the coefficients.

d1 is the raw value for the first data point. d1 should be a whole
number from 0 to 4095.

d2 is the raw value for the second data point. d2 should be a whole
number from 0 to 4095.

f1 is the actual value for the first data point. f1 is a floating-point
number.

f2 is the actual value for the second data point. f2 is a floating-point
number.

RETURN VALUE: 0 if the operation is successful, �1 if the calibra-
tion coefficients cannot be computed.

LIBRARY: EZIOCMMN.LIB

� int plcXP85RdCalib(int Addr,
struct _eioAdcCalib *pCalib)

Reads the calibration structure of an A/D converter channel on an
XP8500.

PARAMETERS: Addr is 16*board_address +
channel_number. board_address ranges from 0�3, depending on
the address jumpers, and channel_number ranges from 0�10,
depending on the A/D channel number.

pCalib points to a calibration structure used to compute the actual
output for a given value.

RETURN VALUE: 0 if the operation is successful, otherwise a
negative number.

LIBRARY: EZIOPBDV.LIB

XP8500 Software Reference s 123

X
P

85
00

� int plcXP85WrCalib(int Addr,
struct _eioAdcCalib *pCalib)

Writes a calibration structure to the EEPROM storage corresponding to
a channel on the XP8500.

PARAMETERS: Addr is 16*board_address +
channel_number. board_address ranges from 0�3, depending on
the address jumpers, and channel_number ranges from 0�10,
depending on the A/D channel number.

pCalib points to a calibration structure, which should be initialized by
calling eioAdcMakeCoeff.

LIBRARY: EZIOPBDV.LIB

Other XP8500 Drivers
The following software drivers from the PLC_EXP.LIB library are still
supported by Z-World. Z-World recommends using the newer drivers
from the EZIOCMMN.LIB, EZIOPBDV.LIB, and EZIOPLC.LIB libraries.

� int adc4_init(unsigned int board_adr)

Determines if an XP8500 board is on the PLCBus. If the function call finds
the board, the A/D chip TLC2543 is initialized by enabling its chip-select line.
The chip-select line remains enabled until the board powers down.

PARAMETER: board_adr is the physical address of the XP8500
board, defined as 0000 1100 ppxy, where pp is the portion of the
board�s address set by a particular PAL and xy is the portion of the
board�s address set with jumpers.

RETURN VALUE: 1 if the specified XP8500 board is on the PLCBus;
0 if it cannot be found.

� int adc4_read(unsigned int board_adr, int chan)

Enables an analog-input channel, chan, and reads the A/D data
conversion for the specified channel.

PARAMETERS: board_adr is the physical address of the XP8500
board, defined as 0000 1100 ppxy.

chan ranges from 0 to 10, corresponding to the board�s 11 A/D
channels. In addition, passing channel numbers above 10 will access
the A/D chip�s internal nodes: passing chan = 11 will return (VREF+ �
VREF�)/2, passing chan = 12 will return VREF�, and passing chan =
13 will return VREF+. All data defaults to 12 bits unipolar mode, with
the most significant bit first. The nominal zero point is 4095 for
unipolar input and 2047 for bipolar input.

RETURN VALUE: whole number from 0 to 4095, �1 if the specified
XP8500 board cannot be found.

XP8500124 s Software Reference

X
P

85
00

� int adc4_set(unsigned int board_adr,
int chan)

Sets the A/D converter chip to the specified channel (chan).

PARAMETERS: board_adr is the physical address of the XP8500
board, defined as 0000 1100 ppxy.

chan ranges from 0 to 10, corresponding to the board�s 11 A/D
channels. Passing chan = 11 will return (VREF+ � VREF�)/2, passing
chan = 12 will return VREF�, passing chan = 13 will return VREF+,
and passing chan = 14 will put the board�s A/D chip, a TLC2543, into
software power-down mode. All data defaults to 12 bits unipolar mode
with MSB first. The returned data�s nominal zero point is 4095 for
unipolar conversion and 2047 for bipolar conversion.

RETURN VALUE: whole number from 0 to 4095 from the last A/D
conversion (caller should be aware of which A/D channel was set
previously); �1 if the specified XP8500 board cannot be found.

Because the A/D converter chip is hardwired to return a
converted value while accepting new settings, adc4_set
returns a value converted with the chip�s previous settings.
Therefore, subsequent calls to adc4_set using the same
arguments will return conversions using the new settings.

The key to understanding the difference between adc4_read
and adc4_set is the �pipelined� nature of the A/D converter.
By design, shifting a command into the A/D converter simulta-
neously shifts a reading out. However, the A/D converter
made this shifted-out reading according to the previous
command�s setup.

So to return a correct reading for a single function call, the
adc4_read command shifts a command into the A/D con-
verter, discards the resulting reading, and makes a second read
from the now properly set up A/D converter. The faster
adc4_set function simply returns the first reading. Succeed-
ing adc4_set calls will return proper readings with the same
arguments.

!

XP8500 Software Reference s 125

X
P

85
00

� int adc4_sample(unsigned int board_adr,
int chan, int count, int *buf,
unsigned int divider)

Samples data from an A/D chan at uniform intervals of time.

PARAMETERS: board_adr is the physical address of the XP8500
board, defined as 0000 1100 ppxy.

chan ranges from 0 to 10, corresponding to the board�s 11 A/D
channels. In addition, passing channel numbers above 10 will access
the A/D chip�s internal nodes: passing chan = 11 will return (VREF+
� VREF�)/2, passing chan = 12 will return VREF�, and passing chan
= 13 will return VREF+.

count specifies the number of samples to collect.

buf points to a buffer where the samples will be stored.

divider specifies the sample rate based on the formula

sample rate = sysclock/(20 * divider) , or

divider = sysclock * (sample period/20) .

All data default to 12 bits unipolar mode with MSB first. The mini-
mum value for divider depends on the clock speed, the number of
I/O wait states, and the number of memory wait states. The number of
states is approximately

12 * (131 + 4 * IOWait + 38 * Mwait) .

For example, a 9 MHz clock with 4 I/O wait states and 0 memory wait
states has a sample period of approximately 192 µs; for 1 memory wait
state, the sample period is approximately 240 µs. For a 6 MHz clock
with 4 I/O wait states and 0 memory wait states, the sample period is
approximately 290 µs; with 1 memory wait state the sample period
becomes approximately 357 µs.

RETURN VALUE: 0 if the data collection is successful, �1 if the
XP8500 board cannot be found, �2 if the sampling rate is too fast. The
function will not collect data if the sampling rate is set too fast.

This function turns off the interrupts for the duration of each
sampling period.!

XP8500126 s Software Reference

X
P

85
00

� float adc4_convert(int data, struct
adc4coeff *cnvrsn)

Converts A/D data read by adc4_read() or adc4_set () into
voltage equivalent. An adc4coeff structure pointed to by cnvrsn
stores the conversion constants for this function. The voltage is

voltage = cnvrsn->invgain *
(cnvrsn->zero_offset � data).

RETURN VALUE: voltage value of the A/D data.

� int adc4_readcoeff(unsigned int board_adr,
 int chan, struct adc4coeff *cnvrsn)

Reads the constants for converting A/D data to voltages.

PARAMETERS: board_adr is the physical address of the XP8500
board, defined as 0000 1100 ppxy.

chan ranges from 0 to 10, corresponding to the board�s 11 A/D
channels.

cnvrsn is a pointer to the adc4coeff structure that stores the constant
zero_offset and the data-to-voltage conversion constant invgain.
The structure stores the constants as 6 continuous bytes in reserved
spaces of the XP8500�s EEPROM.

RETURN VALUE: 0 if the constants are read successfully from the
EEPROM, �1 if the XP8500 board cannot be found, �2 if a problem
occurs while accessing the EEPROM.

� int adc4_writecoeff(unsigned int board_adr,
 int chan, struct adc4coeff *cnvrsn)

Stores the constants for converting A/D data to voltages.

PARAMETERS: board_adr is the physical address of the XP8500
board, defined as 0000 1100 ppxy.

chan ranges from 0 to 10, corresponding to the board�s 11 A/D
channels.

cnvrsn is a pointer to an adc4coeff structure that stores the constant
zero_offset and the data-to-voltage conversion constant invgain.
The structure stores the constants as 6 continuous bytes in reserved
spaces of the XP8500�s EEPROM.

RETURN VALUE: 0 if the constants are stored successfully in the
EEPROM, �1 if the XP8500 board cannot be found, -2 if a problem
occurs while accessing the EEPROM, �3 if the upper 256 bytes of the
EEPROM are write-protected.

XP8500 Software Reference s 127

X
P

85
00

� int adc4_compute(struct adc4coeff cnvrsn,
int data1, float volt1, int data2,
float volt2)

Computes the zero_offset and invgain for the adc4coeff
structure pointed to by cnvrsn. The function computes the constants
zero_offset and invgain based on A/D readings of two known
input voltages to allow input data to be corrected later using the
formula

voltage = invgain * (zero_offset � data) .

data1 is the raw A/D reading for the known input voltage volt1.

data2 is the raw A/D reading for the known input voltage volt2.

RETURN VALUE: 0 if the constants are computed successfully, �1 if
the data used resulted in divide by zero while computing the constants.

� int adc4_eerd(unsigned int board_adr,
int address)

Reads byte data from EEPROM data address.

board_adr is the physical address of the XP8500 board, defined as
0000 1100 ppxy. Addresses range from 0 to 511 for the 512 bytes of
EEPROM memory storage.

RETURN VALUE: non-negative value for data, �1 if the XP8500
board cannot be found, �2 if a problem occurs while accessing the
EEPROM.

� int adc4_eewr(unsigned int board_adr,
 int address, char data)

Writes byte data to EEPROM data address.

board_adr is the physical address of the XP8500 board, defined as
0000 1100 ppxy.

address is 0 to 511 for the 512 bytes of EEPROM memory storage.
The top 256 bytes can be write-protected using with jumpers on header
J3.

RETURN VALUE: 0 if the data is successfully written to the
EEPROM, �1 if the XP8500 board cannot be found, �2 if a problem
occurs while accessing the EEPROM, �3 if a write to the top 256 bytes
of EEPROM was attempted while the write-protect jumper is con-
nected.

XP8500128 s Software Reference

X
P

85
00

Correcting Readings
The structure adc4coeff that holds the constants for correcting readings
is defined as follows.

struct adc4coeff {
 int zero_offset;
 float invgain;
}

This structure must be declared in an application.

The following equation, which the function adc4_convert uses, adjusts
A/D data from any channel voltage to correct for gain and offset errors.

voltage = invgain * (zero_offset � A/D data).

The top sixty six bytes (addresses 446 to 511) of the XP8500 board�s
EEPROM are reserved to store the calibration constants for the board�s
eleven A/D channels (six bytes per channel).

The factory will calibrate Channels 0 to 3 based on the installed resistors
and store the constants in their appropriate locations in the EEPROM.

Channels 4 to 10 will come with nominal calibration constants of:

zero_offset = 0 and invgain = -0.0006105

stored in their respective locations in the EEPROM.

Sample Program
The sample program ADC4SMP1.C in PLC_EXP.LIB reads data from an
XP8500 board over the PLCBus. The program reads the first four
(conditioned) channels of the XP8500 board, then displays the data
showing both the raw A/D readings and their equivalent voltages.

The program converts the raw readings to voltages based on the calibration
constants stored in the EEPROM. The XP8500 board stores these calibra-
tion constants in the last 66 bytes (6 bytes/channel) of its EEPROM.

Use the following steps to run the sample program.

1. Compile the program by pressing F3 or by choosing Compile from the
COMPILE menu. Dynamic C compiles and downloads the program
into the controller�s memory. During compilation, Dynamic C rapidly
displays several messages in the compiling window, which is normal.

2. Run the program by pressing F9 or by choosing Run from the RUN
menu. It is also possible to single-step through the program with F7 or
F8.

3. To halt the program, press <CTRL-Z>.

4. To restart the program, press F9.

XP8500 Software Reference s 129

X
P

85
00

ADC4SMP1.C

#if (BOARD_TYPE == CPLC_BOARD) ||
(BOARD_TYPE==L_STAR)

#use cplc.lib // Program runs on PK2200
// and PK2100 controllers
// only.

#endif

main(){
struct adc4coeff adc4conv0; // Structs needed
struct adc4coeff adc4conv1; // only if you
struct adc4coeff adc4conv2; // use calibration
struct adc4coeff adc4conv3; // constants to

// convert raw A/D
// data to voltages.

int data0, data1, data2, data3;// Raw data.
unsigned int adc4_board; // Brd address.
int i;

#if (BOARD_TYPE == CPLC_BOARD) ||
(BOARD_TYPE==L_STAR)
uplc_init();

#endif
reset_pbus(); // reset the PLCBus
reset_pbus_wait();

if(sysclock() > 0x1e00)
reset_pbus_wait(); // wait double if the

// clock is faster than
// 9 MHz

// find the first available
// XP8500 board on the PLCBus

for(i=0;i<4;i++) {
if(adc4_init(0x0c0+i)) {

adc4_board = 0x0c0 + i;
break;

}
}
if(i >= 4) {

printf(“No XP8500 Board detected.\n”);
while(1) runwatch();

}
printf(“XP8500 board %x has been

detected.\n”, adc4_board);
printf(“Reading XP8500 board calibration

constants...\n”);
adc4_readcoeff(adc4_board, 0, &ADC4conv0);

// read cal for chan0
adc4_readcoeff(adc4_board, 1, &ADC4conv1);

// read cal for chan1

continued…

XP8500130 s Software Reference

X
P

85
00

Sample program ADC4SMP3.C also shows how to recalibrate
an XP8500 channel and how to store the new calibration
constants in the EEPROM.

Check the board jumpers, PLCBus connections, and the PC/
controller communications if an error message appears.

See the Dynamic C Technical Reference manual for more
detailed instructions.

!

!

$

adc4_readcoeff(adc4_board, 2, &ADC4conv2);
// read cal for chan2

adc4_readcoeff(adc4_board, 3, &ADC4conv3);
// read cal for chan3

printf(“Chan0 Calibration, zero_offset =
%d, invgain = %f\n”, ADC4conv0.zero_offset,
ADC4conv0.invgain);

printf(“Chan1 Calibration, zero_offset =
%d, invgain = %f\n”, ADC4conv1.zero_offset,
ADC4conv1.invgain);

printf(“Chan2 Calibration, zero_offset =
%d, invgain = %f\n”, ADC4conv2.zero_offset,
ADC4conv2.invgain);

printf(“Chan3 Calibration, zero_offset =
%d,invgain = %f\n”, ADC4conv3.zero_offset,
ADC4conv3.invgain);

printf(“Toggle F4 (DOS only) to make
keyboard input active as STDIO.\n”);

printf(“Hit any key to read A/D data from
XP8500 board.\n”);

for(;;) {
while(!kbhit()) runwatch(); // wait for

// key from the PC
getchar(); // get the key

data0 = adc4_read(adc4_board, 0);
// read A/D Channel 0

data1 = adc4_read(adc4_board, 1);
// read A/D channel 1

data2 = adc4_read(adc4_board, 2);
// read A/D channel 2

data3 = adc4_read(adc4_board, 3);
// read A/D channel 3

printf(“\nData for ADC4 channels 0-3 !!!\n”);
printf(“chan 0 >> %6d, %8.3f volts\n”,data0,

adc4_convert(data0, &ADC4conv0));
printf(“chan 1 >> %6d, %8.3f volts\n”, data1,

adc4_convert(data1, &ADC4conv1));
printf(“chan 2 >> %6d, %8.3f volts\n”, data2,

adc4_convert(data2, &ADC4conv2));
printf(“chan 3 >> %6d, %8.3f volts\n”, data3,

adc4_convert(data3, &ADC4conv3));
}

}

XP8500 Software Reference s 131

X
P

85
00

Advanced XP8500 Programming

PLCBus-Level Communication
Dynamic C functions perform the bus-level operations described here. A
program controls and communicates with an XP8500 though the PLCBus
interface register, a reserved memory location. This global register
occupies a single address on the PLCBus. After the program has selected a
particular XP8500 (by calling set12addr with the XP8500�s address as
an argument), the program may write data to the XP8500�s EEPROM or
A/D converter chip via BUSWR cycles to the bus interface register.
Similarly, the program can fetch EEPROM data or retrieve converted A/D
results via BUSRD0 cycles via the bus interface register. The bus interface
register allows the control program and a selected XP8500 to exchange
only one 4-bit nibble per cycle.

The EEPROM and the A/D converter are both serial I/O devices. Conse-
quently, the IC control lines can be set or cleared only one bit at a time,
and only one bit at a time may be read or written from/to the data lines.

During a BUSWR cycle, each 4-bit nibble transmitted via the bus interface
register through the PLCBus to an XP8500 board sets or resets a control
line according to Table 12-2.

Table 12-2. Effects of Nibbles Passed
Over PLCBus to XP8500

Nibble Function

0000 A/D Clock = 0

0001 A/D Clock = 1

0010 A/D Write Data = 0

0011 A/D Write Data = 1

0100 A/D Chip Select = 0

0101 A/D Chip Select = 1

0110 EEPROM SDA = 0

0111 EEPROM SDA = 1

1000 EEPROM SCL = 0

1001 EEPROM SCL = 1

1010 Not Used

1011 Not Used

1100 Not Used

1101 Not Used

1110 Not Used

1111 Not Used

XP8500132 s Software Reference

X
P

85
00

The control program must input a series of 4-bit nibbles to read a con-
verted value from a selected XP8500�s serial A/D converter chip or serial
EEPROM. Again, each nibble can carry only one bit of data or control
information. Each 4-bit nibble read back from an XP8500 during a
BUSRD0 cycle has the following format.

Bit 3: ENDC�A/D end of conversion
1 = conversion cycle is not in process; OK to send/receive data
0 = conversion cycle is in process; do not send or receive data

Bit 2: SDA�EEPROM serial data out

Bit 1: DOUT�A/D serial data out

Bit 0: Board present
0 = selected board actually present
1 = selected board not found.

The standard Dynamic C library functions for the XP8500 will probably
suffice for all applications. Refer to the manufacturer�s data sheets for the
24C04 EEPROM and the TLC2543 A/D converter if there is a need to
write other routines using the BUSWR and BUSRD cycles.

