PLCBus Expansion Boards

User’s Manual
019-0047 - 010620-A

PLCBus Expansion Boards User’s Manual

Part Number 019-0047 « 010620-A < Printed in U.S.A.
© 2001 Z-World, Inc. « All rights reserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Notice to Users

Z-WORLD PRODUCTS ARENOT AUTHORIZED FOR USE AS CRITI-
CAL COMPONENTS IN LIFE-SUPPORT DEVICES OR SYSTEMS
UNLESS A SPECIFIC WRITTEN AGREEMENT REGARDING SUCH
INTENDED USE IS ENTERED INTO BETWEEN THE CUSTOMER
AND Z-WORLD PRIOR TO USE. Life-support devices or systems are
devices or systems intended for surgical implantation into the body or to
sustain life, and whose failure to perform, when properly used in accor-
dance with instructions for use provided in the labeling and user’s manual,
can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present
in a system of any size. In order to prevent danger to life or property, it is the
responsibility of the system designer to incorporate redundant protective
mechanisms appropriate to the risk involved.

Trademarks
* Dynamic C'isa registered trademark of Z-World

« Windows' is a registered trademark of Microsoft Corporation

PLCBusm is a trademark of Z-World

» Hayes Smart Modem" is a registered trademark of Hayes Microcom-
puter Products, Inc.

Z-\WORLD
7Z-World, Inc. Telephone: (530) 757-3737
2900 Spafford Street Facsimile: (530) 753-5141

Davis, California 95616-6800 Web Site: http:/www.zworld.com
USA E-Mail: zworld@zworld.com

TABLE oF CONTENTS

About This Manual Xi
XP8100
Chapter 1: Overview 17
XP8100 Series OVEIVIEW ...c..coveeeureieieiieiieieeiesienieniestesieseeseesenaeneeneenne 18
Connector Terminalscocceeeereneneneneneieeeeeeeeeceeee e 18
OULPULS ettt ettt ettt sttt st st e et esat e e sbeesaneeane 19
INPULS e e 19
Factory Configurationscoccvevueruerieneeeninenenenenesiesieneneeeene 19
XP8100 Series Default Board Layoutscccecveeerieriereerenceeennens 20
XP8100 Hardware Specificationsceeveeeereeeniereeerieseeseeseeseennnns 22
INPULS e e 22
OULPULS ettt ettt ettt ettt e st s beesaneeane 23
Mechanical DImenSsionsc.ccoeeverierienieienieneeieeeeneneneneeseeniene 24
Chapter 2: Getting Started 25
XP8100 Series COMPONENLSccveeeverrrreerreerreerieenreenieesseenreesseessesnsens 26
Connecting Expansion Boards to a Z-World Controller 27
Setting Board AddIessescceeveviieieriiecienieeieereeieeeere e 28
POWET .t 28
Confirming COMMUNICATIONSccverrieeerrereeresreeresseeeeaesseeeessenseens 29
Chapter 3: 1/0 Configurations 31
XP8100 Series Input/Output Pin ASSignmentsc..cccceeveveeerenennene 32
XP8100 Series INPULS ..c..covevverierieieieieieeeeeeeese et 34
Protected Digital INPULScceevevvinienienieieieiececnerceesese e 34
XP8100 SerieS OULPULSoveeereereeieieeiereieeeseeeeesneeseseessessaenseeseenseens 36
Sinking and Sourcing OULPULSc.ccueeeverierierieiereerie e 37
Installing Sourcing DIIVETScoccovevienienieieiieninencreseneseceeeenee 38
TTL/CMOS OULPULS ...cevenvenvenrinienieteieieeeieeieeie ettt ne 39
USIng OUtput DIIVETSooveviiiieiiieieieteeeeeceieeiese et 40
Making XP8100 Series I/O Connectionsccceceeceeererenenennereenne 41
I/O Jumper Configurationscecceeeervervenienienieneeneeeneneseseneseenes 42

User’s Manual Contents ¢ iii

Chapter 4: Field Wiring Terminals 43

FW 38 ettt 45
FWTS0 ettt 46
FWT-OP0 ettt ettt ettt eve e st saeesabeessneenneeas 48
Chapter 5: Software Reference 51
XP8100 Series Software Input/Output Channel Assignments 52
SOftWATE OVEIVIEWeeuiiiiiiiiiiiiiniinieetinienteste ettt 54
Dynamic C Librariesccecerveeiereereereeieneeieseeieseeeeeseenee e 54
Supplied SOTEWATLEccveeeieeieieeeeeee e 55
Digital INputs/OULPULSeevveeieieeiieieeieie ettt nes 56
SEtting INPULS ..e.veeieeieieiieieeeee e 56
SEttNG OULPULS ...eeveeieiiieeieie ettt et eseeeeesneenees 58
Advanced Programmingcoccoeeuerierieieieneeeneneneneneneseesienieneens 60
Functions for PLCBus Cycles, Reading and Writing 60
Address Calculationcccceevieieriinieiinininnneneee e 61

Checking for Presence of XP8100 Using Dynamic C Functions 62
Checking for Presence of XP8100 Without Using Dynamic C

FUNCHIONS ..ottt 64
Reading an Input State Using Dynamic C Functionsc....... 65
Reading an Input State Without Using Dynamic C Functions 66
Controlling Outputs Using Dynamic C Functionscccceccvenee 67
Controlling Outputs Without Using Dynamic C Functions............. 68

iv + Contents PLCBus Expansion Boards

XP8300

Chapter 6: Overview 71
FEALUIES ..cnviiiiiiieecec e e 73
SPECITICALIONS ...ttt 74

Chapter 7: Getting Started 75
Connecting Expansion Boards to a Z-World Controller 76
XP8300 ConfigUIAtIONcveeveereeeieieeeeereeeieteeeesreeeesreeeesreeaesreesneeens 77

Setting Board Addressesoovvvvevieeieiieecieniieieceeeeereeee e 78

Chapter 8: Software Reference 79

Relay Board Addressescceeerererininenenenienienieieieeeeeeeesee e 80
Physical AAdIeSSESscoerveruerueriinienienieieieieeeeeieeeeeeie e 80
Logical Addressescoeririereninienienieieieieeeceeseseeetesr e 80

SOFEWATE ...ttt 81
Dynamic C LiDIari€scccceceverinerenienenenieneeieeeeeeeeeeeesiennee 81
How to Use the Relay Boardscccceeeveviieienieiiceeececeee 82

Reset Boards on PLCBUSccccoevivieniinieiiiicncnincnceencseceee 82
Address Target Boardc..coceeerenieniencnienininncncnccseseeeen 83
Operate Relaysc.ccvecveriierieeieieeere et 83

Advanced Programmingcoccoeeerienienieiinieneneneneneseneneesieneeneens 84
Controlling a Relaycccoevivieiieniniiiiiniencrceesesceeeeee 84
PLC_EXP.LIB ..cccciiiiiiieeiiieeeereeeisreeeseseeessseessssessssseesssssesssssessssseenns 85
PBUS_TG.LIB ...ccuoiiiiuieeeieiieeeireeeiereeeseseeesssreessseeessseesssssessssssesssseenns 86
PBUS_LG.LIB ..ccciiiiiiieeiiiieeeereeeiereeeseseeesssseessseeessseesssssessssseesssseenns 86
DRIVERS.LIB....cccociiiiiiiiiiiiiiiieiiiieieieiesentens s sne e s saene s 87

SaMPIE PTOJECESeveneeiieieieiniincri ettt e 88
PLCBUS CONLIOIIETS ...c.veviviieiiiiieieieecteteeeieeieee et 88

INSEIUCHIONS ...ttt 88
Sample Programc..cccoevererienienieneininceeeene e 89
Controllers with Simulated PLCBUSc..ccccoveninenenenicnieieieees 90
Instructions for BL1000 and BL1100c.cccccevievivenenencncnnenne. 90
Sample Program for BL1000 and BL1300ccccccevevenenicennnne. 90

User’s Manual Contents ¢+ v

XP8500

Chapter 9: Overview 95
SPECIFICALIONS ...ttt ee e aesnees 97
Chapter 10: Getting Started 99
XP8500 COMPONENLS ...vveeuvreeereeireeieenireeieenreesseesreesseesseesseessessseenns 100
Connecting Expansion Boards to a Z-World Controller 101
Setting Expansion Board Addressescccooevvevveeeenieceenieeeenieenenns 102
XP8500 AdAIESSESeeueeuieuieeiriiiiisiesie sttt 102
POWERT ettt 102
Chapter 11: 1/0 Configurations 103
XP8500 Pin ASSIZNMENES ...c..eveviieeiieieieieteteeeieeieeieeie e 104
Operating MOAESc.eeuveriieieriieierieiese ettt e ee e seeeeeens 104
Using Analog-to-Digital Converter Boardsccccecvvevenencncnnenne. 105
How to Set Up An XP8500ccuiiiiiriiiiiiieeeeeeeteeeeeeeieeee e 106
Conditioned Inputs (CHO—CH3)cccoevievieieieeceee e 106
Excitation ReSIStOrScccvevvirieriieieieeeeeeeeeeeee s 108
EEPROM ...ttt ettt 108
Unconditioned Inputs (AIN4—AIN10) ...cccocererinenenenencnenenenn 109
Internal Test VOItagescccvevveeverieieeieieeeeeeee et 109
Power-Down Modeccooveieiirieieeieeeee e 109

DL o 110
Selecting Gain and Bias ReSiStOrsccevvreeerierierenieieeieeeieiene 111
Chapter 12: Software Reference 117
Expansion Board Addressesccoceveeeeneeieieerieneereeeenveeeesneenns 118
XP8B500 SOFLWATLEcveviiiriiiiitesieiee ettt 119
Dynamic C LiDIariesccceeereerueeiesieeiesieerenreereeeesseeseesseesnennes 119
Initialization SOftWATecceiierieieieeeeeeeee e 120
XP8B500 DITVETS ..ccuverueeiiriieieiienieeienieeieeite e eite et ee e 121
Other XP8500 DITVETSccuerveeeieieieieieieeeiceiceie e 123
Correcting Readingsccceevveiiiierieniienieeieerieeeeesee e 128
Sample Programccceeecveeiiienieenienieceeeee e 128
Advanced XP8500 Programmingcceeeveecveeneenieeseeneeesreeninennns 131
PLCBus-Level Communicationccoccevereenieneeneneenieneenenne 131

vi + Contents PLCBus Expansion Boards

XP8800

Chapter 13: Overview 135
XPBEOO OVEIVIEW ...veeuvieieeieiienieeiesieeiesseensesneessesssesseensesseesesseensesnes 136
FEALUIES ..ot 136
SPECITICALIONS ...ttt 137
Chapter 14: Getting Started 139
XP8800 COMPONENLS ...vveenvreeereeereeiieenireeieenreeseesreessaesseesseesssessseenns 140
Connecting Expansion Boards to a Z-World Controller 141
Setting Expansion Board Addressesoovevveveevveneenieieenieceenieennns 142
XP8EOO AdAIESSESeoueeuieuieeiriiriinienie ettt 142
POWET it 142
Chapter 15: 1/0 Configurations 143
XP8800 Pin ASSIGNMENLSccuveevrererierireeieenireeieeneeeieesresreesneesseenes 144
Header HS Signalscocoveviiriiieiiieiecieeeece e 144
Screw Terminal Block H6 Signalsccocevieievienincenenceeene 145
Sample XP8800 CONNECLIONSeecvereeererreieieeierieeierieeeenreeaeneeans 146
Optional Optical ISOlationcceceveererciererieseeieeeeeeeeeeaee 147
Using Expansion Boardscoccevevirinencnincniencncieeecncnenees 148
Resetting XP8800 Expansion Boardsc.ccocecveieveevcnencnennens 148
XP8EOO OPEIrAtiONeeveeuieeieieeeieieeiereeeeesieeeesseeeesseesesneeseeseenseenes 150
PCL-AK Pulse Generator..........cccevereenieeiienieenienieneeeeneeeeeseeenes 150
Communicating with the PCL-AKccccoevviiiienienieiieeieeeens 151
REGISTETS .eviviieiieeieeiie ettt ettt sbe e s e e e 152
Acceleration/Deceleration Rate (ADR) Register 153

Status BItS ..coveiiieiiiieieeieeee e 154
UCNS5804 Motor Driver IC.......cccceoerieviiniiniinieeeieneeeeneeeeen 155
DIIVET POWET ...t 156
Quadrature Decoder/COUNterccceeeeveeeeeecieenrieeieeereeereeeeee e 157
Control REGISLETcoverueruiriiriiniinienientcteteteteiteeeeeieeie e 158
PLCBUS INTEITUPLS c.eeevvveeiiieeiieeiteceeeieesiie et sve e 159
Chapter 16: Software Reference 161
XP8800 Board AddIessescevvvevereeeieeeieiieieieeienee e 162
Logical Addressescoerirrererenienieniiieieieeeeeeeeee s 163
Dynamic C Librariescccveeverueerierierienreesieseeeieseeseeeeeseeseeseeseennes 164
XP8BEOO SOFIWATEcvevieiriiieriesieiee ettt 165
Data StrUCLUIESc..eeieiiiiieriieieeieceteee ettt 165
TNEETTUPLS ..vveeiieiieeieeete ettt e ae et e s naeeeneas 166
XP8800 Driver FUNCHONScooverueeieniiiiinieiieiereeteneeee e 167
Miscellaneous XP8800 Function Descriptionsceeveeveenenee. 169
Sample Programccceeecveeiiieniienierieeeeeee e 175