X
P

88
00

XP8800

X
P

88
00

XP8800 Overview s 135

X
P

88
00

CHAPTER 13: OVERVIEW

Chapter 13 provides an overview and description of the XP8800 motion
control expansion boards.

XP8800136 s Overview

X
P

88
00

XP8800 Overview
Z-World�s XP8800 expansion board may be attached to a Z-World
controller with a PLCBus port. The XP8800 does not have the software
drivers to enable it to be used with other Z-World controllers.

The XP8800 controls a single axis of motion. Multiple XP8800s may be
connected to provide up to four axes of control. The benefit of the
XP8800 is that it can handle motor control operations, leaving the master
controller free to perform other tasks.

The onboard motor driver IC (UCN5804) is capable of driving 1 A per
phase and motor voltages up to 35 V. The driver automatically generates
the sequencing for 1-phase, 2-phase, and half-step operations. The
XP8800 includes a 16-bit quadrature decoder/counter (HCTL-2016) that
can count at speeds up to 3 MHz.

An XP8810 version of the XP8800 expansion board is available. The
XP8810 offers optical isolation for the quadrature and sense inputs.

Note that there is a common ground for the board and the
inputs. Therefore the optical isolation is not absolute.

Like other Z-World expansion boards, the XP8800 can be installed in
modular plastic circuit board holders attached to a DIN rail. The XP8800
can also be mounted, with plastic standoffs, on any surface that will accept
screws.

Features
� Continuous (manual), preset (counted), or origin-seeking modes of

operation.

� Switching between high-speed and low-speed operation, with or
without acceleration and deceleration.

� �Bidirectional� pulse output modes.

� Sensing of origin, end-limit, and slowdown signals.

� Interrupt generation.

� 13-bit (8,191) step rate resolution, 18-bit (256K) counter.

� User-definable output speed range up to 16 kHz.

� Single-phase, dual-phase, and half-step modes.

� 16-bit quadrature decoder/counter.

� Watchdog reset.

� Optional optical isolation for quadrature and sense inputs.

!

XP8800 Overview s 137

X
P

88
00

Specifications
Table 13-1 summarizes the specifications for the XP8800 expansion board.

Figure 13-1 shows the dimensions of the XP8800 Series expansion boards.

Figure 13-1. XP8800 Board Dimensions

Table 13-1. XP8800 Series Specifications

Parameter Specification

Board Size
2.835" × 4.0" × 0.58"
(72 mm × 102 mm × 15 mm)

Operating Temperature Range -40°C to +70°C

Humidity 5% to 95%, noncondensing

Power (quiescent, no output) 40 mA @ 5 V DC

Output One-axis stepper motor control rated at 35 V

• 1.25 A per phase in full-step mode

• 1.0 A per phase in half-step mode

0.187 dia, 4x
(4.7)

2.
83

5
(7

2)

4.0
(102)

~
0.

45
(1

2)

~
0.

58
(1

5)

0.1625
(4.1)

0.
14

25
(3

.6
)

XP8800138 s Overview

X
P

88
00

XP8800 Getting Started s 139

X
P

88
00

CHAPTER 14: GETTING STARTED

Chapter 14 provides instructions for connecting XP8800 expansion boards
to a Z-World controller. The following sections are included.

� XP8800 Series Components

� Connecting Expansion Boards to a Z-World Controller

� Setting Expansion Board Addresses

XP8800140 s Getting Started

X
P

88
00

XP8800 Components
The XP8800 stepper motor control expansion board controls a single axis
of motion. Figure 14-1 shows the basic layout and orientation of compo-
nents, headers, and connectors.

Figure 14-1. XP8800 Board Layout

H1
X1

P
A

L

U2 U3 U4 U5 U6

RN1

RN2

J1

H2

H4

H3
H5

D1 D2
R1

R2
R3

RN3

RN4

D3 D4 D5 D6

U9

H6

U1

(U7)

U8

Motor
Driver

P
A

L

C
on

tr
ol

 R
eg

.

Screw Terminals

Quadrature Decoder & Counter

P
C

L-
A

K

XP8800 Getting Started s 141

X
P

88
00

Connecting Expansion Boards to a Z-World
Controller
Use the 26-conductor ribbon cable supplied with an expansion board to
connect the expansion board to the PLCBus on a Z-World controller. See
Figure 14-2. The expansion board�s two 26-pin PLCBus connectors, P1
and P2, are used with the ribbon cable. Z-World recommends using the
cable supplied to avoid any connection problems.

Figure 14-2. Connecting XP8800 Expansion Board to Controller PLCBus

Be sure power to the controller is disconnected before adding
any expansion board to the PLCBus.

Follow these steps to connect an expansion board to a Z-World controller.

1. Attach the 26-pin ribbon cable to the expansion board�s P2 or H2
PLCBus header.

2. Connect the other end of the ribbon cable to the PLCBus port of the
controller.

Be sure pin 1 of the connector cable matches up with pin 1 of
both the controller and the expansion board(s).

3. If additional expansion boards are to be added, connect header P2/H2
on the new board to header P1/H1 of the board that is already con-
nected. Lay the expansion boards side by side with headers P1/H1 and
P2/H2 on adjacent boards close together, and make sure that all
expansion boards are facing right side up.

See Appendix C, �Connecting and Mounting Multiple Boards,�
for more information on connecting multiple expansion boards.

 Controller
PLCBus Port

Controller With PLCBus

X1

H6

H1
J1

H3 H5
H4

XP8800

H2

1

Pin 1

$

XP8800142 s Getting Started

X
P

88
00

4. Each expansion board comes with a factory-default board address. If
more than one expansion board of each type is to be used, be sure to set
a unique address for each board.

The following section on �Setting Expansion Board Ad-
dresses,� and Chapter 8, �Software Reference,� provide details
on how to set and use expansion board addresses.

5. Power may be applied to the controller once the controller and the
expansion boards are properly connected using the PLCBus ribbon
cable.

Setting Expansion Board Addresses
Z-World has established an addressing scheme for the PLCBus on its
controllers to allow multiple expansion boards to be connected to a
controller.

Remember that each expansion board must have a unique
PLCBus address if multiple boards are to be connected. If two
boards have the same address, communication problems will
occur that may go undetected by the controller.

XP8800 Addresses
XP8800 expansion boards are shipped from the factory with no pins on
header H4 connected. An XP8800 expansion board may be assigned any
one of 16 addresses using jumpers on the pins of header H4. The LED at
D2 lights up whenever the XP8800 is addressed on the PLCBus.

See Chapter 16, �Software Reference,� for further details on
how to determine the physical address for XP8800 expansion
boards.

Power
Z-World�s expansion boards receive power from the controller over the
+24 V and VCC lines of the PLCBus. The XP8800 expansion boards use
VCC, which is +5 V. The XP8800 draws from 40 mA (quiescent) to a
maximum of 105 mA.

$

$

!

XP8800 I/O Configurations s 143

X
P

88
00

CHAPTER 15: I/O CONFIGURATIONS

Chapter 15 describes the built-in flexibility of the XP8800 expansion
boards, and describes how to configure the available inputs/outputs. The
following sections are included.

� XP8800 Series Pin Assignments

� Using Expansion Boards

XP8800144 s I/O Configurations

X
P

88
00

XP8800 Pin Assignments
External connections are made to the XP8800 expansion board using H5, a
14-pin header, and H6, a 16-screw terminal block. Figure 15-1 shows the
pin assignments.

Figure 15-1. XP8800 Output Header H5 and Terminal Block H6

Header H5 Signals
H5 provides connection points for motor control signals, power and
ground, power failure, and watchdog signals. The motor control signals
are usually used with an amplifier to drive the motor.

/DRVOE�A low signal enables output from the TTL motor driver IC.

GND�is the PLCBus ground, common to the entire system.

Connect the motor power supply ground only to GND on the
screw terminal block (H6).

HSTEP�Together with the WAVE signal, HSTEP determines the opera-
tion of the TTL motor driver IC: single-phase, two-phase, or half-step.

PDIR�This signal indicates in which direction the TTL motor driver IC is
to move. A high level means movement in the + direction. A low level
means movement in the � direction.

PFI�is an analog signal input to the power-fail comparator. The /PFO
line becomes active when PFI drops below 1.25 V (±0.05 V).

!

PHA

PHB

PHC

PHD AIN

BIN

/ORG

/EL+

/EL�

/SD+

/SD�

K GNDGND

Motor Drive Quadrature Sense Input Power

+24 V+5 V

H6

GND

10

12

34

56

78

9

/PULSE

PDIR

14

12 11

13

/DRVOE

HSTEP

WAVE

GND

/WDO

/PFO

PFI

+5 V

+24 V

Header H5

XP8800 I/O Configurations s 145

X
P

88
00

/PFO�is the open-collector power-failure indicator. /PFO goes low when
PFI goes below 1.25 V (±0.05 V). /PFO can be connected to the NMI or
interrupt line on the master controller.

/PULSE �A low pulse on this line signals a one-step move to the TTL
motor driver IC.

WAVE�Together with the HSTEP signal, WAVE determines the operation
of the TTL motor driver IC: single-phase, two-phase, or half-step.

/WDO�This is the active low, open-collector watchdog output line.
When the watchdog is enabled, this line will go low�upon a watchdog
timeout�to generate a hard reset at the PCL-AK pulse generator.

+5 V�is the regulated PLCBus +5 V digital power supply. This supply
should not be used for motor power, but can be used to power external
logic.

+24 V�is the unregulated PLCBus +24 V supply. Though nominally
24 V, this can be anywhere from 9 V to 30 V DC. This supply may be used
to drive the motor if the controller�s power supply can handle the current
requirements.

Screw Terminal Block H6 Signals
PHA, PHB, PHC, PHD�are the open-collector motor control outputs.
They connect to the motor phase lines, and can sink up to 1 A, depending
on the ambient temperature.

AIN, BIN�are the TTL-compatible quadrature-encoded input signals.

/ORG�is the active-low origin pulse input. /ORG goes directly to the
PCL-AK pulse generator, thereby allowing the PCL-AK to generate pulses
until it receives an origin signal. /ORG is readable in the PCL-AK
(address 0) status bits.

/EL+, /EL� �are the active-low end-limit inputs, one for the + direction,
the other for the � direction. These signals go directly to PCL-AK pulse
generator, where they are typically used to indicate end-of-travel, usually
to stop pulse generation. These signals are readable in the PCL-AK
(address 0) status bits.

/SD+, /SD� �are the active-low �slowdown� inputs, one for the +
direction, the other for the � direction. These signals go directly to
PCL-AK pulse generator, where they are typically used to force the
PCL-AK to decelerate to its slower speed. These signals are readable in
the PCL-AK (address 3) status bits.

XP8800146 s I/O Configurations

X
P

88
00

K�is protection for the driver chip. K is connected to the motor control
voltage source through protective diodes.

Be sure to connect K to the motor�s voltage source. Damage
can occur or performance can degrade if this connection is not
made.

+5 V�is the regulated PLCBus +5 V digital power supply. This supply
should not be used for motor power, but can be used to power external
logic.

+24 V�is the unregulated PLCBus +24 V supply. Though nominally 24
V, this can be anywhere from 9 V to 30 V DC. This supply may be used to
drive the motor if the controller�s power supply can handle the current
requirements.

GND�is the PLCBus ground, common to the entire system. The motor�s
power supply ground should be connected here only. There are two GND
connections on H6.

Sample XP8800 Connections
Figure 15-2 shows an example of a stepper motor connected to an XP8800
expansion board.

Figure 15-2. Sample Stepper Motor Connection to XP8800

Motor
Power
Supply

XP8800

G
N

D

P
F

I

K

+

/E
L�

/S
D

�
/S

D
+

/E
L+

A
IN

B
IN

G
N

D

Z-World
Controller

/P
F

O

/I
N

T
0

/O
R

G

Mechanical
Switches and
Optical sensors

PLCBus

Moving

Platform

Stepper Motor

Gears
Quadrature
Encoder

P
H

A
P

H
B

P
H

C
P

H
D

+5
 V

XP8800 I/O Configurations s 147

X
P

88
00

Optional Optical Isolation
The quadrature and sense inputs (AIN, BIN, /ORG, /EL+, /EL-, /SD+, and
/SD-) may be optically isolated, as shown in Figure 15-3. The XP8810
version of the XP8800 expansion board features this optical isolation.

Figure 15-3. XP8810 Optical Isolation Circuit

Note that there is a common ground for the board and the
inputs so that the optical isolation is not absolute.

6 51

2 4

4N26

+5 V
470 Ω

IN

OUT

!

XP8800148 s I/O Configurations

X
P

88
00

Using Expansion Boards
The following steps summarize how to use the XP8800 boards.

1. Send a reset command to the PLCBus.

2. Place the address of the XP8800 registers on the PLCBus. The address
will actually be the address of one of the components, the PCL-AK
pulse generator, or the quadrature decoder/counter.

3. Operate the XP8800. The following operations are the ones done most
frequently.

� Set XP8800 control register.

� Issue command to PCL-AK pulse generator.

� Set PCL-AK parameters or read PCL-AK registers or status.

� Reset the quadrature counter or read its value.

� Wait for interrupt requests.

4. Once the XP8800 operation is done, issue a soft reset to the PCL-AK
pulse generator.

The Dynamic C STEP.LIB library handles the details of operating the
XP8800.

Resetting XP8800 Expansion Boards
There are many ways to reset the XP8800 and its components.

1. Power-Up Reset

On power-up, both the PCL-AK pulse generator chip and the quadrature
decoder/counter undergo a hardware reset.

The control register powers up to an unknown state, making it necessary
for the application to initialize the control register before using anything
else on the board. (Use the function sm_find_boards to do this.)

2. PLCBus Reset

A PLCBus reset command strobes both the PCL-AK and quadrature
decoder/counter reset lines, forcing hardware resets for both. The control
register and motor driver IC are not affected by a PLCBus reset.

3. Watchdog Reset

The watchdog timer is a safety feature that halts the PCL-AK (and there-
fore motion) in the event of a system crash. When the watchdog is turned
on, the application must �hit� the watchdog at least every 1.5 seconds. The
watchdog is �hit� every time the application reads the quadrature counter
(the actual chip need not be present), writes the control register, or calls the
function sm_hitwd. The quadrature counter is not reset in the event of a
watchdog timeout.

XP8800 I/O Configurations s 149

X
P

88
00

Once reset this way, the PCL-AK pulse generator chip will stay reset until
the application hits the watchdog again. Connecting the jumper on header
J1 enables the watchdog. The watchdog is disabled if this jumper is not
connected.

4. PCL-AK Reset

In addition to the watchdog reset and the power-up reset, there are two
other ways to reset the PCL-AK pulse generator:

To achieve a hardware reset, drive the PCL-AK reset line low. This line is
connected to the control register (bit 1). A hardware reset halts all activity
of the controller and resets all internal counters and registers. The function
smc_hardreset will pulse this line and generate the reset.

To achieve a software reset, write a reset command to the controller. A
software reset immediately stops pulse generation and deactivates the
PCL-AK�s interrupt request line if it is active. The contents of PCL-AK
registers are not affected. A software reset is typically used at the end of a
programmed operation that generates an interrupt when it finishes. The
function smc_softreset is used to generate a software reset.

5. Quadrature Counter Reset

The quadrature counter is reset to zero on power-up. Use the function
smq_hardreset at any time to reset the quadrature counter.

XP8800150 s I/O Configurations

X
P

88
00

XP8800 Operation
The XP8800 has these three major components.

1. PCL-AK pulse generator.

2. UCN5804 motor driver.

3. HCTL-2016 quadrature decoder/counter.

These components are coupled with a control register (U3) and control
logic (U2, U4), as shown in Figure 15-4. One or more of these compo-
nents may be left unused. For example, the XP8800 can be used solely as
a quadrature counter by ignoring the PCL-AK and the motor driver ICs.
The XP8800 can even be used as a timer by ignoring or disabling its

outputs.

Figure 15-4. XP8800 Block Diagram

PCL-AK Pulse Generator
The PCL-AK pulse generator at the heart of the XP8800 controls the
motor driver IC. The bidirectional /PULSE output signal steps a motor. If
PDIR is 1, the move is in the + direction, 0 means the move is in the �
direction. The PCL-AK can generate thousands of different pulse rates.

The PCL-AK can sense external signals such as �slow down,� �end limit,�
and �origin,� and can accelerate and decelerate the motor driver IC
between high-speed and low-speed settings. The PCL-AK is able to
generate interrupt requests in response to certain conditions such as the end
of the operation. The PCL-AK chip can signal the stepper motor to stop
immediately or decelerate to a stop.

Quadrature
Decoder/Counter

B

Control
(U2, U3, U4)

Watchdog

A
ORG SD� EL�

SD+ EL+

PCL-AK
Pulse Generator

interrupt request

data

Motor
Driver

A

Phase
Output

B
C
D

Expansion
Header

Pulse & Dir

Reset

data
8

8

Reset

8

control
byte

from external
quadrature encoder

2

2

mode:
1 phase
2 phase
half-step

from external sensors

SD: �slow down�
EL: �end limit�
ORG: origin
+ Positive direction
� Negative direction

P
LC

B
us

XP8800 I/O Configurations s 151

X
P

88
00

The PCL-AK has the following three basic modes of operation.

1. Continuous Mode�The PCL-AK continues to generate pulses
until instructed to stop or an external signal arrives.

2. Preset Mode�The PCL-AK generates pulses until its preset
counter decrements to 0 or an external signal arrives.

3. Origin Mode�The PCL-AK generates pulses until an �origin�
pulse arrives.

4. Stop Mode�The PCL-AK either generates pulses for the stepper
motor chip to bring the stepper motor to an immediate stop or it
generates pulses leading to a deceleration to a stop.

Figure 15-5 shows a block diagram of the PCL-AK.

Figure 15-5. Block Diagram of PCL-AK Pulse Generator Chip

Communicating with the PCL-AK
The PCL-AK is controlled by writing to its command buffer and by writing
values to its control registers. The chip can be monitored to find out what
it is doing by reading the status register or a control register. Only the
counter and ramp-down point registers are readable.