User’s Manual Contents ¢+ vii

XP8900

Chapter 17: Overview 181
SPECIFICALIONS ...ovveeieiieieeeieie ettt enes 183
Chapter 18: Getting Started 185
XP8900 Series COMPONENLSccuverrerrrreerreerirerveeseenreesseesressseessaennns 186
Connecting Expansion Boards to a Z-World Controller 187
Setting Expansion Board Addressescccooevvevveeeenieceenieeeenieenenns 188
POWERT ettt 189
Using Digital-to-Analog Converter Boardsccccvevvevvieeerueennnne. 190
Chapter 19: 1/0 Configurations 191
XP8900 Series Pin ASSIGNMENLSc.eceerveeeeriereieieneieieeeeeeeeeneeenes 192
XP8900 Series CIrCUILTY ...ecuververerereereieiereieieeeeeneeeeesseeeeseeeeesseseennes 193
Chapter 20: Software Reference 195
Expansion Board Addressesc.oeceveeeerieeeiiecieneereeeenveeeesneenns 196
XPBOIOO SEITIES ..uveeuveveenieniieieniieieeitenteeite ettt e e st seae e 196
XP8900 Series SOftWAIEcccceeruiririiriirieierieie e 197
Dynamic C LiDIari€scceeeeeerueeeerieeiesieerenreeseeeenseeseessessnesnes 197
Using Digital-to-Analog Converter Boardscccccvevvevenneenen. 198
Reset Boards on PLCBUScccooeiiiieiieieeeee e 198
Address Target Boardcccoevveveeieiieiicieeceeeeeeeeee s 199
Operate Target Board...........cccoeveevieieniieieniieieseeeese e 200
Sample Programccceeecveeciienieeiierieeeeeee e 204

viii + Contents PLCBus Expansion Boards

APPENDICES

Appendix A: PLCBus 209
PLCBUS OVEIVIEW ...veeviieiieeiieeiieceveeeieeereesieeeveesieeeveesseeseveessneenveees 210
Allocation of Devices on the BUSc.cccceeviiiiiieeiiiiiiecieeeeceeeieeas 214

4-Bit DEVICES ..ovvieiieriieiieeeieeteesreeteesiveeteesaeebeesseereesareesseeennas 214
S-Bit DEVICES ...veivvieiieiiiieiieeie ettt et te e re e vaeereeaee e 215
Expansion Bus SOftwareccccoccevevinininenininienciincecnceeneee 215

Appendix B: Connecting and Mounting Multiple Boards 221

Connecting Multiple Boardsccocveeviiieviinieriiciene e, 222
IMOUNTINE «.veeeveeireeieeitie et eiee et eseeeteesteeeteebeessseebeessneenseesssesnseensnenns 224
Appendix C: Simulated PLCBus Connections 225
BLTO00 ..ottt 227
BLITOO «eeiiiieeeeee ettt sttt s 228
BLI300 ittt e 228
BL1400 0r BLISOO ...ttt 229
Appendix D: PLCBus States 231
PLCBUS State Tables......ccccueeciieriieeiieiieeieesiecieesee e see e sae e 232
Reading State Table D-2ccccceeeevririeiieieieceeeeeeeee e 232
Index 235
Schematics

User’s Manual Contents ¢ ix

x ¢+ Contents PLCBus Expansion Boards

ABourt THis MANUAL

This manual provides instructions for installing, testing, configuring, and
interconnecting the Z-World PLCBus expansion boards. Instructions are
also provided for using Dynamic C® functions.

Assumptions

Assumptions are made regarding the user's knowledge and experience in
the following areas:

Ability to design and engineer the target system that is controlled by a
controller with expansion boards attached to the PLCBus.

Understanding of the basics of operating a software program and
editing files under Windows on a PC.

Knowledge of the basics of C programming.
e For a full treatment of C, refer to the following texts.
The C Programming Language by Kernighan and Ritchie
C: A Reference Manual by Harbison and Steel
Knowledge of basic Z80 assembly language and architecture for
controllers with a Z180 microprocessor.
e For documentation from Zilog, refer to the following texts.

Z180 MPU User's Manual
Z180 Serial Communication Controllers
Z80 Microprocessor Family User's Manual

Knowledge of basic Intel assembly language and architecture for
controllers with an Inte]™386 EX processor.

e For documentation from Intel, refer to the following texts.

Intel™386 EX Embedded Microprocessor User’s Manual
Intel™386 SX Microprocessor Programmer’s Reference
Manual

User’s Manual About This Manual ¢+ xi

Acronyms

Table 1 lists and defines the acronyms that may be used in this manual.

Table 1. Acronyms

Acronym Meaning
EPROM Erasable Programmable Read-Only Memory
EEPROM Electronically Erasable Programmable Read-Only Memory
LCD Liquid Crystal Display
LED Light-Emitting Diode
NMI Nonmaskable Interrupt
PIO Parallel Input/Output Circuit
(Individually Programmable | nput/Output)
PRT Programmable Reload Timer
RAM Random Access Memory
RTC Real-Time Clock
SIB Seria Interface Board
SRAM Static Random Access Memory
UART Universal Asynchronous Receiver Transmitter
Icons

Table 2 displays and defines icons that may be used in this manual.

Table 2. Icons

Icon

Meaning Icon Meaning

&
=
A

rd
Tip Tip

I\

Refer to or see Note
Please contact
Caution

High Voltage

Factory Default

xii + About This Manual

PLCBus Expansion Boards

Conventions

Table 3 lists and defines the typographical conventions that may be used in
this manual.

Table 3. Typographical Conventions

Example Description

whi l e Courier font (bold) indicates a program, afragment of a
program, or a Dynamic C keyword or phrase.

/I'IN-01... Program comments are written in Courier font, plain face.

Italics Indicates that something should be typed instead of the
italicized words (e.g., in place of filename, type afile's
name).

Edit Sans serif font (bold) signifies amenu or menu selection.

An dlipsisindicates that (1) irrelevant program text is
omitted for brevity or that (2) preceding program text may
be repeated indefinitely.

[] Brackets in a C function’s definition or program segment
indicate that the enclosed directive is optional.

< > Angle brackets occasionally enclose classes of terms.

alb|c A vertical bar indicates that a choice should be made from
among the items listed.

Pin Number 1

o 0O 0o o o
A black square indicates] J1i
pin 1 of all headers. Pnl—m o0 o ©

Measurements

All diagram and graphic measurements are in inches followed by millime-
ters enclosed in parenthesis.

User’s Manual About This Manual ¢+ xiii

xiv ¢+ About This Manual PLCBus Expansion Boards

0018dX

XP8100

0018dX

Crarter 1: OVERVIEW

Chapter 1 provides an overview description and board layout for the
XP8100 Series input/output expansion boards.

XP8100 Overview ¢+ 17

XP8100

XP8100 Series Overview

The XP8100 Series consists of compact input/output (I/0O) expansion
boards that connect to any Z-World controller supporting a Z-World
PLCBus expansion port. The XP8100 Series expansion boards can more
than double the digital I/O channels of a Z-World controller.

The XP8100’s 32 I/O channels are configured as 16 inputs and 16 outputs.
Other versions of the board are available, as indicated in Table 1-1, for
added flexibility. Up to eight XP8100 boards may be linked together to
provide 256 additional I/O lines.

Table 1-1. XP8100 Series Features

Model Features
XP8100 16 protected digital inputs and 16 output drivers
XP8110 32 protected digita inputs
XP8120 32 output drivers

Because of the similarities, this manual refers to the functionality of all
three XP8100 Series boards. References to all three boards will be made
by referring to them as the XP8100 Series. Individual reference will be
made where needed.

Connector Terminals

Three field wiring terminals (FWT) make it easy to plug and unplug wiring
connections. Table 1-2 lists the FWT available for the XP8100 Series.
Any of the boards in the XP8100 Series can support two FWT of any type.

Table 1-2. XP8100 Series Options

Option Description

FWT50 Field wiring terminal with twenty 5 mm screw
terminal connectorsin two banks of 10 terminals each

FWT38 Field wiring terminal with 0.15 inch (3.81 mm) quick-

rel ease connectors in two banks of 10 terminals each

FWT-Opto Field wiring terminal for inputs only, has optical
isolation, uses 0.15 inch (3.81 mm) quick-release
connectors in two banks of 10 terminals each

Refer to Appendix E, “Field Wiring Terminals,” for more
information on how to use the FWT.

18 ¢+ Overview XP8100

Outputs

The high-current outputs are capable of providing up to 500 mA, which is
sufficient to drive inductive loads, relays, and other circuit-driven devices.
The output drivers are socketed to allow a sourcing driver or TTL/CMOS
parts to be added.

Inputs

The TTL/CMOS-compatible inputs can handle input signals between -19
and +20 volts. Input bias resistors may be user-configured to be pull-up or
pull-down. Each input line is protected against transient voltages of -48 to
+48 volts. A low-pass filter also blocks incoming voltage spikes.

Additional protection is possible by adding a field wiring terminal with
optical isolation. See Table 1-2.

Factory Configurations

The XP8100 Series is available from the factory in three standard configu-
rations, as listed in Table 1-1. Depending on the version, the board will
have 32 channels of inputs, outputs or a combination of the two. It is not
possible to change inputs to be outputs, or vice versa.

o~ Forordering information, call your Z-World Sales Representa-
& tive at (530) 757-3737.

XP8100 Overview ¢+ 19

XP8100

XP8100 Series Default Board Layouts

The default layouts for the XP8100, XP8110 and XP8120 expansion
boards are shown in Figures 1-1, 1-2, and 1-3 for the boards as they are
shipped from the factory. An outline around a particular component
indicates the presence of the part in the default configuration of the board.

H1 H3 Heat Sink

®

O
A
o)
:
o)

P1|f: us P2

EEE

J1

J2 J4

O E=mm
0O
0O

O g

H2 H4

Figure 1-1. XP8100 Default Board Layout

H1 H3 Heat Sink
O o o O
| — |2
J2 gg] @ J4
o 0 o o

H2 H4

Figure 1-2. XP8110 Default Board Layout

20 ¢+ Overview XP8100

H1 H3 Heat Sink

O [o O E S
S) EE
P1 us u13 P2
: [] 20
J1 % ue u14 % I3

] [] 20
o 10 O O

H2

I
>~

Figure 1-3. XP8120 Default Board Layout

Figure 1-4 shows the locations of the various components.

H1 H3 Heat Sink
O c O
o o)
o o oo
oo oo
oo oo
oo oo
oo oo
oo oo
oo oo
oo oo
o o oo
oo oo
oo oo
om o m||p2

Jule b H°

| B o o

g E oo

g PAL & = o] J3

uuuuu i

u12 =

o

u14 i

O O i PAL ¢
u7
H4

Figure 1-4. XP8100 Series Component Layout

XP8100 Overview ¢+ 21

XP8100

XP8100 Hardware Specifications
Inputs

Table 1-3 summarizes the input specifications for the XP8100 Series
expansion boards.

Table 1-3. Input Specifications

Input Specifications Standard Input
Input Voltage -20V to+24V
Logic Threshold 25V
Bias Resistors User-settable "pull up” or "pull down"
Transient VVoltage -48 V to +48 V max
Input Protection 22 kQ current-limiting series resistor, input-

protection diode

Noise-Spike Filter tre = 220 ps low-pass filter
1/0 Connectors Four 10-pin headers
Input Leakage Current 5uA

The inputs will accept a voltage level between -20 and +24 volts with a
logic threshold of 2.5 volts. A 22 kQ current-limiting resistor paired with a
CMOS input diode provides input protection. The resistor/capacitor
connection to ground acts as a low-pass filter, where T, . = 220 ps.
Jumpers pull inputs to either +5 volts or ground through a bias resistor in
groups of four or eight.

Figure 1-5 shows a typical XP8100 Series expansion board input.

+5 V/IGND

10 kQ

Input J\N\/—h*
22 ng 0.01 pF

Low-Pass Filter

Figure 1-5. XP8100 Series Input

22 + Overview XP8100

Outputs

Table 1-4 summarizes the output specifications for the XP8100 Series
expansion boards.

Table 1-4. Output Specifications

Output Specifications Default Sinking Driver
Maximum Current 500 mA, single channel ON
Connections (4) 10-pin headers
Noninductive voltage +5V to +48V
Inductive Voltage +5V to +30 V
Switching Response Time | 1 Us
Output Leakage Current 100 pA max

The maximum current is subject to the maximum power dissipation for the
package and the ambient temperature. Make sure that the maximum
current is properly derated for temperature and package power dissipation.

AN See Chapter 3, “I/O Configurations,” for more information on
derating.

All outputs are arranged in groups of eight and are driven by a ULN2803
sinking driver. If installed, the chip would be located at U5, U6, U13, or
U14, shown in Figure 2-1 and in Chapter 1.

The sinking driver is rated up to a maximum voltage of 48 V and a
maximum current of 500 mA per individual output. When all the outputs
are on simultaneously, thermal limits restrict the current to 100 mA per
output. Similarly, if multiple outputs are activated at the same time, the
driver current should not exceed 350 mA per output.

A UDN2985 sourcing driver is optional. The UDN2985 is rated at 30 V
and 250 mA for an individual output at 25°C. The sourcing drivers would
be installed at U5, U6, U13, or U14 instead of the sinking drivers, and
jumpers on headers J1 and J3 would be reconfigured, as discussed in
Appendix D.

Refer to “Sourcing and TTL/CMOS Outputs” in Chapter 3 for
information on installing and configuring your board for
sourcing outputs and for TTL/CMOS outputs.