The internal registers of the PCL-AK can be reset by pulsing the /RESET
line. A software reset does not reset the internal registers.

command &
data in

status and data
out

address

clock

PDIR8

2

FL
FH

CTR
RD

MUL
ADR

Control
Registers

PCL-AK

/PULSE

/ORG

/EL�

/EL+
/SD�

/SD+

/INT

/WR

/RD

/CS

/RESET

XP8800152 s I/O Configurations

X
P

88
00

Table 15-1. PCL-AK Commands

PCL-AK Signals

/CS A1 A0 /RD /WR
Meaning

0 0 0 1 0 Write command buffer.

0 0 1 1 0 Write register bits 0–7.

0 1 0 1 0 Write bits 8–15.

0 1 1 1 0 Write register bits 16–17 (counter).

0 0 0 0 1 Read status.

0 0 1 0 1 Read register bits 0–7.

0 1 0 0 1 Read register bits 8–15.

0 1 1 0 1
Read register bits 16–17 (counter)
with assorted status bits.

1 × × × × D0–D7 at high impedance.

0 × × 0 0 Inhibit.

Table 15-2. PCL-AK Registers

Register Bits Description

 CTR 18 Down counter, gives the number of pulses to generate
for Preset Mode. This register is readable. When read,
it gives the number of remaining pulses.

 FL 13 Low frequency from which to accelerate or decelerate.

 FH 13 High frequency from which to decelerate or accelerate.

 ADR 10 Acceleration/deceleration rate.

 RD 16 Ramp-down point. When the PCL-AK is generating
pulses in the Preset Mode, the ramp-down point is the
point (number of pulses before end-of-count) at which
the PCL-AK will start ramping down (decelerating)
from high speed to low speed. This register is readable.

 MUL 10 Multiplier register, interacts with FL and FH to give
various pulse rates.

Table 15-1 provides the meanings for commands used with the PCL-AK.

Registers
Table 15-2 lists the PCL-AK registers.

XP8800 I/O Configurations s 153

X
P

88
00

Acceleration/Deceleration Rate (ADR) Register

The ADR register�with settings from 2 to 1023�governs the ramping-up
(acceleration) and ramping-down (deceleration) characteristics. When
started in a high-speed mode, the PCL-AK pulse generator starts with the
speed set in the FL register and accelerates to reach the speed set in the FH
register.

The Z-World reference clock frequency is 6 MHz. Thus, a clock period is
1/6 µs. The time it takes to accelerate or decelerate is

T
RAMP

 = (FH � FL) × (rate in ADR)/6 µs.

The relationship between acceleration and the rate in ADR is

 pulses/s2.

The stepper motor might not operate if the ADR rate is too small because
the acceleration will then be too fast.

The relationship between the value of a speed register (FL or FH varies
from 1 to 8191) and the actual output frequency of PCK-AL is

pulses/s.

pulses/s.

The term MUL is the value
of the multiplier register,
and can be from 2 to 1023.
With Z-World�s 6 MHz ref-
erence clock, MUL = 732
(732.421875 rounded off).

Referring to Figure 15-6, the
number of pulses output dur-
ing T

DEC
 is represented by

the area of the shaded trap-
ezoid.

ADRin rate

CLOCK
onaccelerati =

MUL

CLOCK

8192

FH
HIGH ×=ν

MUL

CLOCK

8192

FL
LOW ×=ν

()

()
pulses.

MUL384,16

ADRFLFH

pulses
2

T
pulsesofNumber

22

DECLOWHIGH

×
×−=

×+
=

νν

ramp-down point

TDEC

Time

F
re

q
u

en
cy νHIGH

νLOW

Figure 15-6. Calculating the Number of Pulses

XP8800154 s I/O Configurations

X
P

88
00

Status Bits
Status bits are available at PCL-AK address 0 and 3. The status bits for
address 0 are explained below.

D7 D6 D5 D4 D3 D2 D1 D0

D0 1�/EL� (end limit) signal

D1 1�/EL+ signal

D2 1�/ORG (origin) signal

D3 1�counter output = 0

D4 1�ramp-down point register (RD) selected
0�other register selected

D5 1�frequency stabilized after ramp down or ramp up

D6 1�operation in progress

D7 0�/INT (interrupt request) active

Bits 0 and 1 of the address 3 status depend on whether the RD (ramp-down
point) register was selected prior to reading the status. The status bits for
address 3 are explained below.

D0 If RD register is selected

0�stop interrupt signal is being output
else�bit 16 of counter is output

D1 If RD register is selected

0�ramp-down point interrupt signal is being output
else�bit 17 of counter is output

D2 1�/SD� (slow down) signal

D3 1�/SD+ signal

D4 1�Ramp up in progress

D5 1�Ramp down in progress

D6 1�counter < ramp-down point

D7 0�/PULSE signal is not active
1�/PULSE signal is active

See Z-World Technical Note 101, Operating the PLC-AK
High-Speed Pulse Generator, for more information on the
PCL-AK chip.

$

XP8800 I/O Configurations s 155

X
P

88
00

UCN5804 Motor Driver IC
The motor driver chip (UCN5804) receives two pulse signals from the
PCL-AK pulse generator. One signal, /PULSE, steps the motor. The other
signal, PDIR, specifies the motor rotation (high = forward, low = reverse).

The driver receives two mode signals from the control register. Their
meanings are summarized in Table 15-3. The 0s in the table indicate that
the driver line is ON, that is, it is sinking current.

The motor driver chip generates phase signals A, B, C, and D to produce
these modes according to the chart in Figure 15-7. The top line of each
sequence indicates the state of the driver at power-up.

Figure 15-7. Illustration of Phase Signals A, B, C, and D
Produced by Motor Driver Chip

Table 15-3. Motor Driver Chip Modes

Bit 7 Bit 6 Mode

0 0 Two phase

0 1 Half-step

1 0 Single phase

1 1 Undefined–Do not use

Single Phase Two Phase Half-Step

0 0 01 1 11 1 11 0 1
01 1 1

0 11 1
01 1 1

0 1 10
0 11 0

01 1 0

0 0 1 1
1 0 1 1
1 0 0 1
1 1 0 1
1 1 0 0
1 1 1 0
0 1 1 0

A A AB B BC C CD D D

F
or

w
ar

d

R
ev

er
se

XP8800156 s I/O Configurations

X
P

88
00

Figure 15-8 shows how the phase lines are connected to the motor�s
windings.

Figure 15-8. Connection of Phase Lines to Motor

Driver Power
To select a voltage for the motor driver chip, be sure to consider the vari-
ous losses in the drive circuit, including the collector/emitter voltage and
the voltage of the blocking diode. Figure 15-9 illustrates these voltages.

Figure 15-9. Voltage Drops Associated with UCN5804 Motor Driver Chip

D

C

B

A

VD

Motor
Driver

D6

D4

D5

D3

VM Motor-specific voltage

VCE Collector-emitter voltage

VD Drive voltage

VF Diode forward voltage, typically 0.7 V

UCN5804

XP8800 I/O Configurations s 157

X
P

88
00

Table 15-4 lists typical ratings for the UCN5804 motor driver chip.

For example, consider a 5 V, 1 A motor.

You would need a 6.8 V, 2 A power supply (for 2-phase drive) in addition
to the power required by the logic.

Remember to connect the K line on the screw connector block
(H6) to the high side of the drive voltage.

Quadrature Decoder/Counter
The HCTL-2016 is a 16-bit quadrature decoder and counter. Its two lines,
A and B, accept two quadrature encoded signals, that is, two square waves
90° out of phase. The order in which these signals make transitions deter-
mines the direction that is counted. Figure 15-10 illustrates this counting
operation.

Figure 15-10. HCTL-2016 Quadrature Counting Operation

Table 15-4. Typical Ratings UCN5804
Motor Driver IC

ID VCE

0.7 A 1.0 V

1.0 A 1.1 V

1.25 A 1.2 V

V6.8

V0.7V1.1V5

VVVV FCEMD

=
++=
++=

!

A

Forward Quadrature (Counting Up)

B

A

Reverse Quadrature (Counting Down)

B

Time

XP8800158 s I/O Configurations

X
P

88
00

There are four states of lines A and B, as shown in Figure 15-11. The
counter counts up or down, depending on the state transition.

Figure 15-11. HCTL-2016 Quadrature Counting Operation

The speed at which the counter can operate is limited by the reference
clock (12 MHz). The counter can operate at up to one quarter of this
frequency. Thus, the maximum reliable counting frequency is 3 MHz.

The counter can be read as two successive bytes.

Control Register
The control register is an 8-bit write-only latch that controls the operation
of the XP8800. Table 15-5 explains the meaning of each bit in the register
(bit 0 is the least significant bit).

1 1 2

0 1 3

0 0 4

101

CH A CH B STATE

1

4 2

3

Valid
State

Transitions

COUNT UP

COUNT DOW N

Table 15-5. Control Register Bits

Bit Name Meaning

0 RESCNT Reset quadrature decoder/counter. Low means reset.

1 RESCTL Reset the PCL-AK. Low means reset.

2 LED LED. Low means ON.

3 SEL0 Local address line.

4 SEL1 Local address line.

5 DRVOE Enable motor driver IC output. Low means ON.

6 HSTEP Half-step mode for motor driver IC when this bit is 1 and
bit 7 is 0.

7 WAVE • Single-phase mode for motor driver IC when this bit is 1
and bit 6 is 0.

• Two-phase mode when this bit is 0 and bit 6 is 0.

XP8800 I/O Configurations s 159

X
P

88
00

The select lines SEL0 and SEL1 have a specific meaning. They are
connected to the two address lines of the PCL-AK pulse generator. SEL0
is also connected to the quadrature decoder/counter. Coupled with PAL
logic, these select lines allow you to read and write to the PCL-AK and to
read the 16-bit counter value. (The function library STEP.LIB takes care
of the details.)

PLCBus Interrupts
Be careful when processing interrupts from the PLCBus. Interrupts can
come from any source, including other expansion boards. A PLCBus
interrupt service routine must determine where the interrupt originated and
what to do.

XP8800160 s I/O Configurations

X
P

88
00

XP8800 Software Reference s 161

X
P

88
00

CHAPTER 16: SOFTWARE REFERENCE

Chapter 16 describes the Dynamic C functions used to initialize the
XP8800 Series expansion boards and to control the resulting outputs. The
following major sections are included.

� XP8800 Board Addresses

� Dynamic C Libraries

� XP8800 Software

XP8800162 s Software Reference

X
P

88
00

XP8800 Board Addresses
Up to 16 XP8800 addresses are possible on the PLCBus. Power con-
straints usually limit the number of XP8800 expansion boards to four,
allowing four axes of control.

Each XP8800 has three addressable components: the PCL-AK pulse
generator, the quadrature decoder/counter, and the control register. The
address of a particular XP8800 is determined by jumpers on header H4 as
shown here.

abcd1100 x0000Rxx

where

a = 0 if H4 pins 1�2 are connected, and 1 if not
b = 0 if H4 pins 3�4 are connected, and 1 if not
c = 0 if H4 pins 5�6 are connected, and 1 if not
d = 0 if H4 pins 7�8 are connected, and 1 if not
x = does not matter
R = 0 to read or write PCL-AK pulse generator
R = 1 to read the quadrature counter
R = 1 to write the control register

The address is placed on the PLCBus as 2 bytes using two bus cycles,
BUSADR0 and BUSADR1. The lower four bits of the first byte (1100)
identify the address as being 8×2 format.

The address is placed on the bus using the functions set82adr and
set81adr.

The LED (D2) will light up on the XP8800 that matches the address the
software placed on the PLCBus.

Examples
1. Write the control register on the XP8800 whose address jumpers are 3

(abcd = 0011).

out0 (BUSADR0), 3Ch ; 00111100 1st addr byte
out0 (BUSADR1), 04h ; 00000100 2nd addr byte
Set shadow variable = control register value, then...
out0 (BUSWR), �shadow� ; control bits

XP8800 Software Reference s 163

X
P

88
00

2. Write a command to the PCL-AK on the XP8800 whose address
jumpers are 8 (abcd = 1000).

;first, make select lines 00
out0 (BUSADR0), 8Ch ; 10001100 1st addr byte
out0 (BUSADR1), 04h ; 00000100 2nd addr byte
Set shadow variable = AND(shadow variable,

0xE7), then ...
out0 (BUSWR), �shadow� ; control bits

;now address the PCL-AK and send command
out0 (BUSADR1), 00h ; 00000000 2nd addr byte
out0 (BUSWR), �command� ; command

3. Read the 16-bit quadrature counter on the XP8800 whose address
jumpers are 13 (abcd = 1101).

;first, make select lines 00 to get high byte
out0 (BUSADR0), DCh ; 11011100 1st addr byte
out0 (BUSADR1), 04h ; 00000100 2nd addr byte
Set shadow variable = AND(shadow variable,

0xE7), then ...
out0 (BUSWR), �shadow� ; control bits
in0 �high�, (BUSRD0) ; get high byte

;next, make select lines 01 to get low byte
Set shadow variable = OR(shadow variable,

0x08), then ...
out0 (BUSWR), �shadow� ; control bits
in0 �low�, (BUSRD0) ; get low byte

Return counter value = high << 8 + low

In general there is no need to program the XP8800 at these low levels.
Software in the Dynamic C STEP.LIB library takes care of these details.

Logical Addresses
Software in the Dynamic C STEP.LIB library keeps information for all
XP8800s on the PLCBus in a table, sorted by XP8800 address. Thus,
XP8800s have �logical addresses� that are simply indexes in the table.

For example, suppose there are three XP8800s on the PLCBus with
addresses of 3 (0011), 8 (1000), and 13 (1101). Table 8-1 shows the table
used by the software.

The logical addresses for these 3 boards would be 0, 1, and 2. The
physical addresses are stored in the table. The function sm_find_boards
sets up this table.

XP8800164 s Software Reference

X
P

88
00

Table 16-1. Example of STEP.LIB
Table for XP8800 Logical Addresses

Index Address

0 0011

1 1000

2 1101

marker —

Dynamic C Libraries
Several Dynamic C function libraries contain the software functions
described in this chapter. The chart in Table 8-2 identifies which libraries
must be used with particular Z-World controllers.

Before using one of these libraries in an application, first include the
library name in a #use command. For example, to use functions in the
library PLC_EXP.LIB, be sure there is a line at the beginning of the
program in the following format.

 #use PLC_EXP.LIB

Table 16-2. Dynamic C Libraries Required by Z-World Controllers
for XP8800 Expansion Boards

Library Needed Controller

DRIVERS.LIB BL1200, BL1600, PK2100, PK2200

EZIOCMMN.LIB BL1200, BL1600, PK2100, PK2200

EZIOPBDV.LIB BL1200, BL1600, PK2100, PK2200

EZIOPLC.LIB BL1200, BL1600, PK2100, PK2200

EZIOPLC2.LIB BL1700

EZIOBL17.LIB BL1700

PLC_EXP.LIB BL1200, BL1600, PK2100, PK2200

XP8800 Software Reference s 165

X
P

88
00

XP8800 Software
The sample programs SM_DEMO1.C, SM_DEMO2.C, and SM_DEMO3.C in
the Dynamic C SAMPLES\PLCBUS subdirectory illustrate the use of these
functions.

The software is designed to simplify the task of using the XP8800 on the
PLCBus. Z-World recommends using the software or at least following
the guidelines for the software structure.

1. Only access the control register using driver functions. These functions
keep track of the shadow variables that prevent inadvertently changing
other control lines.

2. Initialize and use the arrays designated for handling multiple board
addresses and status. These are described in detail.

3. If using interrupts, make the declaration

#define USE_STEPPER

early in the main program. This tells the PLCBus interrupt service to
call the function sm_int.

4. Also, if using interrupts, add the call

relocate_int1();

This connects the proper PLCBus interrupt service routine to the
interrupt vector.

Data Structures
The XP8800 driver software uses a table to represent all the XP8800s in a
system. There can be up to four XP8800s, and other PLCBus expansion
boards may also be used, subject to power constraints.

Table 4-2 shows how the Dynamic C STEP.LIB library assigns and sorts
the XP8800 logical addresses. These XP8800 �logical addresses� are
simply indexes in the table.

For example, the logical addresses for the three boards in Table 8-1 are 0,
1, and 2. The physical addresses are stored in the table. Call
sm_find_boards before doing anything else. This function searches the
PLCBus and initializes the table to represent the state of the XP8800s.

These four arrays define the table.

int sm_addr [17];

char sm_stat [16];

char sm_flag [16];

char sm_shadow[16];

XP8800166 s Software Reference

X
P

88
00

The array sm_addr holds the PLCBus address of each XP8800 existing on
the PLCBus. This array has one extra element, because the software
places a marker (address = �1 or 0xFFFF) following the last real board
address in the array.

The array sm_stat contains copies of the address 0 status bits of the
PCL-AK pulse generator for each XP8800 on the PLCBus. The array is
updated by the motor control interrupt service routine (ISR) every time a
PLCBus interrupt is generated.

The array sm_flag is updated at the same time as sm_stat and repre-
sents whether a board is awaiting service (its interrupt line asserted).

The array sm_shadow holds shadow variables for the XP8800 control
registers. Control registers are write-only. If software fails to remember
how control lines are set, chances are good that control lines will become
set incorrectly. The shadow variables provide the memory.

Interrupts
Since the PLCBus has a single shared interrupt line, special care must be
taken when servicing interrupts across it. During PLCBus interrupt
service, all possible interrupt sources must be checked to see if they are
currently awaiting service. These include other PLCBus expansion boards.

The interrupt function sm_int polls all XP8800s on the PLCBus and
updates the arrays sm_stat and sm_flag for each. It also sends a
software reset to each XP8800 that is asserting an interrupt request. The
software reset clears the interrupt request. If this reset is not issued, the
system would lock up since the interrupt line would never go inactive.

By including the statement

#define USE_STEPPER

early in the main program, the PLCBus interrupt service routine will call
sm_int. Your application should periodically check the status of the
interrupt request flags in the sm_flag array to determine when to service
the XP8800.

Although the function sm_int does what it is supposed to do, it probably
does not do what you would want it to do. Z-World has provided sm_int
to demonstrate how to use the XP8800 in an interrupt-driven system.
Since sm_int requires polling flags to provide service, it is not as efficient
as a true interrupt-controlled driver would be. What this function does is
guarantee that interrupts generated by a motor controller are serviced so
that the PLCBus interrupt is not held active by the controller, locking up
the system.