XP8100 Overview ¢+ 23

XP8100

Mechanical Dimensions

1O R @:’:’::’@’:’::’ﬁ:’::’:j’”
\ \
\ \ 0~
| | B
| | NE
| | S
[_CO
=R
© s Q0O
| | Q0 NS
N L R
eSS
11 | -
ery | | 0187 dla, 4x
=~ 0.125 typ (3.2) | | L0115 dia, 4x
2.3 | ‘ (2.9)
(58.4) 5 4 i }
(86.4) 3505 ‘ P P
(89.5) S8 58

Figure 1-6. XP8100 Series Board Dimensions

24 + Overview XP8100

Crarter 2: GETTING STARTED

Chapter 2 provides instructions for connecting XP8100 Series expansion
boards to a Z-World controller. The following sections are included.

* Expansion Board Components
» Connecting Expansion Boards to a Z-World Controller

* Confirming Communications

XP8100 Getting Started ¢+ 25

XP8100 Series Components

The XP8100 Series boards offer protected digital inputs and high-current
driver outputs. Figure 2-1 illustrates the basic layout and orientation of the
expansion boards, including headers and other components. Some headers
and other devices may not be present, depending on the specific board
(XP8100, XP8110, or XP8120).

XP8100

H1 H3 Heat Sink
O . o - o g 230
: ITI :
P1|f:: || P2
SE <ol
1.
nl ., J3
1m
J2 J4
=1
O - O & © O
H2 H4

Figure 2-1. XP8100 Series Board Layout

Pay particular attention to the location of pin 1 of headers J1-J4, as
indicated by a small squares in Figure 2-1. The layout orientation of J1
and J2 is opposite that of J3 and J4, so the pin 1 locations are rotated 180
degrees. Figure 2-1 is referenced throughout the manual.

See Chapter 1, “Overview,” for the exact layouts of the
& XP8100, XP8110 and XP8120 expansion boards.

Be careful to orient H1, H3, and the heat sink to the top, as
A shown in Figure 2-1, when referring to jumper and header
locations.

26 ¢+ Getting Started XP8100

Connecting Expansion Boards to a Z-World
Controller

Use the 26-conductor ribbon cable supplied with an expansion board to
connect the expansion board to the PLCBus on a Z-World controller. See
Figure 2-2. The expansion board’s two 26-pin PLCBus connectors, P1 and
P2, are used with the ribbon cable. Z-World recommends using the cable
supplied to avoid any connection problems.

Controller (O ! 5 OW
PLCBus Port

e]

OA
Pli Pin 1
‘ BN\

]

(@)

Ji
P2

J2 Ja

o= *

‘3o o
(:
H2 Ha LO B8 8 OJ

XP8100 Controller With PLCBus

Figure 2-2. Connecting XP8100 Expansion Board to Controller PLCBus

Be sure power to the controller is disconnected before adding
any expansion board to the PLCBus.

Follow these steps to connect an expansion board to a Z-World controller.

1. Attach the 26-pin ribbon cable to the expansion board’s P2 PLCBus
header.

2. Connect the other end of the ribbon cable to the PLCBus port of the
controller.

Be sure pin 1 of the connector cable matches up with pin 1 of
both the controller and the expansion board(s).

3. If additional expansion boards are to be added, connect header P2 on
the new board to header P1 of the board that is already connected. Lay
the expansion boards side by side with headers P1 and P2 on adjacent
boards close together, and make sure that all expansion boards are
facing right side up.

See Appendix B, “Connecting and Mounting Multiple
& Boards,” for more information on connecting multiple expan-
sion boards.

XP8100 Getting Started ¢+ 27

XP8100

Setting Board Addresses

Z-World has established an addressing scheme for the PLCBus on its
controllers to allow multiple expansion boards to be connected to the
controller.

Every XP8100 Series board is shipped from the factory with a default
address of 7. An XP8100 Series board may be assigned any address
between 0 and 7. Jumpers are placed on the pins of header J4 to configure

the board address. Figure 2-3 shows the jumper settings to set addresses
0-7.

0 2 3
A2 1|B=3|12 A2 1 A2 1 A2 1
A1 3|14 A13 A13 A1 3
A0 5|6 A0 5 A0 5 A0 5
7/ °° |8 7 7 7
9| *° |10 9 9 9
11L°° 112 11 11 11

J4

A2 1 A2 1 A2 1
A1 3 A1 3 A1 3
A0 5 A0 5 A0 5
7 7 7
9 9 9
11 11 11

Figure 2-3. J4 Jumper Settings for XP8100 Series PLCBus Addresses

Only the first six pins of the 12-pin header J4 on the XP8100
Series are used to set the board address.

Remember that each expansion board must have a unique PLCBus address
if multiple boards are to be connected. If two boards have the same
address, communication problems will occur that may go undetected by
the controller. A maximum of eight XP8100 boards may be addressed by a
controller at one time.

Power

Z-World’s expansion boards receive power from the controller over the
+24 V line of the PLCBus. An onboard regulator converts this to the +5 V
used by the expansion boards. The expansion boards draw about 110 mA,
which means a power requirement of 1.3 W for a 12 V controller and

2.6 W for a 24 V controller.

Power may be applied to the controller once the controller and the expan-
sion boards are properly connected using the PLCBus ribbon cable.

28 ¢+ Getting Started XP8100

Confirming Communications

Run the following test program once the XP8100 Series expansion board
is connected to a controller and power is applied. The sample program
will confirm whether the controller and expansion board are communicat-

ing properly.

A See the Dynamic C Technical Reference manual for more
detailed instructions.

| xpsiuiD.C |

#use vdriver.lib
#use eziocmm.lib
#use eziopbdv.lib
/1 uncomment #use ezioplc.lib line for PK2100(Rugged
// Gant), PK2200(Little Star), BL1200(Little PLC),
/1 BL1600(Little Q
//#use ezioplc.lib
/1 uncommrent #use eziongpl.lib line for BL1400(M cro-Q
/1 or BL1500(M cro- Q&)
/[#use eziongpl.lib
char TITLE[] = {“XP81xx Board Detection”};
main(){
inti;
Vdinit();
printf(“%s\n\n”, TITLE);
eioResetPIcBus(); /1 reset the PLCBus
eioPIcRstWait(); /'l delay ensures the PLCBus
/'l boards reset
I/ locate all possible junper-set addresses
/1 fromO to 7 and display status
for (i=0;i<=7; ++i) {
/l read to |locate the board
if (plcXP81In(i*32)==-1)
printf(“Board %d is not located\n”,i);
else
printf(“Board %d is located\n”,i);

Use the following steps to run the sample program.

1. Open the sample program XP811ID.C located in the Dynamic C
samples\plcbus subdirectory. This program is designed to locate
and display the address numbers of XP8100 Series boards connected
on the PLCBus.

2. Be sure to “uncomment” the appropriate library at the top of the sample
program for the particular controller being used. Do this by removing
the forward slashes (//) in front of the appropriate #use library.

XP8100 Getting Started ¢+ 29

XP8100

3. Compile the program by pressing F3 or by choosing Compile from the
COMPILE menu. Dynamic C compiles and downloads the program
into the controller’s memory. During compilation, Dynamic C rapidly
displays several messages in the compiling window, which is normal.