If you wish to do all motor processing in the background, replace the code
in the function sm_int (between the labels mirq and fin) with your own
code.

XP8800 Software Reference s 167

X
P

88
00

XP8800 Driver Functions
Tables 8-3, 8-4, 8-5, 8-6, and 8-7 list the various XP8800 software drivers
in the Dynamic C STEP.LIB library.

Table 16-3. XP8800 General and Initialization Functions

Type Function Description

int sm_bdaddr Generates address from jumper value

void sm_board_reset Issues full board reset

int sm_find_boards Finds and initialize all XP8800s

void sm_hitwd Hits watchdog timer

void sm_int General ISR for XP8800s

int sm_poll Polls specified XP8800

Table 16-4. XP8800 Control Register Functions

Type Function Description

void sm_ctlreg Writes control register and updates shadow
variable

void sm_drvoe Turns motor driver IC output on or off

void sm_led Turns LED (D1) on or off

void sm_sel00 Sets select lines to 00

void sm_sel01 Sets select lines to 01

void sm_sel10 Sets select lines to 10

void sm_sel11 Sets select lines to 11

XP8800168 s Software Reference

X
P

88
00

Table 16-5. XP8800 Motor Controller Functions

Type Function Description

void smc_cmd Writes to PCL-AK command register

void smc_hardreset Pulses PCL-AK reset line, registers are reset

void smc_manual_move Starts continuous movement, movement
continues until told to stop

void smc_seek_origin Starts continuous movement, movement
continues until origin pulse (/ORG)

void smc_setmove Sets PCL-AK registers for a move operation

void smc_setspeed Sets PCL-AK’s two speed registers

void smc_softreset Sends reset command to PCL-AK, registers
are not reset

char smc_stat0 Reads PCL-AK status register (at address 0)

char smc_stat3 Reads PCL-AK status register (at address 3)

Table 16-6. XP8800 Quadrature Counter Functions

Type Function Description

void smq_hardreset Pulses quadrature counter reset line

unsigned
int

smq_read16 Reads entire 16-bit counter value

char smq_read8 Reads counter’s lower 8 bits

Table 16-7. Miscellaneous XP8800 Functions

Type Function Description

void set81adr Places XP8800 address on bus (shortcut)

void set82adr Places XP8800 address on bus

unsigned
int

smcq_moveto
Uses the motor’s quadrature decoder to
move to location

XP8800 Software Reference s 169

X
P

88
00

Miscellaneous XP8800 Function Descriptions
In all the following function descriptions, the parameter index is a
number from 0 to 15 that represents the sequence of boards found by
sm_find_boards. The board with the lowest jumper setting is at position
0, and so on.

� void set82adr(int addr)

Places the specified address on the PLCBus in 8×2 addressing mode.
The term addr is a physical board address. Its upper byte must be
xxxx1100 (binary), and the lower byte should be 0 to read or write the
PCL-AK pulse generator, or 1 to read the quadrature counter or to
write the control register. The upper 4 bits of the address correspond to
the jumpers on the intended XP8800.

The execution time for this function is 87 cycles, assuming 0 wait
states, that is

14.16 µs at 6.144 MHz (71 kHz)

9.44 µs at 9.216 MHz (109 kHz)

� void set81adr(int addr)

Places the specified address on the PLCBus in 8×2 addressing mode.
The term addr is the lower byte a physical board address. This
function assumes that the upper byte has already been placed on the
bus. The lower byte should be 0 to read or write the PCL-AK pulse
generator, or 1 to read the quadrature counter or to write the control
register. The main purpose of this function is to save PLCBus cycles.

The execution time for this function is 60 cycles, assuming 0 wait
states, that is

9.77 µs at 6.144 MHz (102 kHz)

6.50 µs at 9.216 MHz (154 kHz)

� int sm_bdaddr(int jumpers)

Returns the physical PLCBus address for an XP8800 that has the
specified jumper settings on header H4. The term jumpers must be an
integer from 0 to 15.

The function returns the physical PLCBus address in a form directly
passable to set82adr.

� void sm_board_reset(int index)

Performs a hardware reset XP8800 identified by index. This resets
the PCL-AK pulse generator and the quadrature decoder/counter, and
disables the motor driver IC and sets it to two-phase mode. The
function also sets the control register�s two select lines to 00.

XP8800170 s Software Reference

X
P

88
00

� void sm_ctlreg(int index, int value)

Writes value to the control register on the XP8800 specified by
index. The function updates the shadow variable for the control
register.

� void sm_drvoe(int index, int onoff)

Turns the motor driver IC of the XP8800 specified by index on or off.
The term onoff is Boolean: when zero, the motor driver IC gets turned
off. Otherwise, it gets turned on.

� int sm_find_boards()

Searches for all possible XP8800s and fills in the XP8800 table, which
is sorted according to physical board address. The table holds physical
addresses in the array sm_addr. The table also holds status bytes and
interrupt service flags, which this function initializes.

The function return is the number of boards found. The function places
a marker (�1 or 0xFFFF) following the last entry in the table.

The function sends a control register value of 0xA7 (1010 0111) to all
XP8800s found. This puts the motor driver IC in two-phase mode and
turns it off, makes the select lines 00, turns the LED (D2) on, and resets
both the PCL-AK pulse generator and the quadrature counter.

The function return is the number of XP8800 boards on the PLCBus
that respond to the search.

The XP8800 table consists of these four arrays.

sm_addr a board�s physical PLCBus address.

sm_stat holds the last status (address 0) read from the board�s PCL-AK.

sm_flag, when non-zero, indicates the XP8800 has requested an
interrupt and is awaiting service.

sm_shadow holds the last value written to the board�s control register.

This function is among the first to call when operating XP8800
expansion boards. After the table is initialized, function calls will
generally refer to XP8800s by their table index.

� void sm_hitwd(int index)

Resets the watchdog timer on the XP8800 specified by index. It does
this by reading the quadrature counter. (The quadrature chip does not
have to be present.)

XP8800 Software Reference s 171

X
P

88
00

� void sm_int()

This is a general-purpose XP8800 function that can be called by the
PLCBus interrupt service routine (ISR). This function checks the
status (at PCL-AK address 0) of all boards, updating the sm_stat
array. When an interrupt request is detected, the appropriate sm_flag
value is set and the function issues a software reset to the PCL-AK to
deactivate the interrupt request.

The application must then monitor the interrupt service flags to deter-
mine when an operation has been completed.

To use this function, do the following.

1. Call sm_find_boards at the beginning of the application to
initialize the XP8800 table.

2. Add the following statement early in the application to link
sm_int to the PLCBus ISR.

#define USE_STEPPER // activate sm_int

3. Add the following statement early in the application to ensure
that the PLCBus interrupt line is activated.

outport(ITC, (inport(ITC)&OxFD));
// enable INT1

If all motor processing is to be done in the background (that is, as part
of the interrupt service), open and edit STEP.LIB. Find sm_int and
replace the code between the labels mirq and fin with your own code.

� void sm_led(int index, int onoff)

Turns the LED (D1) on the XP8800 specified by index on or off. The
value onoff is Boolean: when zero, the function turns the LED off.
Otherwise, it turns the LED on.

� int sm_poll(unsigned int address)

Returns 0 if the XP8800 specified by address is present (and respond-
ing) on the PLCBus. The parameter address must be a physical
board address, such as that returned by sm_bdaddr (jumpers).

All PLCBus expansion boards respond to a BUSRD1 cycle by sinking
data line 0 (normally high). The board is not present if a 1 is returned.

� void sm_sel00(int index)

Sets the select lines to 00 on the XP8800 specified by index.

� void sm_sel01(int index)

Sets the select lines to 01 on the XP8800 specified by index.

XP8800172 s Software Reference

X
P

88
00

� void sm_sel10(int index)

Sets the select lines to 10 on the XP8800 specified by index.

� void sm_sel11(int index)

Sets the select lines to 11 on the XP8800 specified by index.

� void smc_cmd(int index, int data)

Writes data to the command register of the PCL-AK pulse generator
on the XP8800 specified by index.

� void smc_hardreset(int index)

Causes a hardware reset of the PCL-AK on the XP8800 specified by
index. This stops any pulse output (that is, motor movement) and
clears the internal registers of the PCL-AK. It does this by giving a
negative pulse on bit 1 of the control register.

� void smc_manual_move(int index, int dir,
int speed)

Starts a manual (or continuous) move operation on the XP8800 speci-
fied by index. The motor will move until the application issues a
decelerating stop command, a software or hardware reset, or until the
application detects an end-limit or origin signal (if these are enabled).

The terms dir and speed are Boolean. If dir is non-zero, movement
is in the �+ �direction. Otherwise, movement is in the ��� direction. If
speed is zero, the PCL-AK pulse generator operates at low speed.
(Pulses are generated at the rate in the FL register.) Otherwise, the
PCL-AK pulse generator operates at high speed. (Pulses are generated
at the rate in the FH register.)

It is important to note that this function starts the movement and does
not wait for the movement to complete. The application may then
perform other tasks while the movement takes place.

� void smc_seek_origin(int index, int dir,
int speed)

Starts an �origin mode� operation on the XP8800 specified by index.
The PCL-AK will generate pulses, expecting an origin pulse to occur.
The motor will move until the application issues a decelerating stop
command, a software or hardware reset, or until the application detects
an end-limit or origin signal (if these are enabled).

The terms dir and speed are Boolean. If dir is non-zero, movement
is in the �+� direction. Otherwise, movement is in the ��� direction. If
speed is zero, the PCL-AK pulse generator operates at low speed.

XP8800 Software Reference s 173

X
P

88
00

(Pulses are generated at the rate in the FL register.) Otherwise, the PCL-
AK pulse generator operates at high speed. (Pulses are generated at the
rate in the FH register.)

It is important to note that this function starts the movement and does
not wait for the movement to complete. The application may then
perform other tasks while the movement takes place.

The function issues a software reset to the board before proceeding.

� void smc_setmove(int index, long CTR, int FL,
int FH,int ADR, int RD, int MUL)

Sets up the registers of the PCL-AK pulse generator on the XP8800
specified by index. The meaning of the registers (listed in Table 7-2)
and their interaction is complex.

See Z-World Technical Note 101, Operating the PLC-AK
High-Speed Pulse Generator, for more information on the
PCL-AK chip.

When the value of the MUL register is 732, the values of the FL and
FH registers approximate �pulses per second,� that is, when
MUL = 732, the actual pulse frequency is

freq
 H

 = FH × 1.000576331967 pulses per second

freq
 L

 = FL × 1.000576331967 pulses per second

� void smc_setspeed(int index, int fast,
int slow)

Sets the high (FH) and low (FL) speed registers of PCL-AK pulse
generator on the XP8800 specified by index. The parameter fast is
for the FH register and the parameter slow is for the FL register. Both
must be in the range 1�8191.

� void smc_softreset(int index)

Sends a software reset command to the PCL-AK pulse generator on the
XP8800 specified by index. This stops pulse output (and therefore,
motion) without clearing the internal registers.

� char smc_stat0(int index)

Reads the 8-bit status register at address 0 (A1 = A0 = 0) on the
PCL-AK pulse generator on the XP8800 specified by index. The
function returns the status bits D0�D7 explained in Chapter 7, �Status
Bits.�

$

XP8800174 s Software Reference

X
P

88
00

� char smc_stat3(int index)

Reads the 8-bit status register at address 3 (A1 = A0 = 1) of the
PCL-AK pulse generator on the XP8800 specified by index. If the
RD register (ramp-down point) is selected before reading the status
with address = 3, bits 0 and 1 are status bits. If any other register is
selected, bits 0 and 1 represent bits 16 and 17, respectively, of the
counter register.

The function returns the status bits D0�D7 explained in Chapter 7,
�Status Bits.�

� unsigned int smcq_moveto(int index,
unsigned dest, int dir, unsigned accuracy)

Steps the motor on the XP8800 specified by index until the quadrature
decoder/counter reaches the specified dest ± accuracy. The
movement is done at the slow rate (specified in the FL register) of the
PCL-AK pulse generator. The movement continues until the quadra-
ture counter reaches the �zone of acceptance� and then stops.

The parameter dir is Boolean: if non-zero, motion is in the �+�
direction. Otherwise, motion is in the ��� direction.

The function returns the reading of the quadrature counter when the
function finally stops motion. Inertia and step locations may make this
value different from the final resting place of the motor�s encoder.

The function issues a software reset to the PCL-AK following the
operation.

Example

main(){
...
uplc_init(); // init master
sm_find_boards(); // init all XP8800s

smc_setspeed(0,100,200); // move at 200 pps
smcq_moveto(0,5000,1,25); // to location 5000±25

delay to allow time for motor to stop fully

loc=smq_read16(0); // check final pos
if(loc>5025){ // overshot?

smc_setspeed(0,100,20); // move back at 20 pps
smcq_moveto(0,5000,0,25);// to location 5000±25

}
...

XP8800 Software Reference s 175

X
P

88
00

!

The function smcq_moveto is not a PID loop. It is the appli-
cation�s responsibility to manage the final position of the mo-
tor. The move speed, encoder resolution, and motor degrees/
phase will affect how precise you can get. It is possible to
miss a stop point if you specify too much precision. Read the
quadrature counter after the operation (allowing time for the
motor to come to a stop) to obtain its correct location.

� void smq_hardreset(int index)

Sends a hardware reset command to the quadrature counter on the
XP8800 specified by index. The function resets the counter to zero.

� unsigned int smq_read16(int index)

Returns the entire 16-bit value of the quadrature counter on the
XP8800 specified by index.

� char smq_read8(int index);

Returns the lower 8 bits of the quadrature counter on the XP8800
specified by index, a number from 0 to 15 as in smq_read16.

Sample Program
The sample program simulates a single-axis system with end-limit and
slowdown sensors in both directions.

After initialization, the XP8800 first seeks the origin. Then the motor goes
back and forth a few times, moving in one direction until an �end-limit�
signal occurs, then switches direction. As the motor moves, it responds to
any �slowdown� signal it receives.

The following items are needed to run this program.

� A stepper motor connected to an XP8800 connected, via the
PLCBus, to a Z-World PK2200 or PK2100 controller.

� A length of wire or a test probe to connect various signals to
ground. This simulates the occurrence of end-limit, slowdown or
origin conditions.

The sample program prompts you to make the appropriate connections.

XP8800176 s Software Reference

X
P

88
00

/***
Simulate origin signal.
***/
void wait_origin(int id){

#define ORG 0x04 // bit 2

printf(“Connect /ORG to GND “);
printf(“to simulate origin signal... “);
while(!(smc_stat0(id) & ORG)) runwatch();
printf(“ORG detected.\n”);

}

/***
Simulates end-limit signal. Dir = CW or CCW.
***/
void wait_EL(int id, int dir){

int mask; // bit 0 for EL-, bit 1 for EL+
char sign; // “+” or “-”

if(dir){
mask = 2; sign = ‘+’; // + direction (CW)

}else{
mask = 1; sign = ‘-’; // - direction (CCW)

}
printf(“Connect /EL%c to GND “, sign);
printf(“to simulate end-limit... “);
while(!(smc_stat0(id) & mask))runwatch();
printf(“end-limit detected.\n”);

}
/**/
#define CCW 0 // counterclockwise direction (-)
#define CW 1 // clockwise direction (+)
/**/
main(){

int FL = 10; // low speed 10 pps
int FH = 100; // high speed 100 pps
int ADR = 500; // accel/decel “rate” = 500
int MUL = 732; // makes FL and FH units “pps”
int ID = 0; // board index
int i;
uplc_init(); // assume PK2200 or PK2100
Reset_PBus(); // reset PLCBus with delay
Reset_PBus_Wait();

// Search PLCBus. Build table

if(sm_find_boards() == 0){
printf(“No XP8800s.”); exit(0);

}

// Use first board. Set up operation

sm_board_reset(ID);
sm_drvoe(ID, 1); // motor driver on
sm_led (ID, 1); // LED on
smc_setmove(ID,0L,FL,FH,ADR,0,MUL);

// registers

XP8800 Software Reference s 177

X
P

88
00

// find origin

smc_seek_origin(ID, CCW, 1); // high speed
wait_origin(ID);
smc_softreset(ID);

// back & forth

for(i=0; i<3; i++){

// move till EL+ slowing down upon SD+
// 0x42 = 01xx 0010.
// Op-mode: pos. dir. not preset. SD yes. ORG no.

smc_cmd(ID, 0x42);
// 0x15 = 00x 10 101.
// Start. High-speed. FH register

smc_cmd(ID, 0x15);
wait_EL(ID, CW); // wait for EL signal
smc_softreset(ID);

// move till EL- slowing down upon SD-
// 0x4A = 01xx 1010.
// Op-mode: neg. dir. not preset. SD yes. ORG no.

smc_cmd(ID, 0x4A);
// 0x15 = 00x 10 101.
// Start. High-speed. FH register

smc_cmd(ID, 0x15);
wait_EL(ID, CCW); // wait for EL signal
smc_softreset(ID);

}
sm_board_reset(ID); // cleanup

}/*end*/

XP8800178 s Software Reference

X
P

88
00

X
P

89
00

XP8900

X
P

89
00

XP8900 Overview s 181

X
P

89
00

CHAPTER 17: OVERVIEW

Chapter 17 provides an overview and description of the XP8900 digital-to-
analog conversion expansion boards.

XP8900182 s Overview

X
P

89
00

(

The XP8900 Series is a 12-bit digital-to-analog (D/A) converter expansion
board that can be used in conjunction with any Z-World PLCBus-compat-
ible controller.

Like other Z-World expansion boards, the XP8900 Series boards can be
installed in modular plastic circuit-board holders attached to a DIN rail.
The XP8900 Series boards can also be mounted, with plastic standoffs, on
any surface that will accept screws. Up to eight different XP8900 board
addresses may be used on one PLCBus.

The XP8900 Series consists of two boards, the XP8900 with eight
channels of D/A converter outputs, and the XP8910 with four channels of
D/A converter outputs. Each channel produces a bipolar output of up to
±10 V DC.

The XP8900 Series features an onboard voltage regulator for PLCBus-
powered operation. The XP8900 Series has connectors for user-supplied
analog voltage rails, and is able to sink or source up to 7 mA with the user
rails, or up to 2 mA on its own. The D/A outputs are monotonic.