4. Run the program by pressing F9 or by choosing Run from the RUN
menu.

5. The STDIO window will display a message once the program is
running. If communication between the XP8100 Series expansion
board and the controller is ok, the message will be Board (#) is
located. If a problem exists with communications, the message will
be Board (#) is not located. Remember that the default address is 7
for XP8100 Series expansion boards.

6. To halt the program, press <CTRL Z>.
7. To restart the program, press F9.

/ Check the board jumpers, PLCBus connections, and the PC/
controller communications if an error message appears.

30 ¢+ Getting Started XP8100

Crarter 3: I/O CONFIGURATIONS

Chapter 3 describes the built-in flexibility of the XP8100 Series expansion
boards, and describes how to configure the available inputs/outputs. The
following sections are included.

* Input/Output Pin Assignments
* Inputs

e Outputs

Making Input/Output Connections

XP8100 1/0 Configurations ¢+ 31

XP8100

XP8100 Series Input/Output Pin Assignments
There are two “banks” of inputs/outputs that total up to 32 inputs/outputs
for the XP8100 Series expansion boards. Bank A consists of headers H1
and H2, Bank B consists of headers H3 and H4. Figure 3-1 shows an

outline of input/output Banks A and B.

P1

J1

J2

H1 H3 Heat Sink
O Jo Edo O
L 3
uUs I:l u13
:] :
E U6 [] U14 D
= - : I
O] L] O
H2 H4
Bank A Bank B

Figure 3-1. Outline of Input/Output Banks A and B

P2

J3

J4

Banks A and B each have 16 input/output channels. The pins on headers
HI through H4 will function either as inputs or as outputs, depending on
the specific XP8100 Series model.

Each header (H1-H4) contains a group of 10 pins. The 10 pins on each
individual header function similarly to one another.

Some headers and other devices may or may not be present,
depending on the specific XP8100 Series expansion board.
See Chapter 1, “Overview,” for the exact board layouts.

32 ¢+ 1/0 Configurations

XP8100

Table 3-1 lists the functionality of the header pins for the XP8100 Series

expansion boards.

Table 3-1. Header I/O Designations

I/0 Bank A 1/0 Bank B
H1 H2 H3 H4
XP8100 8outputs | 8outputs | 8inputs 8 inputs
XP8110 8 inputs 8 inputs 8 inputs 8 inputs
XP8120 8outputs | 8outputs | 8outputs | 8 outputs

The pin locations are different for the optional field wiring
terminal (FWT) blocks described in Table 1-2. Refer to
Appendix F, “Using FWT Boards,” for the correct header and
pin locations in these circumstances.

XP8100 /0 Configurations ¢+ 33

XP8100

XP8100 Series Inputs

Protected Digital Inputs

The XP8100 and XP8110 boards are equipped with protected digital
inputs designed as logical data inputs, returning a 1 or 0. The inputs
accept voltages between -20 V and +24 V DC, with a logic threshold of
2.5 VDC. This means that an input returns a 0 if the input voltage is
below 2.5V, and a 1 if the input voltage is above 2.5 V DC.

A low-pass filter on each input channel has a time constant of:
Ty =220 ps at 4.5 kHz.

If the XP8100 Series board has inputs, they may be configured as “pull-
up” or “pull-down” in groups of fours and eights. The configuration of
each input should be determined by normal operating conditions,
powerdown mode, and possible failure modes, including open or shorted
conditions. These factors will influence decisions about whether to
configure the inputs as “pull-up” or “pull-down.”

The factory default is for inputs to be pulled up to +5 V.

Inputs may be pulled up to +5 V or pulled down to ground by configuring
jumpers on headers J2 and J4.

& See Figure 3-1 to help locate headers J2 and J4.

The jumpers on headers J2 and J4 configure the inputs on Bank A (H1 and
H2) and Bank B (H3 and H4) as pull-up or pull-down To pull down an
input from the factory default (pull-up), place a jumper across the appro-
priate two pins of J2 and/or J4, as shown in Figures 3-2 and 3-3 for the
XP8100 and XP8110 expansion boards.

Input lines connected to opto-isolator devices must be config-
A ured as “pull-up.” Otherwise, the expansion board may be
damaged.

34 ¢+ 1/0 Configurations XP8100

Pull-Up Configurations Function

Channels Note: Other jumpers may be
3 present on J2 and J4.

(Oigannels . hilhd ; . : : ? Channels The J2 and J4 jumper
’ \\@ , Jeal, B configurationsrelateto Bank A
vl | 1. inputs 0-15.
J2 J4
Bank A Inputs
Channels Note: Other jumpers may be
03 present on J2 and J4.

12
10

Channels The J2 and J4 jumper
815 configurations relate to Bank B

e e n
e e
e e
LN 5 .
e s JH | inputs 0-15.

2 ﬁ 1 1| e e [12

J2 J4
Bank B Inputs

Figure 3-2. XP8100 Series Jumper Pull-Up Configurations

8

1
f

5 LN]
Channels ¢ 7
- B

Pull-Down Configurations Function
Channels
4-7
Note: Other jumpers may be
ocréa””e/'s/@ﬂ/) | ee]s Shemnels | present on J2 and 4.
el el The X2 and J4 jumper
BEXSE . -E/ o configurationsrelate to Bank A
2 LN 1 " L) 12 ian[tSO—lS.
J2 J4
Bank A Inputs
Channels
0-3
Channels | o o |/ 1| oo |2 Note: Otherjumpers may be
47 w| e fo feele o present on 2 and .
o] oo/, sl e . annels |
ﬂ@/ | ool —815 The 2 and J4 jumper
< G| K @/ - configurations relate to Bank B
) m inputs 0-15.
Bank B Inputs

Figure 3-3. XP8100 Series Jumper Pull-Down Configurations

Note that board address jumpers occupy the top three rows of
/ header J4 (pins 1-6) as seen relative to the heat sink being at
the top of the board.

XP8100 1/0 Configurations ¢ 35

XP8100

XP8100 Series Outputs

The XP8100 Series expansion boards are shipped from the factory with the
outputs configured with “sinking” drivers. The sinking drivers are rated up
to a maximum output voltage of 48 V and a maximum current of 500 mA
per individual output when only one output in a particular bank is active at
once.

When all outputs are on simultaneously, thermal limits restrict the current
to less than 100 mA per output. Similarly, if multiple outputs are turned on
at the same time, the driver current should not exceed 350 mA per output.
If the temperature exceeds 50°C, derate power dissipation by 55°C/W.

Jumpers across headers J1 and J3 define the sinking or sourcing configura-
tion of the outputs. For the default sinking setting, the jumpers are placed
horizontally across headers J1 and J3, as shown in Figure 3-4. The
XP8100 uses only header J1 and the XP8120 uses both headers J1 and J3.