An XP8900 Series board can be factory-built with one to
eight D/A channels, with 8-bit or 10-bit D/A outputs, or with
user-defined output voltage ranges. For more information,
call your Z-World Sales Representative at (530) 757-3737.

For ordering information, call your Z-World Sales
Representative at (530) 757-3737.(

XP8900 Overview s 183

X
P

89
00

Specifications
Table 17-1 summarizes the specifications for the XP8900 Series expansion
boards.

The XP8900 Series expansion boards derive +5 V digital power from the
PLCBus supply via LM7805 at U6. When operating without user-supplied
external voltage rails, the XP8900 Series expansion boards get their +12 V
analog power from the PLCBus +24 V supply via LM7812 at U7. Charge
pump NJU7662 at U17 inverts this for onboard -12 V analog power.
Precision +5 V and + 2 V reference voltages are derived from the +12 V
supply via the REF195 at U2 and the voltage divider formed from R33,
R34, and R39. The n-channel FET FDV301N at Q1 is used to switch the
2 V reference to 0 V during a power-on reset.

Table 17-1. XP8900 Series Specifications

Board Size 2.835" × 4.00" × 0.75"
(72 mm × 102 mm × 19 mm)

Operating Temperature Range -40°C to +70°C

Humidity 5% to 95%, noncondensing

Power

24 V DC, 100 mA min., 30 mA standby

Accepts optional external ±12 V DC for
analog power

Outputs

8 12-bit D/A channels (4 channels for
XP8910), bipolar voltage output 0 V to
±10 V, can source/sink up to 2 mA per
channel on internal power (up to 7 mA
per channel with user-supplied rails)

Slew rate: 1 V/µs in D/A converter,
0.5 V/µs in op-amp

Settling time: 10 µs max.

Relative accuracy: ±16 LSB (prior to
op-amps)

Gain temperature coefficient: -5 ppm of
full-scale range per °C

XP8900184 s Overview

X
P

89
00

+

+
+

+

+ +

+

+
+

+
+

+

+

0.187 dia, 4x
(4.7)

~
0
.7

5
(1

9
)

~
0
.6

(1
5
)

4.0
(102)

0.15 typ
(3.8)

2
.8

3
5

(7
2
)

0
.1

5
 t
yp

(3
.8

)

Figure 17-1 shows the dimensions of the XP8900 Series expansion boards.

Figure 17-1. XP8900 Board Dimensions

XP8900 Getting Started s 185

X
P

89
00

CHAPTER 18: GETTING STARTED

Chapter 18 provides instructions for connecting XP8900 Series expansion
boards to a Z-World controller. The following sections are included.

� XP8900 Series Components

� Connecting Expansion Boards to a Z-World Controller

� Setting Expansion Board Addresses

� Power

XP8900186 s Getting Started

X
P

89
00

XP8900 Series Components
The XP8900 Series of expansion boards offers up to eight channels of
digital-to-analog conversion outputs. Figure 18-1 shows the basic layout
and orientation of components, headers, and connectors.

Figure 18-1. XP8900 Series Board Layout

U4

+

+

+
U2

U3

+

+ +

+

+
+

+
+

U17

+

R37

U5

RN1
+

R36

R35

C34

C7

C33

C9

P1

U1

Op-Amps

U9 U10 U11 U12

C1 C2 C11 C12
C26C31 C18

Q1

C17

U7

C27C30

U13 U14 U15 U16

C13 C14 C15 C16

H3
H2

H1

C8
C35

C5
H4C3

C21
C23

P3

C20

R16 R30
R15 R29

R27 R12
R28 R11

C25
C29

R32 R14
R31 R13

R10 R25
R9 R26

R24 R6
R23 R5

C19

R34

R39 R33

R19 R4
R20 R3

R7 R22
R8 R21

R2 R17
R1 R18

C24
C28 U6

C22 C32C36

C6R38
C4

C10
U8

J1 J2

(J3)

Op-Amps

12 V
Reg

5 V
Reg

CPLD

P2

XP8900 Getting Started s 187

X
P

89
00

Connecting Expansion Boards to a Z-World
Controller
Use the 26-conductor ribbon cable supplied with an expansion board to
connect the expansion board to the PLCBus on a Z-World controller. See
Figure 18-2. The expansion board�s two 26-pin PLCBus connectors, P1
and P2, are used with the ribbon cable. Z-World recommends using the
cable supplied to avoid any connection problems.

Figure 18-2. Connecting XP8600 Expansion Board to Controller PLCBus

Be sure power to the controller is disconnected before adding
any expansion board to the PLCBus.

Follow these steps to connect an expansion board to a Z-World controller.

1. Attach the 26-pin ribbon cable to the expansion board�s P2 PLCBus
header.

2. Connect the other end of the ribbon cable to the PLCBus port of the
controller.

Be sure pin 1 of the connector cable matches up with pin 1 of
both the controller and the expansion board(s).

3. If additional expansion boards are to be added, connect header P2 on
the new board to header P1 of the board that is already connected. Lay
the expansion boards side by side with headers P1 and P2 on adjacent
boards close together, and make sure that all expansion boards are
facing right side up.

See Appendix C, �Connecting and Mounting Multiple
Boards,� for more information on connecting multiple expan-
sion boards.

U4

+

+

+

+

+ +

+

+
+

+
+

+

+

Op-Amps

Pin 1

P2

XP8900 Controller With PLCBus

 Controller
PLCBus Port

P1

$

XP8900188 s Getting Started

X
P

89
00

!

4. Each expansion board comes with a factory-default board address. If
more than one expansion board of each type is to be used, be sure to set
a unique address for each board.

The following section on �Setting Expansion Board Addresses,�
and Chapter 8, �Software Reference,� provide details on how
to set and use expansion board addresses.

5. Power may be applied to the controller once the controller and the
expansion boards are properly connected using the PLCBus ribbon
cable.

See Appendix D, �Simulated PLCBus Connections,� for
details on the special connections that enable these expansion
boards to be used with the BL1000, BL1100, BL1400, and
BL1500 controllers.

Setting Expansion Board Addresses
Z-World has established an addressing scheme for the PLCBus on its
controllers to allow multiple expansion boards to be connected to a
controller.

Remember that each expansion board must have a unique
PLCBus address if multiple boards are to be connected. If two
boards have the same address, communication problems will
occur that may go undetected by the controller.

Every XP8900 Series board is shipped from the factory with a default
address of 7. An XP8900 Series board may be assigned any address
between 0 and 7 using jumpers on the pins of header P3 to configure the
board address. Figure 18-3 shows the jumper settings to set addresses 0�7.
A maximum of eight XP8900 Series boards may be addressed by a
controller at one time.

Pins 1�2 on header P3 are on the lower end of P3 when the
XP8900 board is oriented in line with a controller and other
expansion boards as shown in Figure 18-2.

$

$

!

XP8900 Getting Started s 189

X
P

89
00

P3

12

34

56

78

0

P3

12

34

56

78

P3

5

12

34

56

78

P3

6

P3 P3

12

4

6

8

7 FD

2 3

P3

12

34

56

78

1

P3

12

34

56

78

4

12

34

56

78

12

34

56

78

Figure 18-3. P3 Jumper Settings for XP8900 Series PLCBus Addresses

Power
Z-World�s expansion boards receive power from the controller over the
+24 V line of the PLCBus. An onboard regulator converts this to the +5 V
and the ±12 V reference used by the expansion boards. With no output,
the XP8900 Series expansion boards draw about 30 mA; with all their
output channels operating at maximum current (2 mA per channel on
internal power, 7 mA per channel with external voltage), the XP8900
draws 45 mA (75 mA if the external power rails are connected).

XP8900190 s Getting Started

X
P

89
00

Using Digital-to-Analog Converter Boards
The follow steps summarize how to use the D/A converter boards.

1. Send a reset command to the PLCBus.

2. Place the address of the D/A converter on the PLCBus.

3. Send data serially to one of the D/A converters (Register A). When
Register A is filled, load the data to D/A converter Register B where it
is converted and output.

4. Use the board�s analog output to control motors, attenuators or other
analog devices.

These steps are done using software drivers in Dynamic C function libraries.

These steps are done using software drivers in Dynamic C function librar-
ies. Use DRIVERS.LIB and PLC_EXP.LIB.for controllers with a PLCBus
port. Use PBUS_TG.LIB for a BL1000, and use PBUS_LG.LIB for a
BL1100 or a BL1300.

XP8900 I/O Configurations s 191

X
P

89
00

CHAPTER 19: I/O CONFIGURATIONS

Chapter 19 describes the built-in flexibility of the XP8900 Series expan-
sion boards, and describes how to configure the available inputs/outputs.
The following sections are included.

� XP8900 Series Pin Assignments

� XP8900 Series Circuitry

XP8900192 s I/O Configurations

X
P

89
00

XP8900 Series Pin Assignments
The XP8900 has eight channels of bipolar voltage outputs, each with its
own individual ground, and terminals for user-supplied positive and
negative voltage rails, also with their own individual grounds. These are
all located on Wago connectors J1 and J2, as shown in Figure 19-1.

The pin assignments for the XP8910 are similar, except there are only four
output channels. There are no outputs on pin 9 of J1, and there are no
outputs on pins 1, 3, and 5 of J2.

Figure 19-1. XP8900 Wago Connectors J1 and J2

No special configurations are needed for the D/A converter outputs, which
are controlled by the software drivers.

An external ±12 V DC may be connected to the XP8900 Series boards to
reduce analog noise or to increase the current drive. Figure 19-2 provides
the jumper settings for headers H1, H2, and H3 to accommodate the
external power. The external ±12 V supply is connected to the XP8900
Series board via pins 7 and 9 on Wago connector J2.

Figure 19-2. XP8900 Series ±12 V Supply Jumper Settings

FD

H1 H2

+12 V from
PLCBus

-12 V from
PLCBus

H3

H1 H2

+12 V from
external
source

-12 V from
external
source

H3

J1 J2

OUT0

GND

OUT1

GND

OUT2 OUT3

GND

OUT4

GND

OUT5 OUT6 OUT7

GND GND GND

+12IN -12IN

GND GND GND

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8109 109

XP8900 I/O Configurations s 193

X
P

89
00

XP8900 Series Circuitry
The XP8900�s D/A circuitry consists of eight 12-bit AD5320 D/A convert-
ers, U9 to U16, and two OP497G quad op-amp chips, U3 and U4. The
outputs of the D/A converters are amplified, and the analog outputs appear
on Wago connectors J1 and J2. The input comes on the PLCBus from the
program running on the controller.

Figure 19-3 illustrates the operation of the D/A conversion.

Figure 19-3. Schematic Illustration of D/A Conversion in XP8900 Series

The analog outputs do not need any special configuration. The desired
analog output voltage is set using the software drivers.

The XP8900 Series expansion boards derive +5 V digital power from the
+24 V PLCBus supply via LM7805 at U6. When operating without user-
supplied external voltage rails, the XP8900 Series D/A converters get their
+12 V analog power from the PLCBus +24 V supply via LM7812 at U7.
Charge pump NJU7662 at U17 inverts this for onboard -12 V analog
power. Precision +5 V and + 2 V reference voltages are derived from the
+12 V supply via REF195 at U2 and the voltage divider formed from R33,
R34, and R39. The n-channel FET FDV301N at Q1 is used to switch the
2 V reference to 0 V during a power-on reset.

The XP8900 Series D/A converters have the capability of receiving their
+12 V or -12 V supply from an external source. This provides for greater
control of electrical noise in the analog output signals.

The XP8900 Series D/A converters may be used with 12 V
controllers only when ±12 V is supplied externally to pins 7
and 9 of Wago connector J2. Remember to set the jumpers on
headers H1, H2, and H3 as shown in Figure 19-2.

U2
VS

SLEEP

GND

OUT
REF

/2V_EN

+12IN

CPOUT

–12IN

U7

+V IN
GND

OUT

12 V Reg
+12 V

V+C+

GND

C– VOUT

H3
CPIN

DIN

SCLK

/SYNC

VOUT
DAC

+

–

DA_EN[0–7]
DA_CLK

DA_DATA

+12 V

H1

H2

+5 V REF

R39 36 kΩ
+2 V REF

R33 30 kΩ R34
11 kΩ

200 kΩ

200 kΩ

205 kΩ 205 kΩ

Q1

FDV301N

U17

U9–U16

-12 V REF

+12 V REF

U3 or U4

OUT[0–7]

!

XP8900194 s I/O Configurations

X
P

89
00

XP8900 Software Reference s 195

X
P

89
00

CHAPTER 20: SOFTWARE REFERENCE

Chapter 4 describes the Dynamic C functions used to initialize the XP8600
and XP8900 Series expansion boards and to control the resulting analog
outputs. The following major sections are included.

� Expansion Board Addresses

� XP8900 Series Software

XP8900196 s Software Reference

X
P

89
00

Expansion Board Addresses

XP8900 Series
Up to eight XP8900 Series expansion boards may be addressed over a
single PLCBus using a logical address of 0 to 7.

The 12-bit address of a particular XP8900 is determined by the jumper
setting on header P3. P3 may be set eight different ways. The unique
physical address is in the form

0010 000x yzRR

where

x = 1 when P3 pins 1�2 are not connected
y = 1 when P3 pins 3�4 are not connected
z = 1 when P3 pins 5�6 are not connected

and RR is reserved for the registers. There are no PAL codes.

The 12-bit address can be placed on the bus using 4-bit addressing. The
functions set12adr, read12data, and write12data (in
DRIVERS.LIB) use 12-bit bus addresses.

When the address is passed to set12adr, it should be in the format

yzRR 000x 0010

where the least significant nibble in the physical address, yzRR, has
swapped places with the most significant nibble in the physical address,
0010.

XP8900 Software Reference s 197

X
P

89
00

XP8900 Series Software
This section describes a set of simple software functions to use when
controlling the XP8900 Series expansion boards.

Dynamic C Libraries
Several Dynamic C function libraries need to be used with the routines
defined in this section. The chart in Table 20-1 identifies which libraries
must be used with particular Z-World controllers.

Before using one of these libraries in an application, first include the
library name in a #use command. For example, to use functions in the
library EZIOPLC.LIB, be sure there is a line at the beginning of the
program in the following format.

 #use ezioplc.lib

The #use eziopbdv.lib already included in other library
calls for the XP8900 Series expansion boards, and does not
have to be repeated.

Table 20-1. Dynamic C Libraries Required by Z-World Controllers
for XP8900 Series Expansion Boards

Library Needed Controller

EZIOCMMN.LIB All controllers

EZIOPBDV.LIB All controllers

EZIOTGPL.LIB BL1000

EZIOLGPL.LIB BL1100

EZIOMGPL.LIB BL1400, BL1500

EZIOPLC.LIB BL1200, BL1600, PK2100, PK2200

EZIOPLC2.LIB BL1700

EZIOBL17.LIB BL1700

!

XP8900198 s Software Reference

X
P

89
00

Using Digital-to-Analog Converter Boards
The follow steps summarize how to use the D/A converter boards.

1. Send a reset command to the PLCBus.

2. Place the address of the D/A converter on the PLCBus.

3. Send data serially to one of the D/A converters (Register A). When
Register A is filled, load the data to D/A converter Register B where it
is converted and output.

4. Use the board�s analog output to control motors, attenuators or other
analog devices.

These steps are done using software drivers in Dynamic C function libraries.

Reset Boards on PLCBus
These Dynamic C functions are used to initialize the PLCBus. Use these
functions in a program before introducing any code to operate the relays.

� VdInit()

Initializes the timer mechanism.

LIBRARY: VDRIVER.LIB

� void plcBusReset()

Resets all expansion boards connected to the PLCBus.

When using this function, initialize timers with VdInit() before
resetting the PLCBus. All PLCBus devices must reset before perform-
ing any subsequent operations.

LIBRARY: EZIOPBDV.LIB

The XP8900 output voltages cannot be reset by resetting the
PLCBus. The rest of this chapter provides information on
setting or resetting the XP8900 output voltages.

� void eioPlcRstWait()

Provides a delay long enough for the PLCBus to reset.

This function provides a delay of 1�2 seconds to ensure devices on the
PLCBus reset. Call this function after resetting the PLCBus.

LIBRARY: EZIOPBDV.LIB

!

XP8900 Software Reference s 199

X
P

89
00

� long int eioErrorCode

Represents a global bit-mapped variable whose flags reflect error
occurrences.

This register for this variable is initially set to 0. If the application tries
to access an invalid channel, the flag EIO_NODEV (the first bit flag) is
set in this register. Note that the other bits in EIO_NODEV deal with
networked controllers.

Address Target Board

� int plcXP89Init(int Addr)

Initializes XP8900 Series board. Call this function before using the
other plcXP89� functions. This function also initializes the XP8900
Series D/A converters to tristate their outputs. Call plcXP89Sw to turn
the voltage reference on. The first plcXP89Out call enables the output
of the corresponding D/A converter channel. Both the voltage refer-
ence and the D/A converter channel must be set up correctly to get the
proper output.

PARAMETER: Addr is the logical address, 0�7, of the board set by
jumpers.

RETURN VALUE: �1 if the board cannot be found, 0 if the initializa-
tion is completed.

LIBRARY: EZIOPBDV.LIB

void main(void){
plcBusReset(); // reset the PLCBus
if(plcXP89Init(4)){
...
} else {
...
}

}

XP8900200 s Software Reference

X
P

89
00

Operate Target Board

� int plcXP89Sw(int Addr, int state)

Turns the D/A converters and references to op-amps on or off. Note
that all channels on a particular board are switched at the same time.

PARAMETERS: Addr is the logical address, 0�7, of the board set by
jumpers. Both the reference (switched on by this call) and the D/A
converter output (switched off by this call, switched on by plcX89Out)
must be set correctly to get the proper output.

state indicates whether the D/A converter and reference voltage
should be turned on or off. The reference is turned on when state is
nonzero. Otherwise the D/A converters will tristate and the reference
will output 0. The output voltage of all channels should be approxi-
mately 0 at the op-amp when the D/A converter is off.

RETURN VALUE: �1 if the board cannot be found, 0 if the operation
is completed.

LIBRARY: EZIOPBDV.LIB

The XP8900 output voltages may fluctuate to 2 V for each
channel while plcX89Sw is executing to turn on the op-amp
reference and to switch off the D/A converter.