SINKING DRIVER SOURCING DRIVER
8[E=3]7 1E=3|2 8 7 1 2
6|55 O 3|4 6 ﬂ@ 5 3 @ 4
4|63 5|26 4 E@ 3 5 E 6
2|1 7|38 2 1 7 8

J1 J3 J1 J3

Figure 3-4. Jumper Configurations
for Sinking and Sourcing Outputs

The factory default is for outputs to be configured with sinking
drivers (ULN2803).

36 ¢+ 1/0 Configurations XP8100

Sinking and Sourcing Outputs

Figure 3-5 shows a typical sinking driver output configuration.

External DC Supply

External l
Load
Output Line Jumper '
> @—4 K
P Freewheel
Diode
Jumper
ULN2803
\V4

Figure 3-5. XP8100 Series Sinking Driver Output

Sourcing outputs are possible by replacing the factory-installed sinking
driver chips with sourcing output drivers (UDN2985). The UDN2985
sourcing driver chip is capable of sourcing a maximum of 250 mA per
output.

Figure 3-6 shows a typical sourcing driver output.

Jumper
K External DC

T Supply

Freewheel
Diode

Output Lines

Jumper E External
= Load
UDN2985 J7

Figure 3-6. XP8100 Series Sourcing Driver Output

XP8100 /0 Configurations ¢ 37

XP8100

Installing Sourcing Drivers

Figure 3-7 shows the location of the drivers and headers with jumpers to
be changed.

Heat Sink

O o o O

P1]:: us u13 -+ |P2

u
-
o o 0 o

] [m e o0 o6
=y

" ué u14

O e
O B

Figure 3-7. U5, U6, U13 and U14 Locations of Sinking Drivers

Pay particular attention to the orientation of the jumpers when changing
the driver output from sinking to sourcing. Exercise caution when install-
ing sourcing drivers in the field.

1. Be sure power is removed from the controller, then disconnect the
expansion card from the controller..

2. Remove the ULN2803 sinking drivers from the IC sockets. Note that
the XP8100 has two ULN2803 chips (at U5 and U6) and the XP8120
has four (U5, U6, U13 and U14).

3. Install the jumpers on header J1 in the sourcing configuration, as shown
in Figure C-4, for “Bank A” output channels 0—15. This step applies to
both the XP8100 and the XP8120 expansion boards. Note the location
of pin number 1.

4. For the XP8120 expansion board, install the J3 jumpers in the sourcing
configuration, as shown in Figure D-4, for “Bank B” output channels
0-15. Note the location of pin number 1.

Failure to install jumpers correctly will cause the expansion

Be sure the jumper settings conform to what is specified.
A board to fail.

38 ¢ 1/0 Configurations XP8100

5. Install UDN2985 sourcing driver chips into the IC sockets.

Z-World also offers all XP8100 Series expansion boards with
‘ﬂ' factory-installed sourcing drivers. For ordering information,
call your Z-World Sales Representative at (530) 757-3737.

Tables 3-2 and 3-3 indicate which I/O channels are modified by the
jumpers on the J1 and J3 headers. The tables also list the specific location
of each output chip.

Table 3-2. Header J1 I/O Channels

“Bank A” I/O Channels

J1 Pins Modified IC Location
1-4 8-15 U6
5-8 0-7 us

Table 3-3. Header J3 I/O Channels

J3 Pins “Bank B” I/O Channels IC Location
1-4 8-15 U1
5-8 0-7 ul13

TTL/CMOS Outputs

Z-World also offers TTL- or CMOS-compatible outputs for the XP8100
Series expansion boards. Input and output channels may be configured
independently in any combination. However, the functionality of each
input is not independent; the inputs are still characterized in groups of
eight.

Z-World offers all XP8100 Series expansion boards with

{E factory-installed TTL- or CMOS-compatible outputs. For
ordering information, call your Z-World Sales Representative
at (530) 757-3737.

XP8100 /0 Configurations ¢+ 39

XP8100

Using Output Drivers

The common supply for the digital output channels supplied by a driver
chip is called “K,” and is available on pin 10 of headers H1, H2, H3, and
H4 when they are configured to operate as digital outputs. “K” must be
used with digital outputs to allow proper operation.

The “K” connection performs two vital functions to the high-voltage driver
circuitry on the XP8100.

1. “K” supplies power to driver circuitry inside the driver chip.

2. “K” also allows a diode internal to the driver chip to “snub” voltage
transients produced during the inductive kick associated with switching
inductive loads such as relays, solenoids, and speakers.

Long leads may present enough induction to also produce large potentially
damaging voltage transients. The anodes of the protection diodes for each
channel are common, and so only one voltage supply can be used for all
high-voltage driver loads.

The following points summarize the functions of “K.”

* K provides power to the driver chip circuitry.

* K provides “clamping” for all high-voltage driver loads.

» It is mandatory to connect K regardless of whether sourcing or sinking.

* The load’s supply must have a common ground with all other supplies
in your system.

* All loads must use same supply voltage.

K must be connected to the power supply used for the high-voltage load as
shown in Figure 3-8.

: To XP8100 K Connection To XP8100 K Connection
To Load Power (+DC source) To Load Power (+DC source)
l—» To XP8100 High-Current Output

LOAD Sourcing Driver LOAD Sinking Driver

—l— I—> To XP8100 High-Voltage Output

Figure 3-8. XP8100 K Connections

40 ¢+ 1/0 Configurations XP8100

Making XP8100 Series I/O Connections

The four 10-pin headers (H1-H4) accept either ribbon-cable connectors or
up to two XP8100 Series FWT blocks for input/output connections. Input
and output lines are wired to the 10-pin headers directly using a custom-
built cable and connector, or by using the FWT connectors available from
Z-World.

The hardware pin assignments for each header are referenced in Fig-
ure 3-9. Note that the first pin, indicated by the square, is labeled zero.

“Bank A" 1/0O Channels “Bank B” 1/0O Channels
4 5 6 7 K 4 5 6 7 K
[° [] [] o [] [] [] [] o
H1 l{ e o o o H3 Il e o o o
0 1 2 3 GND 0 1 2 3 GND
1213 14 15 K 1213 14 15 K
[] [] [] [] [] o [] [] [] °
H2 H e ¢ o o H4 H e o o o
8 9 10 11 GND 8 9 10 11 GND

Figure 3-9. XP8100 Series Header H1-H4 Pin Assignments

Note that the hardware pin assignments for Bank B (H3 and

/ H4) do not match up with the Bank B software input/output
assignments. Both hardware and software assignments are
cross-referenced in Table 4-2 in Chapter 4, “Software Refer-
ence.”

Inputs/outputs may be connected with discrete wires instead of
/ aribbon cable. Refer to Appendix E, “Field Wiring Termi-
nals,” for information on the optional FWT connectors.

i’i Pay close attention to the locations of pins on the header when
connecting inputs/outputs.

XP8100 1/0 Configurations ¢+ 41

XP8100

I/O Jumper Configurations

There are four headers for jumper blocks. Depending on the specific
XP8100 Series expansion board, not all the four headers may be installed
on a particular board. Headers J1 and J3 are used to configure outputs,
while headers J2 and J4 are used to configure inputs. Header J4 is present
on all XP8100 Series expansion boards, and is used to configure inputs
and address settings.