� int plcXP89Out(int Addr, unsigned int oValue)

Sends the 12-bit oValue to the proper D/A converter channel. Call
plcXP89Init and plcXP89Sw before calling plcXP89Out. Note that
plcXP89Out does not switch the voltage reference on or off. Both the
D/A converter and the voltage reference must be set up correctly to get
the proper voltage output. plcXP89Sw enables the voltage reference.

PARAMETERS: Addr is 8*board_number + channel_number. Note
that board_number and channel_number start from zero. board_number
ranges from 0 to 7 as set by the address jumpers. channel_number
ranges from 0 to 7 (XP8900), or from 0 to 3 (XP8910).

oValue is the 12-bit value to send to the D/A converter.

RETURN VALUE: �1 if the D/A converter cannot be found, 0 if the
operation is successful. If the D/A converter does not exist, this
function also bit-ors the constant EIO_NODEV to eioErrorCode.

LIBRARY: EZIOPBDV.LIB

!

plcXP89Out(42,2048)
// make channel 2 on board 5 output about 0 V

XP8900 Software Reference s 201

X
P

89
00

Table 8-2 summarizes these three functions. The order in which they
appear in Table 8-2 is the sequence in which they should be used to start an
XP8900 Series board.

� int plcXP89WrCalib(int chan,
struct _eioAdcCalib *pCalib)

Writes a calibration structure to the EEPROM storage corresponding to
a channel on the XP8900 Series board.

PARAMETERS: chan is the channel number, 0�63, of the XP8900
Series D/A channel. chan = 8*board_number + channel_number.

_eioAdcCalib *pCalib is a pointer to a calibration structure
initialized by calling eioAdcMakeCoeff.

RETURN VALUE: 0 if the calibration is successful, otherwise returns
a negative number.

LIBRARY: EZIOPBDV.LIB

Table 20-2. Summary of Basic XP8900 Series Function Calls

Function Description

plcXP89Init Disables everything, leaves output of 0 V for all channels

plcXP89Sw Enables voltage reference so the output will be at the voltage
level specified by plcXP89Out

plcXP89Out Sets all channels to midpoint or other acceptable value (the
output experiences a slight jump as channels are being set;
remember to set all 4 or 8 channels since one call sets only
one channel)

plcXP89WrCalib(15,&cstruct)
// write calib info in cstruct to channel 7 of
// XP8900 Series board 1

XP8900202 s Software Reference

X
P

89
00

� int plcXP89RdCalib(int chan,
struct _eioAdcCalib *pCalib)

Reads the calibration structure of a D/A channel from an XP8900
Series board.

PARAMETERS: chan is the channel number, 0�63, of the XP8900
Series D/A channel. chan = 8*board_number + channel_number.

_eioAdcCalib *pCalib is a pointer to a calibration structure. Use
eioAdcDigitize to compute the actual D/A output of a given analog
value.

RETURN VALUE: 0 if the operation is successful, otherwise returns a
negative number.

LIBRARY: EZIOPBDV.LIB

� int eioAdcMakeCoeff(struct _eioAdcCalib *cnvrsn,
unsigned d1, unsigned d2, float f1, float f2)

Takes the raw values and actual values of two data points, then com-
putes the calibration coefficients (assumes linearity).

PARAMETERS: struct _eioAdcCalib *cnvrsn is a pointer to a
calibration structure that stores the coefficients.

d1 is the raw (quantized) value of the first data point.

d2 is the raw (quantized) value of the second data point.

f1 is the actual (real) value (in volts) of the first data point.

f2 is the actual (real) value (in volts) of the second data point.

RETURN VALUE: �1 if it is not possible to compute the calibration
coefficients, otherwise 0.

LIBRARY: EZIOPBDV.LIB

plcXP89RdCalib(32,&cinfo)
// read calib info of channel 0 of XP8900
// XP8900 Series board 4 into cinfo

eioAdcMakeCoeff(&cinfo,96,4000,9.97,-10.33)
// the actual value at quantized value 96 is 9.97 V
// the actual value at quantized value 4000 is -10.03 V
// compute the coefficients and put into cinfo

XP8900 Software Reference s 203

X
P

89
00

� long eioAdcDigitize(float f,
struct _eioAdcCalib *pCalib)

Converts analog value to digital number according to calibration
coefficients. This function is used to convert an analog value such as
voltage to the actual digital number for a D/A converter device.

PARAMETERS: f is the analog value to output.

_eioAdcCalib *pCalib is a pointer to a structure that stores the
calibration coefficients.

RETURN VALUE: Long integer that corresponds to the number to
send to a D/A converter device.

LIBRARY: EZIOPBDV.LIB

L=eioAdcDigitize(2.54,&cinfo);
// L will contain the digitized value to output
// to D/A converter device given the
// calibration coefficients in cinfo so that
// the output is about 2.54 of some real units

XP8900204 s Software Reference

X
P

89
00

Sample Program
The sample program XP89_1.C in the Dynamic C SAMPLES\PLCBUS
subdirectory demonstrates how to calibrate the D/A converter channels.

The basic sample program is designed for the BL1200, BL1600, PK2100,
and PK2200 controllers. Remember to uncomment the lines that apply to
the controller being used with the XP8900 Series expansion board.

To use this program properly, it may be necessary to edit the statements
that initialize the channel, margin, f1, and f2. The program may also be
compiled as is, with watch expressions added to override the assignment
statements (be sure to execute the watch expression AFTER the assignment
statement is executed).

Use the following steps to run the sample program.

1. Compile the program by pressing F3 or by choosing Compile from the
COMPILE menu. Dynamic C compiles and downloads the program
into the controller�s memory. During compilation, Dynamic C rapidly
displays several messages in the compiling window, which is normal.

2. Run the program by pressing F9 or by choosing Run from the RUN
menu. It is also possible to single-step through the program with F7 or
F8.

3. To halt the program, press <CTRL-Z>.

4. To restart the program, press F9.

Check the board jumpers, PLCBus connections, and the PC/
controller communications if an error message appears.

See the Dynamic C Technical Reference manual for more
detailed instructions.

!

$

XP8900 Software Reference s 205

X
P

89
00

XP89_1.C

#use eziocmmn.lib
/* #use ezioplc.lib // for BL1200, BL1600, PK2100, PK2200 */
/* #use eziotgpl.lib // for BL1000 */
/* #use eziolqpl.lib // for BL1100 */
/* #use eziomgpl.lib // for Bl1400 & BL1500 */
/* #use eziobl17.lib // for BL1700 */
/* #use ezioplc2.lib // for BL1700 */

main() {
auto int i;
auto struct _eioAdcCalib c;
auto int channel;
auto float f1, f2, fout;
auto long l;
auto int margin;
channel = 0; // execute watch expression

// to override
margin = 0x40; // execute watch expression

// to override
plcBusReset();
if (plcXP89Init(channel / 8)) {

printf(“DAC8 board not found\n”);
} else {

plcXP89Sw(channel / 8,1);
// enable voltage reference

plcXP89Out(channel,margin);
// use meter to record level

f1 = 10; // use watch expr to override
plcXP89Out(channel,0xfff-margin);

// use meter to record level
f2 = -10; // use watch expr to override
eioAdcMakeCoeff(&c,margin,0xfff-margin,f1,f2);
if (plcXP89WrCalib(channel,&c)) {

printf("Can’t write calibration constant\n");
}
memset(&c,0,sizeof(struct _eioAdcCalib));
if (plcXP89RdCalib(channel,&c)) {

printf("Can’t read calibration constant\n");
}
fout = 2.345; // use watch expr to override
l = eioAdcDigitize(fout, &c);
plcXP89Out(channel,(unsigned)l);

 // use meter to check voltage now
}

}

XP8900206 s Software Reference

X
P

89
00

A
p

p
en

d
ic

es

APPENDICES

A
p

p
en

d
ic

es

User�s Manual PLCBus s 209 A
p

p
en

d
ic

es

APPENDIX A: PLCBUS

Appendix A provides the pin assignments for the PLCBus, describes the
registers, and lists the software drivers.

PLCBus Expansion Boards210 s PLCBusA
p

p
en

d
ic

es

PLCBus Overview
The PLCBus is a general-purpose expansion bus for Z-World controllers.
The PLCBus is available on the BL1200, BL1600, BL1700, PK2100, and
PK2200 controllers. The BL1000, BL1100, BL1300, BL1400, and
BL1500 controllers support the XP8300, XP8400, XP8600, and XP8900
expansion boards using the controller�s parallel input/output port. The
BL1400 and BL1500 also support the XP8200 and XP8500 expansion
boards. The ZB4100�s PLCBus supports most expansion boards, except
for the XP8700 and the XP8800. The SE1100 adds expansion capability
to boards with or without a PLCBus interface.

Table A-1 lists Z-World�s expansion devices that are supported on the
PLCBus.

Multiple expansion boards may
be linked together and con-
nected to a Z-World controller
to form an extended system.

Figure A-1 shows the pin lay-

out for the PLCBus connector.

Table A-1. Z-World PLCBus Expansion Devices

Device Description

Exp-A/D12 Eight channels of 12-bit A/D converters

SE1100 Four SPDT relays for use with all Z-World controllers

XP8100 Series 32 digital inputs/outputs

XP8200
“Universal Input/Output Board”
—16 universal inputs, 6 high-current digital outputs

XP8300 Two high-power SPDT and four high-power SPST relays

XP8400 Eight low-power SPST DIP relays

XP8500 11 channels of 12-bit A/D converters

XP8600 Two channels of 12-bit D/A converters

XP8700 One full-duplex asynchronous RS-232 port

XP8800 One-axis stepper motor control

XP8900 Eight channels of 12-bit D/A converters

2
4

1
3

6 5
8 7

10 9
12 11
14 13
16 15
18 17
20 19
22 21
24 23
26 25

GND
D7X
D5X
D3X
D1X

LCDX
A0X

GND

GND
 attention /AT
strobe /STBXGND
A3XGND
A2XGND
A1X

/RDX
VCC (+5 V)

D0X
/WRX

D4X
D2X

D6X

+24 V
(+5 V) VCC

Figure A-1. PLCBus Pin Diagram

User�s Manual PLCBus s 211 A
p

p
en

d
ic

es

Two independent buses, the LCD bus and the PLCBus, exist on the single
connector.

The LCD bus consists of the following lines.

� LCDX�positive-going strobe.
� /RDX�negative-going strobe for read.
� /WRX�negative-going strobe for write.
� A0X�address line for LCD register selection.
� D0X-D7X�bidirectional data lines (shared with expansion bus).

The LCD bus is used to connect Z-World�s OP6000 series interfaces or to
drive certain small liquid crystal displays directly. Figure A-2 illustrates
the connection of an OP6000 interface to a PLCBus header.

Figure A-2. OP6000 Connection to PLCBus Header

The PLCBus consists of the following lines.

� /STBX�negative-going strobe.

� A1X�A3X�three control lines for selecting bus operation.

� D0X�D3X�four bidirectional data lines used for 4-bit operations.

� D4X�D7X�four additional data lines for 8-bit operations.

� /AT�attention line (open drain) that may be pulled low by any device,
causing an interrupt.

The PLCBus may be used as a 4-bit bus (D0X�D3X) or as an 8-bit bus
(D0X�D7X). Whether it is used as a 4-bit bus or an 8-bit bus depends on
the encoding of the address placed on the bus. Some PLCBus expansion
cards require 4-bit addressing and others (such as the XP8700) require
8-bit addressing. These devices may be mixed on a single bus.

Yellow wire
on top

PLCBus Header
Note position of connector

relative to pin 1.

From OP6000
KLB Interface Card
Header J2

Pin 1

PLCBus Expansion Boards212 s PLCBusA
p

p
en

d
ic

es

There are eight registers corresponding to the modes determined by bus
lines A1X, A2X, and A3X. The registers are listed in Table A-2.

Writing or reading one of these registers takes care of all the bus details.
Functions are available in Z-World�s software libraries to read from or
write to expansion bus devices.

To communicate with a device on the expansion bus, first select a register
associated with the device. Then read or write from/to the register. The
register is selected by placing its address on the bus. Each device recog-
nizes its own address and latches itself internally.

A typical device has three internal latches corresponding to the three
address bytes. The first is latched when a matching BUSADR0 is de-
tected. The second is latched when the first is latched and a matching
BUSADR1 is detected. The third is latched if the first two are latched and
a matching BUSADR2 is detected. If 4-bit addressing is used, then there
are three 4-bit address nibbles, giving 12-bit addresses. In addition, a
special register address is reserved for address expansion. This address, if
ever used, would provide an additional four bits of addressing when using
the 4-bit convention.

If eight data lines are used, then the addressing possibilities of the bus
become much greater�more than 256 million addresses according to the
conventions established for the bus.

Table A-2. PLCBus Registers

Register Address A3 A2 A1 Meaning

BUSRD0 C0 0 0 0 Read data, one way

BUSRD1 C2 0 0 1 Read data, another way

BUSRD2 C4 0 1 0 Spare, or read data

BUSRESET C6 0 1 1
Read this register to
reset the PLCBus

BUSADR0 C8 1 0 0
First address nibble or
byte

BUSADR1 CA 1 0 1
Second address nibble
or byte

BUSADR2 CC 1 1 0
Third address nibble or
byte

BUSWR CE 1 1 1 Write data

User�s Manual PLCBus s 213 A
p

p
en

d
ic

es

Place an address on the bus by writing (bytes) to BUSADR0, BUSADR1
and BUSADR2 in succession. Since 4-bit and 8-bit addressing modes
must coexist, the lower four bits of the first address byte (written to
BUSADR0) identify addressing categories, and distinguish 4-bit and 8-bit
modes from each other.

There are 16 address categories, as listed in Table A-3. An �x� indicates
that the address bit may be a �1� or a �0.�

This scheme uses less than the full addressing space. The mode notation
indicates how many bus address cycles must take place and how many bits
are placed on the bus during each cycle. For example, the 5 × 3 mode
means three bus cycles with five address bits each time to yield 15-bit
addresses, not 24-bit addresses, since the bus uses only the lower five bits
of the three address bytes.

Table A-3. First-Level PLCBus Address Coding

First Byte Mode Addresses Full Address Encoding

– – – – 0 0 0 0
– – – – 0 0 0 1
– – – – 0 0 1 0
– – – – 0 0 1 1

4 bits × 3 256
256
256
256

0000 xxxx xxxx
0001 xxxx xxxx
0010 xxxx xxxx
0011 xxxx xxxx

– – – x 0 1 0 0
– – – x 0 1 0 1
– – – x 0 1 1 0
– – – x 0 1 1 1

5 bits × 3 2,048
2,048
2,048
2,048

x0100 xxxxx xxxxx
x0101 xxxxx xxxxx
x0110 xxxxx xxxxx
x0111 xxxxx xxxxx

– – x x 1 0 0 0
– – x x 1 0 0 1

6 bits × 3 16,384
16,384

xx1000 xxxxxx xxxxxx
xx1001 xxxxxx xxxxxx

– – x x 1 0 1 0 6 bits × 1 4 xx1010

– – – – 1 0 1 1 4 bits × 1 1 1011 (expansion register)

x x x x 1 1 0 0 8 bits × 2 4,096 xxxx1100 xxxxxxxx

x x x x 1 1 0 1 8 bits × 3 1M xxxx1101 xxxxxxxx xxxxx
xxx

x x x x 1 1 1 0 8 bits × 1 16 xxxx1110

x x x x 1 1 1 1 8 bits × 1 16 xxxx1111

PLCBus Expansion Boards214 s PLCBusA
p

p
en

d
ic

es

Z-World provides software drivers that access the PLCBus. To allow
access to bus devices in a multiprocessing environment, the expansion
register and the address registers are shadowed with memory locations
known as shadow registers. The 4-byte shadow registers, which are saved
at predefined memory addresses, are as follows.

Before the new addresses or expansion register values are output to the
bus, their values are stored in the shadow registers. All interrupts that use
the bus save the four shadow registers on the stack. Then, when exiting the
interrupt routine, they restore the shadow registers and output the three
address registers and the expansion registers to the bus. This allows an
interrupt routine to access the bus without disturbing the activity of a
background routine that also accesses the bus.

To work reliably, bus devices must be designed according to the following
rules.

1. The device must not rely on critical timing such as a minimum delay
between two successive register accesses.

2. The device must be capable of being selected and deselected without
adversely affecting the internal operation of the controller.

Allocation of Devices on the Bus

4-Bit Devices
Table A-4 provides the address allocations for the registers of 4-bit
devices.

Table A-4. Allocation of Registers

A1 A2 A3 Meaning

000j 000j xxxj
digital output registers, 64 registers
64 × 8 = 512 1-bit registers

000j 001j xxxj analog output modules, 64 registers

000j 01xj xxxj
digital input registers, 128 registers
128 × 4 = 512 input bits

000j 10xj xxxj analog input modules, 128 registers

000j 11xj xxxj 128 spare registers (customer)

001j xxxj xxxj 512 spare registers (Z-World)

j controlled by board jumper
x controlled by PAL

SHBUS1 SHBUS1+1
SHBUS0 SHBUS0+1 SHBUS0+2 SHBUS0+3

Bus expansion BUSADR0 BUSADR1 BUSADR2

User�s Manual PLCBus s 215 A
p

p
en

d
ic

es

Digital output devices, such as relay drivers, should be addressed with
three 4-bit addresses followed by a 4-bit data write to the control register.
The control registers are configured as follows

bit 3 bit 2 bit 1 bit 0
A2 A1 A0 D

The three address lines determine which output bit is to be written. The
output is set as either 1 or 0, according to D. If the device exists on the
bus, reading the register drives bit 0 low. Otherwise bit 0 is a 1.

For digital input, each register (BUSRD0) returns four bits. The read
register, BUSRD1, drives bit 0 low if the device exists on the bus.

8-Bit Devices
Z-World�s XP8700 and XP8800 expansion boards use 8-bit addressing.
Refer to the XP8700 and XP8800 manual.

Expansion Bus Software
The expansion bus provides a convenient way to interface Z-World�s
controllers with expansion boards or other specially designed boards. The
expansion bus may be accessed by using input functions. Follow the
suggested protocol. The software drivers are easier to use, but are less
efficient in some cases. Table A-5 summarizes the libraries.

Table A-5. Dynamic C PLCBus Libraries Used by
Z-World Controllers

Library Needed Controller

DRIVERS.LIB All controllers

EZIOTGPL.LIB BL1000

EZIOLGPL.LIB BL1100

EZIOMGPL.LIB BL1400, BL1500

EZIOPLC.LIB BL1200, BL1600, PK2100, PK2200, ZB4100

EZIOPLC2.LIB BL1700

PBUS_TG.LIB BL1000

PBUS_LG.LIB BL1100, BL1300

PLC_EXP.LIB BL1200, BL1600, PK2100, PK2200

PLCBus Expansion Boards216 s PLCBusA
p

p
en

d
ic

es

There are 4-bit and 8-bit drivers. The 4-bit drivers employ the following
calls.

� void eioResetPlcBus()

Resets all expansion boards on the PLCBus. When using this call,
make sure there is sufficient delay between this call and the first access
to an expansion board.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� void eioPlcAdr12(unsigned addr)

Specifies the address to be written to the PLCBus using cycles
BUSADR0, BUSADR1, and BUSADR2.

PARAMETER: addr is broken into three nibbles, and one nibble is
written in each BUSADRx cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� void set16adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

PARAMETER: adr is a 16-bit physical address. The high-order
nibble contains the value for the expansion register, and the remaining
three 4-bit nibbles form a 12-bit address (the first and last nibbles must
be swapped).

LIBRARY: DRIVERS.LIB.

� void set12adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

PARAMETER: adr is a 12-bit physical address (three 4-bit nibbles)
with the first and third nibbles swapped.

LIBRARY: DRIVERS.LIB.

� void eioPlcAdr4(unsigned addr)

Specifies the address to be written to the PLCBus using only cycle
BUSADR2.

PARAMETER: addr is the nibble corresponding to BUSADR2.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

User�s Manual PLCBus s 217 A
p

p
en

d
ic

es

� void set4adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

A 12-bit address may be passed to this function, but only the last four
bits will be set. Call this function only if the first eight bits of the
address are the same as the address in the previous call to set12adr.

PARAMETER: adr contains the last four bits (bits 8�11) of the
physical address.

LIBRARY: DRIVERS.LIB.

� char _eioReadD0()

Reads the data on the PLCBus in the BUSADR0 cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADR0
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� char _eioReadD1()

Reads the data on the PLCBus in the BUSADR1 cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADR1
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� char _eioReadD2()

Reads the data on the PLCBus in the BUSADR2 cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADR2
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� char read12data(int adr)

Sets the current PLCBus address using the 12-bit adr, then reads four
bits of data from the PLCBus with BUSADR0 cycle.

RETURN VALUE: PLCBus data in the lower four bits; the upper bits
are undefined.

LIBRARY: DRIVERS.LIB.

PLCBus Expansion Boards218 s PLCBusA
p

p
en

d
ic

es

� char read4data(int adr)

Sets the last four bits of the current PLCBus address using adr bits 8�
11, then reads four bits of data from the bus with BUSADR0 cycle.

PARAMETER: adr bits 8�11 specifies the address to read.

RETURN VALUE: PLCBus data in the lower four bits; the upper bits
are undefined.

LIBRARY: DRIVERS.LIB.

� void _eioWriteWR(char ch)

Writes information to the PLCBus during the BUSWR cycle.

PARAMETER: ch is the character to be written to the PLCBus.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� void write12data(int adr, char dat)

Sets the current PLCBus address, then writes four bits of data to the
PLCBus.

PARAMETER: adr is the 12-bit address to which the PLCBus is set.

dat (bits 0�3) specifies the data to write to the PLCBus.

LIBRARY: DRIVERS.LIB.

� void write4data(int address, char data)

Sets the last four bits of the current PLCBus address, then writes four
bits of data to the PLCBus.

PARAMETER: adr contains the last four bits of the physical address
(bits 8�11).

dat (bits 0�3) specifies the data to write to the PLCBus.

LIBRARY: DRIVERS.LIB.

The 8-bit drivers employ the following calls.

� void set24adr(long address)

Sets a 24-bit address (three 8-bit nibbles) on the PLCBus. All read and
write operations will access this address until a new address is set.

PARAMETER: address is a 24-bit physical address (for 8-bit bus)
with the first and third bytes swapped (low byte most significant).

LIBRARY: DRIVERS.LIB.

User�s Manual PLCBus s 219 A
p

p
en

d
ic

es

� void set8adr(long address)

Sets the current address on the PLCBus. All read and write operations
will access this address until a new address is set.

PARAMETER: address contains the last eight bits of the physical
address in bits 16�23. A 24-bit address may be passed to this function,
but only the last eight bits will be set. Call this function only if the first
16 bits of the address are the same as the address in the previous call to
set24adr.

LIBRARY: DRIVERS.LIB.

� int read24data0(long address)

Sets the current PLCBus address using the 24-bit address, then reads
eight bits of data from the PLCBus with a BUSRD0 cycle.

RETURN VALUE: PLCBus data in lower eight bits (upper bits 0).

LIBRARY: DRIVERS.LIB.

� int read8data0(long address)

Sets the last eight bits of the current PLCBus address using address bits
16�23, then reads eight bits of data from the PLCBus with a BUSRD0
cycle.

PARAMETER: address bits 16�23 are read.

RETURN VALUE: PLCBus data in lower eight bits (upper bits 0).

LIBRARY: DRIVERS.LIB.

� void write24data(long address, char data)

Sets the current PLCBus address using the 24-bit address, then writes
eight bits of data to the PLCBus.

PARAMETERS: address is 24-bit address to write to.

data is data to write to the PLCBus.

LIBRARY: DRIVERS.LIB.

� void write8data(long address, char data)

Sets the last eight bits of the current PLCBus address using address bits
16�23, then writes eight bits of data to the PLCBus.

PARAMETERS: address bits 16�23 are the address of the PLCBus
to write.

data is data to write to the PLCBus.

LIBRARY: DRIVERS.LIB.

PLCBus Expansion Boards220 s PLCBusA
p

p
en

d
ic

es

User�s Manual Connecting and Mounting Multiple Boards s 221 A
p

p
en

d
ic

es

APPENDIX B: CONNECTING AND

MOUNTING MULTIPLE BOARDS

PLCBus Expansion Boards222 s Connecting and Mounting Multiple Boards

A
p

p
en

d
ic

es

Connecting Multiple Boards
Eight or more expansion boards can be connected (�daisy chained�) at one
time. The actual number of expansion boards may be limited by capacita-
tive loading on the PLCBus.

Be sure that each expansion board has a unique address to prevent commu-
nication problems between the controller and the expansion board.

Follow these steps to install several expansion boards on a single PLCBus.

1. Place all expansion boards right side up.

2. Use the ribbon cable supplied with the boards.

3. Connect one board to the main controller.

4. Connect another expansion board to the first expansion board, connect-
ing each board�s header P1 to the adjacent board�s header P2.

Figure B-1 illustrates a controller with expansion boards attached.

Figure B-1. Connecting Multiple Expansion Boards

Do not twist the ribbon cable or mount the expansion boards
upside down! Damage may occur. Be sure Pin 1 of P1 and P2
of each board matches up with Pin 1 of the previous board.
Pin 1 should be at the lower right when the expansion board is
right side up, that is, the board markings are right side up.

When several expansion boards are connected, there may be a voltage
drop along the network of expansion boards. No action is necessary as
long as the digital voltage, VCC, is greater than 4.9 V on the last board.

VCC can be measured at pin 2 on header P1, and GND is pin 1
on header P1.

EPROM

RAM

PIO

Z180

1

1

1 1

11

1

11

XP8100 XP8300 Controller

U5

U6

Relay 5

PAL
U3

Relay 4Relay 0

Relay 1

Relay 2

Relay 3

P2

H3

C14

F4

F2 F5

J2

F1 F3

F0C5

D3

D4

D5

D6

D2

D1

C6

C7

C8

C9

C10

M
O

V
5

M
O

V
4

MOV3MOV2

M
O

V
0 MOV1

!

User�s Manual Connecting and Mounting Multiple Boards s 223 A
p

p
en

d
ic

es

(

H
2

C11

J3

P1

E
P

R
O

M

R
A

M

PIO

Z180

Controller

Relay 0

Relay 2

Relay 4

Relay 5

Relay 7

Relay 1

Relay 3

Relay 6
H

2

C11

J3

P1

Relay 0

Relay 2

Relay 4

Relay 5

Relay 7

Relay 1

Relay 3

Relay 6

P2P2

P1

P2

P1

P2

There are two ways to compensate for the voltage dropoff. The easiest
way is to connect +5 V DC and ground from the host controller to pins 2
and 1 of header P1 on the last expansion board. Another solution, which
can approximately double the number of boards that could otherwise be
connected to a single controller, is a Y cable available from Z-World.
Figure B-2 illustrates the use of the Y cable.

Figure B-2. Use of Y Cable to Connect Multiple Expansion Boards

For more information, call your Z-World Technical Support
Representative at (530) 757-3737.

PLCBus Expansion Boards224 s Connecting and Mounting Multiple Boards

A
p

p
en

d
ic

es

(

Bus Connectors
Controller

Modular PC
Board Holders

DIN Rail

Expansion Cards

Mounting
Expansion boards can be installed in modular plastic circuit-board holders
attached to a DIN rail, a widely used mounting system, as shown in Figure B-3.

The circuit-board holders are 77 mm wide and come in lengths of
11.25 mm, 22.5 mm , and 45 mm. The holders, available from Z-World
and from other suppliers, snap together to form a tray of almost any length.
Z-World�s expansion boards are 72 mm wide and fit directly in these
circuit-board holders.

Z-World�s expansion boards can also be mounted with plastic standoffs to
any flat surface that accepts screws. The mounting holes are 0.125 inches
(1/8 inch) in from the edge of a board, and have a diameter of 0.190 inches.

Figure C-3. Mounting Expansion Boards on DIN Rail

For information on ordering DIN rail mounts, call your
Z-World Sales Representative at (530) 757-3737.

A
p

p
en

d
ic

es

User�s Manual Simulated PLCBus Connections s 225

APPENDIX C:

SIMULATED PLCBUS CONNECTIONS

A
p

p
en

d
ic

es

PLCBus Expansion Boards226 s Simulated PLCBus Connections

Some Z-World controllers do not have a PLCBus, but signals on their
configurable PIO ports or KIO ports are those that would be available on a
PLCBus. Appendix C provides the hookup information to allow expansion
boards to be used with these controllers.

Table C-1 provides a list of which expansion boards may be used with
which non-PLCBus controllers.

Table C-1. Expansion Board Compatibility
with non-PLCBus Controllers

Z-World ControllerExpansion
Board BL1000 BL1100 BL1300 BL1400 BL1500

XP8100

XP8300 X X X X X

XP8500 X X

XP8800

XP8900 X X

A
p

p
en

d
ic

es

User�s Manual Simulated PLCBus Connections s 227

!

Pin 1

PB0 (J9:17)
PB1 (J9:15)
PB2 (J9:13)
PB3 (J9:11)
PB4 (J9:9)
PB5 (J9:7)
PB6 (J9:5)
PB7 (J9:3)
+5 V (J9:1)

D1X
D0X
D3X
D2X
A1X
A2X
A3X
/STBX
+5 V

PIO
Signal

PLCBus
Signal

Picks up VCC, GND,
and PB0–PB7. Leaves
PA0–PA7 available.

J9

PLCBus
Connector

Note that the first two pins of this
connector must hang over the end of
the header. A 20-pin connector is used
because 18-pin connectors are not
available.

BL1000
The XP8300 expansion board may be connected to a BL1000 using an
expander cable (Z-World part number 540-0015). Fasten the cable�s 20-pin
connector to header J9 as shown in Figure C-1. Pins 1 and 2 of the con-
nector must hang over the end of the header. Fasten the cable�s PLCBus
connector to header P1 or P2 of the expansion board, observing the orien-
tation of pin 1, as shown.

Figure C-1. BL1000 Expander Cable Connection

Software for interfacing the BL1000�s PIO port to a PLCBus port may be
found in the Dynamic C PBUS_TG.LIB library.

Use an external power supply with expansion boards con-
nected to the BL1000. There is no provision in the special
cable to supply +24 V from the controller to header P1 or P2
on the expansion boards.

A
p

p
en

d
ic

es

PLCBus Expansion Boards228 s Simulated PLCBus Connections

Pin 1

PA0 (J10:1)
PA1 (J10:3)
PA2 (J10:5)
PA3 (J10:7)
PA4 (J10:9)
PA5 (J10:11)
PA6 (J10:13)
PA7 (J10:15)
+5 V (J010:1)

/STBX
A3X
A2X
A1X
D2X
D3X
D0X
D1X
+5 V

PIO
Signal

PLCBus
Signal

Picks up VCC, GND,
and PA0–PA7. Leaves
PB0–PB7 available.

J010

PLCBus
Connector

Note that the first two pins of this
connector must hang over the end of
the header. A 20-pin connector is used
because 18-pin connectors are not
available.

J10

!

BL1100
The XP8300 expansion boards may be connected to a BL1100 using an
expander cable (Z-World part number 540-0015). Fasten the cable�s 20-pin
connector to the combined headers J010 and J10 as shown in Figure C-2.
Pins 1 and 2 of the expander cable connector must hang over the end of the
combined headers. Fasten the cable�s PLCBus connector to XP8200
header P1 or P2. Note the orientation of pin 1.

Software for interfacing the BL1100�s PIO port to a PLCBus port may be
found in the Dynamic C PBUS_LG.LIB library.

Figure C-2. BL1100 Expander Cable Connection

Use an external power supply when connecting expansion
boards to the BL1100. There is no provision in the expander
cable to supply +24 V from the controller to header P1 or P2
on the expansion boards.

BL1300
The XP8300 expansion board may be connected to header P5 on the
BL1300 using the same special cable used to connect them to the BL1000
or to the BL1100, as shown in Figure D-2. The first two pins of the special
cable hang over the end of header P5 as before. However, the wire leading
to pin 1 on the BL1300�s header P5 must be cut, and may then be used to
supply +5 V from an external source to the expansion board. Software
from the Dynamic C PBUS_LG.LIB library may be used.

Use an external power supply with expansion boards con-
nected to the BL1300. There is no provision in the special
cable to supply +24 V from the controller to header P1 or P2
on the expansion boards.

!

A
p

p
en

d
ic

es

User�s Manual Simulated PLCBus Connections s 229

Table C-2. PIO to PLCBus Signal Map

BL1400/Bl1500 Expansion Board

H3 Pin No. PIO Port Signal Pin No. PLCBus Signal

1 VCC (+5 V) 2 VCC (+5 V)

2 PA0 5 /STBX

3 PA1 19 D0X

4 PA2 20 D1X

5 PA3 17 D2X

6 PA4 18 D3X

7 PA5 11 A1X

8 PA6 9 A2X

9 PA7 7 A3X

10 GND 10 GND

Adapter Board

+VGND

Controller Power

PLCBus Power

J6

J6

R2 R1

J2 J1
J8

J3
J4

J3

Controller

E
xp

an
si

on
 B

oa
rd

BL1400 or BL1500
XP8300, XP8500, and XP8900 expansion boards may be connected to header H3
on either the BL1400 or the BL1500. To add these expansion boards, the user
must either make a custom cable or use an adapter board (Z-World part number
101-0050). To assist with making the connection via a ribbon cable, Table C-2
maps the signals from the controller�s PIO to the expansion board.
Dynamic C�s EZIOMGPL.LIB library may be used for programming.

The adapter board provides an easy way to add an expansion board to either
BL1400 or BL1500 controllers. Power is supplied to the controller via the
power jack and to the expan-
sion board via a screw termi-
nal. For specifics on how to in-
stall an adapter board with a
specific controller, see that
controller�s user�s manual.

Use an external power supply
with expansion boards con-
nected to the BL1400 or
BL1500 because there is no
provision to supply power from
the controller to header P1 or
P2 on the expansion boards.
The adapter board has a jack
and a screw terminal for the
external +12 V/+24 V.

Figure C-3. Adapter Board Connections

A
p

p
en

d
ic

es

PLCBus Expansion Boards230 s Simulated PLCBus Connections

A
p

p
en

d
ic

es

User�s Manual PLCBus States s 231

APPENDIX D: PLCBUS STATES

A
p

p
en

d
ic

es

PLCBus Expansion Boards232 s PLCBus States

PLCBus State Tables
This appendix is provided for advanced programmers who wish to write
their own application drivers for the XP8100 expansion boards, and
require detailed information about PLCBus cycles.

Two state tables are provided. Table D-1 presents the PLCBus states, and
Table D-2 describes what state the PLCBus transitions to from a given
input.

Reading State Table D-2
The letters pqr represent the binary version of the jumper-set address of
the XP8100 Series board (r is the least-significant bit). The letters xyz
represent the group number for data from an I/O channel, and efgh
represent the data bits D3�D0.

To use Table D-2, read across the �state� row to the current state of the
PLCBus. Then read down the �action� column to the particular PLCBus
cycle to be performed in that state. The number corresponding to the next
state that the PLCBus will transition to is at the intersection of the row and
column. Some of the cases also have a superscripted reference to a note
that explains how to interpret the value returned.

Table D-1. State Definitions

State State Number (see Table G-2)

0 Board not selected

1 BUSADR0 recognized

2 BUSADR1 recognized

3 BUSADR2 recognized for ID mode

4 BUSADR2 recognized for Group 0

5 BUSADR2 recognized for Group 1

6 BUSADR2 recognized for Group 2

7 BUSADR2 recognized for Group 3

A
p

p
en

d
ic

es

User�s Manual PLCBus States s 233

Table D-2. PLCBus State Table

State

Action 0 1 2 3 4 5 6 7

BUSADR0 ← 0001 1 1 1 1 1 1 1 1

BUSADR1 ← 00pq 0 2 2 2 2 2 2 2

BUSADR2 ← r000 0 1 3 3 3 3 3 3

BUSADR2 ← r100 0 1 4 4 4 4 4 4

BUSADR2 ← r101 0 1 5 5 5 5 5 5

BUSADR2 ← r110 0 1 6 6 6 6 6 6

BUSADR2 ← r111 0 1 7 7 7 7 7 7

BUSWR ← efgh 0 1 2 3 4b 5b 6b 7b

BUSDR0 → efgh 0 1 2 3a 4c 5c 6c 7c

BUSDR1 → efgh 0 1 2 3 4d 5d 6d 7d

BUSADR0 ← ! 0001 0 0 0 0 0 0 0 0

BUSADR1 ← ! 01pq 0 1 1 1 1 1 1 1

BUSADR2 ← ! rxyz 0 1 2 2 2 2 2 2

Notes

(a) h=0 indicates an XP8100 exists; h=1 indicates there is no XP8100
Series board at this address.

(b) h=0 indicate off, 1 indicates on, efg specifies which of the 8
output channels in the group is selected.

(c) h indicates the state of the zeroth (lowest number) input channel in
the group of 8, e indicates the state of the third input channel in the
group of 8.

(d) h indicates the state of the fourth input channel in the group of 8, e
indicates the state of the seventh input channel in the group of 8.

A
p

p
en

d
ic

es

PLCBus Expansion Boards234 s PLCBus States

User�s Manual Index s 235

INDEX

Symbols

4-bit bus operations 212, 214
5 × 3 addressing mode 213
8-bit bus operations 211, 213, 215

A

A/D calibration
XP8500 96, 115, 116, 127

calibrated readings 128
calibration coefficients 116, 126

A/D conversion
XP8500 96

conversion time 96
converter chip 106, 109

absolute mode
XP8500 104

acceleration
XP8800 153

actuation voltage
XP8300 78

addresses
encoding............................... 213
modes 213
PLCBus 212, 213
relay boards 80
XP8100

calculation 61
jumper settings 28
reading 64
software 61

XP8300 80
jumper settings 78

XP8500 102
jumper settings 118
logical 118
physical 118

XP8800 142, 162
logical 163
physical 162

addresses (continued)
XP8900 188

jumper settings 189
physical 196

analog inputs
XP8500

reading 123
sampling 125
selecting 124

attention line 211

B

bias resistors
XP8500 112

bias voltage calculation
XP8500 112

bidirectional data lines 211
block diagram

XP8800 150
board layout

XP8100 20
XP8110 20
XP8120 21
XP8300 73
XP8500 100
XP8800 140
XP8900 186

bus
expansion 211�215

addresses 214
devices 214, 215

operations
4-bit 212

BUSADR0 212, 213
BUSADR1 212, 213
BUSADR2 212, 213
BUSADR3 218, 219
BUSRD0 215, 216, 217, 219
BUSRD1 215, 216
BUSWR 216

PLCBus Expansion Boards236 s Index

C

coil voltage
XP8300 77

conditioned channels
gain and bias resistors 107
XP8500 106

connecting expansion boards
XP8100 27
XP8300 76, 77
XP8500 101
XP8800 141
XP8900 187

connecting nonPLCBus controllers
adapter board 229
adapter cables 227, 228
BL1000 227
BL1300 228
cable 227

connectors
26-pin

pin assignments 210
contact ratings

XP8300 77
control registers 215

XP8800
148, 158, 162, 165, 166

counter
XP8800 154

D

D/A conversion
XP8900 182

AD5320 converter chip ... 193
circuit 193
stability 182

D0X�D7X................................ 211
daisy chaining 222
deceleration

XP8800 153
dimensions

FWT-Opto 49
FWT38 45
FWT50 47
XP8100 Series 24

dimensions (continued)
XP8300 74
XP8500 97
XP8800 137
XP8900 184

DIN rail 224
DIP relays 210
display

liquid crystal 211
drift

XP8500 110

E

EEPROM
XP8500 96, 108, 127, 128

jumper settings 108
write-protect 108

error messages 30
excitation resistors

XP8500 108
expander cable

connect expansion board to
nonPLCBus controller
227, 228

expansion boards
compatibility with nonPLCBus

controllers 226
installation

adapter board for BL1400/
BL1500 229

BL1000 227
BL1100 228
BL1300 228
BL1400 229
BL1500 229

reset 216
expansion bus

210, 211, 212, 213, 214, 215
addresses 214
devices 214, 215
functions ... 216, 217, 218, 219
rules for devices 214
software drivers 215

4-bit drivers 216
8-bit drivers 218

User�s Manual Index s 237

expansion register 214
external power supply

XP8900 192

F

factory configurations
XP8100 19

features
XP8100 Series 18
XP8300 73
XP8500 96
XP8800 136
XP8900 182

field wiring terminals 18
installation 44

filters
XP8500 106

frequency response
XP8500 106

fuses
XP8300 77

FWT-Opto
dimensions 49
optical isolation circuit 50
pinouts 49
specifications 48

FWT38
dimensions 45
pinouts 46
specifications 45

FWT50
dimensions 47
pinouts 47
specifications 46

G

gain
XP8500 111, 113

gain calculation111
gain resistors111

H

half-step mode
XP8800 145

hardware reset
XP8800 148, 149, 151

headers
XP8100 Series layout 26
XP8300

H1 77
H2 77
H3 77
H4 77

XP8900
H1 192
H2 192
H3 192
J1 192
J2 192

I

initializing
XP8500 123
XP8900 198, 199

input range
XP8500 113

installation
expansion boards 187, 222, 223
XP8100 27
XP8300 76
XP8500 101
XP8800 141
XP8900 187

interrupts 211, 214
routines 214
XP8500 125
XP8800 159, 165, 166

J

jumper settings
XP8100

board addresses 28

PLCBus Expansion Boards238 s Index

jumper settings (continued)
XP8300 77

board addresses 78
J1 78
J2 78

XP8500 105, 108, 118
XP8900 196

external ±12 V rails 192
internal power 192

K

K 40, 146

L

LCD ... 211
LCD bus 211
LCDX 211
LEDs

XP8300 73
XP8800 162

liquid crystal display 211
logical addresses

XP8300 80
XP8500 118
XP8800 163, 165

M

memory-mapped I/O register ... 212
mode

addressing 213
modes

XP8500 104, 105
motor driver IC 136
mounting 224

end caps 224
multiplier register

XP8800 153

O

offsets
XP8500 113

operating relay boards 82

optical isolation circuit 50
outputs

XP8900 192
overview

XP8100 18
XP8300 71
XP8500 96
XP8800 136
XP8900 182

P

PAL encoding
XP8300 78
XP8500 118
XP8900 196

PCL-AK pulse generator chip
150, 151

commands 152
control registers 151
modes 151
modes of operation 151
speed registers 153
status 154

PDIR 144, 155
PFI ... 144
PHA 145, 155
PHB 145, 155
PHC 145, 155
PHD 145, 155
physical addresses

XP8500 118
XP8800 162
XP8900 196

pin assignments
FWT-Opto 49
FWT38 46
FWT50 47
XP8100 32, 33
XP8300 77
XP8500 104
XP8800 144
XP8900 192

User�s Manual Index s 239

PLCBus
162, 210, 211, 212, 214, 215

/AT 211
26-pin connector

pin assignments 210
4-bit bus operations 211
4-bit drivers 216
4-bit operations .. 211, 213, 214
8-bit drivers 218
8-bit operations .. 211, 213, 215
adapter board 229
adapter cables 227, 228
addresses 212, 213
control registers 215
expansion boards 210, 212
input registers 62
installing boards

101, 141, 187, 222
interface register

XP8500 131
interrupt service request 165
LCD connections 211
reading data 212
reset 148
ribbon cables 222
rules for devices 214
shadow registers 214
software drivers

215, 216, 217, 218, 219
special cabling 187
state definitions 232
state table 232, 233
writing data 212
XP8100 210
XP8300 210
XP8500 210
XP8800 210
XP8900 210
Y cable 223

power failure
XP8800 144, 145

power requirements
XP8100 28
XP8300 78
XP8500 102
XP8800 142
XP8900 189

power-down mode
XP8500 109

power-up
XP8800 148

pulse generator chip 150
reset 149

Q

quadrature decoder
136, 148, 150, 157

reference clock 158
reset 148, 149

quadrature inputs 145, 147

R

ramp-down point
XP8800 154

ratiometric mode
XP8500 104

read inputs
XP8100 65

reading data on the PLCBus
212, 217

reference clock
quadrature decoder 158

registers
PLCBus 67

relays
turning on 84
XP8300

actuation voltage 78
specifications 77

reset
expansion boards 216
XP8800 148

resistor tolerance 113
ribbon cables 222

PLCBus Expansion Boards240 s Index

S

sample programs
XP8100

compile 30
inputs 57, 59
read digital input 57
set digital output 59
XP81ID.C 29
XP81IDX.C 63

XP8300 88
XP8500 116, 129
ADC4SMP1.C 128, 129

XP8800 175
SM_DEMO1.C 165
SM_DEMO2.C 165
SM_DEMO3.C 165

XP8900 204
screw terminal block

XP8800 144
select PLCBus address 216
sense inputs

XP8800 147
signal conditioning

XP8500 96
signals

PLCBus
/RDX................................ 211
/STBX 211
/WRX 211
A0X 211
A1X, A2X, A3X 211, 212

XP8800
/DRVOE........................... 144
/EL+ 145, 147
/EL- 145, 147
/ORG....................... 145, 147
/PFO 145
/PULSE 145
/SD+ 145, 147
/SD- 145, 147
/WDO 145
AIN 145, 147
BIN 145, 147

signals
XP8800 (continued)

HSTEP 144
status bits PCL-AK 154
WAVE 145

single-phase mode
XP8800 145

slow down
XP8800 154

software 51
libraries

54, 81, 119, 164, 197, 212
DRIVERS.LIB .. 81, 87, 105,

164, 190, 215
EZIOBL17.LIB 197
EZIOCMMN.LIB 81, 197
EZIOLGPL.LIB 197, 215
EZIOMGPL.LIB 197, 215
EZIOPBDV.LIB 82, 83,

118, 197, 198
EZIOPL2.LIB 215
EZIOPLC.LIB 82, 197,

198�202, 203, 215
EZIOPLC2.LIB 81, 197
EZIOTGPL.LIB 197, 215
PBUS_LG.LIB 81, 86, 90,

164, 227, 228
PBUS_TG.LIB .. 81, 86, 164,

227, 228, 229
PLCBus 212
PLC_EXP.LIB .. 81, 85, 105,

128, 164
STEP.LIB 163
VDRIVER.LIB 82, 198
XP8500 119

PLCBus 215
4-bit drivers 216
8-bit drivers 218
eioPlcAdr12 216
eioPlcAdr4 216
eioReadD0 217
eioReadD1 217
eioReadD2 217
eioResetPlcBus 216
eioWriteWR 218

User�s Manual Index s 241

software
PLCBus (continued)
outport 216, 219
read12data 217
read24data 219
read4data 218
read8data 219
set12adr 216
set16adr 216
set24adr 218
set4adr 217
set8adr 219
write12data 218
write24data 219
write4data 218
write8data 219

PLCBus cycles 60
XP8100

advanced programming 60
brdNum 56, 58
BUSWR register 67
digital outputs 68
EIO_NODEV 55, 56, 58
eioErrorCode ... 55, 56, 58
eioPlcAdr12 60, 61
eioPlcRstWait 55
eioPlcXP81Addr 60
eioReadD0 61
eioResetPlcBus 55
eioWriteWR 61
I/O channel assignments .. 52, 53
input functions 56
input state 66
miscellaneous functions 55
output functions 67
plcPK81In 56
plcPK81Out 58
state (definition) 58
state (use) .. 58, 65, 67, 68
VdInit 55
write outputs 67

XP8300 81
#use 81
BUSWR 84, 86

software
XP8300 (continued)
EIO_NODEV 82
eioErrorCode 82
eioPlcRelayAddr 83
eioPlcRstWait 82
logical addresses 80
PBus12_Addr 86
PBus4_Read0 86
PBus4_Write 86
Plc_poll_node 85
Plc_set_relay 85
plcBusReset 82
Plcrel_addr 85
plcXP83Out 83
Poll_PBus_Node 87
Relay_Board_Addr 87
Reset_PBus 86, 87
reset_pbus 85, 86
Reset_PBus_Wait 87
Set_PBus_Relay 87
set12adr 87
VdInit 82
write12data 87

XP8500 119
adc4_compute 127
adc4_convert 126, 128
adc4_eerd 127
adc4_eewr 127
adc4_init 123
adc4_read 123, 124, 126
adc4_readcoeff 126
adc4_sample 125
adc4_set 124, 126
adc4_writecoeff 126
adc4coeff 126, 128
calibration 115
conversion 126
EIO_NODEV 120
eioAdcMakeCoeff 122
eioErrorCode 120
eioPlcADC4Addr 118
eioPlcRstWait 120
eioResetPlcBus 120

PLCBus Expansion Boards242 s Index

software
XP8500 (continued)

error messages 128
invgain 128
plcXP85In 121
plcXP85InC 121
plcXP85Init 121
plcXP85RdCalib 122
read12data 118
set12adr 118
VdInit 120
write12data 118
zero_offset 128

XP8800 165, 167, 169
#use 164
board address 162
fin 166
mirq 166
relocate_int1 165
reset 151, 166
set81adr 162, 169
set82adr 162, 169
shadow variables 165, 166
sm_addr 166
sm_bdaddr 169
sm_board_reset 169
sm_ctlreg 170
sm_drvoe 170
sm_find_boards . 148, 163,

165, 170
sm_flag 166
sm_hitwd 148, 170
sm_int 165, 166, 171
sm_led 171
sm_poll 171
sm_sel00 171
sm_sel01 171
sm_sel10 172
sm_sel11 172
sm_shadow 166
sm_stat 166
smc_cmd 172
smc_hardreset 149, 172
smc_manual_move 172

software
XP8800 (continued)
smc_seek_origin 172
smc_setmove 173
smc_setspeed 173, 174
smc_softreset 149, 173
smc_stat0 173
smc_stat3 174
smcq_moveto 174
smq_hardreset 149, 175
smq_read16 175
smq_read8 175
USE_STEPPER 165, 166

XP8900
#use 197
EIO_NODEV 199
eioAdcDigitize 203
eioAdcMakeCoeff 202
eioErrorCode 199
eioPlcRstWait 198
plcBusReset 198
plcXP89Init 199
plcXP89Out 200
plcXP89RdCalib 202
plcXP89Sw 200
plcXP89WrCalib 201
read12data 196
set12adr 196
VdInit 198
write12data 196

specifications
FWT-Opto 48
FWT38 45
FWT50 46
XP8100 22

input 22
output 23

XP8300 74
XP8500 97
XP8800 137
XP8900 183

standard resistor values
XP8500 112

User�s Manual Index s 243

state tables
use .. 232

stepper motor controller 136

T

temperature
XP8100

derating 36
limitations 36

test points
XP8500 109, 115

tolerance
resistor 113

two-phase mode
XP8800 145

U

UCN5804
typical specifications 157

unconditioned channels
XP8500 109

using D/A converter boards 105,
190, 198

V

V+
XP8300 78, 90

VCC
XP8300 78, 90

W

watchdog timer
XP8800 148, 149

writing data on the PLCBus
212, 218

X

XP8100 18
CMOS outputs 39
communications 29
connecting expansion boards . 27

XP8100 (continued)
digital outputs 36
H1 .. 41
H2 .. 41
H3 .. 41
H4 .. 41
high-voltage drivers

K .. 40
I/O banks 32
I/O configuration 34

jumper settings 42
inputs

configuration 34
specifications 22

J1 36, 42
J2 ... 42
J3 36, 42
J4 ... 42
outputs

configuration 36
specifications 23

overview 18
pinout

pinout headers H1�H4 41
pinouts

H1�H4 41
sinking drivers

location 38
sinking outputs 36, 37
sourcing drivers

installation 38
location 38

sourcing outputs 36, 37
TTL outputs 39
versions 19

XP8300 72
features 73

XP8310
features 73

XP8500 96, 119
absolute mode 112
addresses 118
AIN4�10 109
bias resistors 105, 112

PLCBus Expansion Boards244 s Index

XP8500 (continued)
bias voltage calculation 112
calibrated readings 128
calibration ... 96, 115, 116, 127
calibration coefficients 116, 126
calibration software 115
configurations 106
connections 109
drift 110
EEPROM 96, 108, 127, 128
excitation resistors 108
frequency response 106
gain 111, 113
gain calculation111
gain resistors111
headers

H2 109
initializing 123
input filtering 106
input range 113
jumper settings

J1 105
J2 105
J3 108
J4 118
J5 118

low-pass filter 106
modes 104
offsets 113
PAL encoding....................... 118
pin assignments 104
power-down mode 109
R1�R8 106, 111
R9�R15 109
reading inputs 123
RP3 106
RP4 106
sample programs 116
sampling 125
selecting analog input channel ...

... 124
setting up

H1 106
software 119

XP8500 (continued)
test points 109, 115
unconditioned channels 109
VR0...................................... 112
VR4...................................... 112
VREF 114
Wago connector

H1 104
XP8800 136

+24 V 145, 146
+5 V 145, 146
/DRVOE............................... 144
/EL 145
/EL+ 145
/ORG 145
/PFO 145
/PULSE 150, 154, 155
/RESET 151
/SD 145
/SD+ 145
addresses 162, 163
ADR 153
AIN 145
aternate uses 150
BIN 145
block diagram 150
board layout 140
connection to PLCBus 141
control register ... 148, 158, 162
end limits 150
features 136
FL .. 153
GND 144, 146
hardware reset 149
headers

H4 162
H5 144
H6 145

HSTEP 145
input power 142
interrupts 159, 166
jumpers

J1 149
K .. 146

User�s Manual Index s 245

XP8800 (continued)
LEDs 162
motor driver IC 150, 155
MUL 153
optically isolated inputs 147
origin 150
PDIR 144, 150
PFI 144
pulse generator chip 162
quadrature decoder 148, 162
RD.. 154
reset 148
sample connections 146
SEL0 159
SEL1 159
slow down 150
software 165, 167, 169
using boards 148
watchdog 145
WAVE 144, 145

XP8900 182
analog noise 192
bipolar outputs 182
board layout 186
circuitry 193
D/A conversion 182
H1 .. 192
H2 .. 192
H3 .. 192
input power 189
J1 ... 192
J2 ... 192
pin assignments 192
PLCBus address 188
stability 182

Y

Y cables 223

PLCBus Expansion Boards246 s Index

User�s Manual Schematics

SCHEMATICS