Table 3-4 lists the headers that are installed specifically for each XP8100
Series expansion board and provides a reference to the jumper configura-

tions.
Table 3-4. XP8100 Series I/O Jumper Configurations
Header Pins Connected Configures
XP8100—16 nputs and 16 outputs

Sinking or

J sourcing drivers: | “Bank A” Output Channels 0-15
see Figure 3-4

J2 Pull-up or pull- | “Bank B” Input Channels 0-7
down inputs:

14 se(ej zlgures 3-2 | “Bank B” Input Channels 8-15
and - and board address

XP8110—32 nputs

P Pull-up or pull- :Bank A Input Channels 0—7 and
down inputs: Bank B” Input Channels 0-7

1 see Figures 3-2 | “Bank A” Input Channels 8-15, “Bank B”
and 3-3 Input Channels 8-15, and board address

XP8120—32 outputs

J Sinking or “Bank A” Output Channels 0-15
sourcing drivers:

J3 see Figure 3-4 | “Bank B” Output Channels 0-15

J4 — Board address only

2 ~ See Figure 2-3 in Chapter 2, “Getting Started,” for the jumper
configurations to set board addresses.

42 + 1/0 Configurations XP8100

Crarter 4: FIELD WIRING TERMINALS

XP8100/XP8200 Field Wiring Terminals + 43

XP8100

Discrete input/output lines may be connected to any of the XP8100 Series
expansion boards with field wiring terminal (FWT) modules. This elimi-
nates the need for ribbon cables. The optional quick-disconnect modules
provide screw terminals for simple wiring.

Each module mates to two of the XP8100 Series board headers (H1-H2
and H3-H4). This is equivalent to 16 connections per module. One
XP8100 Series expansion board can accept up to two FWT modules in any
combination. The FWT50, FWT38, and the FWT-Opto modules are
available.

Figures 4-1 and 4-2 show the mounting configuration for the FWT modules.

FWT-Opto
FWT38 - -
- -)

\ H3 Heat Sink
Ol e[| o/ [FE 2
o - @ o
.. ..

P1{l|-- il <o |P2
o ..
.. ..
o o O o
= — 15
|:|
J1
o 1
J2 [- - J4
- ul1l @
o © O
H4
- -
- e

Figure 4-1. Top View of XP8100 with FWT Modules

The four FWT styles described in this appendix are available
/ from Z-World. Your application may use a different arrange-
ment than that shown in Figure 4-1.

44 + Field Wiring Terminals XP8100/XP8200

Figure 4-2. FWT Installation

FWT38

The FWT38 has 20 terminals in two groups with 10 terminals each. Each
group of terminals may be removed independently.

Table 4-1 summarizes the specifications for the FWT38.

Table 4-1. FWT38 Specifications

Parameter Specification
Tota 1/0 Channels 16
Screw Terminal Pitch 3.81 mm

Maximum Wire Gauge 28-16 AWG

Wiring banks can be unplugged from the
board separately (Phoenix Combicon type
connection)

Quick-Disconnect
Capability

Wire Orientation Top-exiting wires

Figure 4-3 provides the dimensions for the FWT38.

BEBEBEBEEE o Q@
NN [e>Xsp]
H ety N
o=
1
0.115 dia, 2x
(2.9)
N~
g T
11 11 ‘I_g

| B BN

Figure 4-3. FWT38 Dimensions

XP8100/XP8200 Field Wiring Terminals ¢+ 45

XP8100

Figure 4-4 shows the I/O channel assignments and pinouts for the FWT38.

FWT38
Bank A

FWT38
Bank B

(©)

O

BEEBEBEBEEEEH
BEEEREREREH

08 00 08
09 01 09
10 02 10
1 03 11
12 04 12
13 05 13
14 06 14
15 07 15
GND GND GND
K K K

(©)
©)

Figure 4-4. FWT38 Pinouts

FWTS50

The FWTS50 provides 20 screw terminals. The terminal connectors are
fixed to the FWT module and cannot be removed.

Table 4-2 summarizes the specifications for the FWT50.

Table 4-2. FWT50 Specifications

Parameter Specification
Tota 1/0 Channels 16
Screw Terminal Pitch 5.00 mm
Maximum Wire Gauge 24-12 AWG

Quick-Disconnect
Capability

Unplugs from the XP8100 board as asingle
unit

Wire Orientation

Side-exiting wires

46 ¢+ Field Wiring Terminals

XP8100/XP8200

Figure 4-5 provides the dimensions for the FWT50.

XXXXXXXXI [, |s@
eeceeeeec N
l~0.251 i
i (6.4§’P 0.11(52%';1,2x
2.85
(72.4)
s |38
v RGRDRERERR L, | 58 e

Figure 4-5. FWT50 Dimensions

Figure 4-6 shows the I/O channel assignments and pinouts for the FWTS50.

FWT50 FWT50
Bank A Bank B
o[sss3s] o[sss32]
00 08 00 08
01 09 01 09
02 10 02 10
03 11 03 11
04 12 04 12
05 13 05 13
06 14 06 14
07 15 07 15
GND GND GND GND
K K K K
JHEH JJHHEH

Figure 4-6. FWT50 Pinouts

XP8100/XP8200 Field Wiring Terminals ¢ 47

XP8100

FWT-Opto

The FWT-Opto provides optical isolation to the input channels. The
FWT-Opto is used only for inputs, and is not used with the XP8120
expansion board. All 16 channels must be committed to inputs when an
FWT-Opto module is used.

Every four FWT-Opto inputs share a common return. The
/ excitation resistors need to be pulled up to +5 V when the
FWT-Opto module is used.

Table 4-3 lists the specifications for the FWT-Opto module.

Table 4-3. FWT-Opto Specifications

Parameter

Specification

Total Input Channels

16 opticaly isolated input channels only

Screw Terminal Pitch

3.81 mm

28-16 AWG

Wiring banks can be unplugged from the
board separately (Phoenix Combicon type
connection)

Maximum Wire Gauge

Quick-Disconnect
Capability

Wire Orientation Top-exiting wires

5 kV rms between input and output
#0oV

Input Protection Range

Maximum Input Voltage

Guaranteed Input

Switching Threshold 05V

The FWT-Opto module uses 4.7 kQ input resistors to accommodate the
large range of input voltages. This limits the input switching threshold to
19.5 V. These 4.7 kQ input resistors need to be replaced with 1.2 kQ input
resistors to handle smaller input voltages such as 5 V logic. 1f0.125 W
resistors are used, this will limit the maximum input voltage to £12.2 V.

48 ¢ Field Wiring Terminals XP8100/XP8200

Figure 4-7 provides the dimensions for the FWT-Opto module.

oN
o
a N -
5 5 i g Vs
e — AN [233; l
0.925 0.115 dia, 2x
(23.5) (2.9)
3.275
®32) 429
(107)
2222222222, ~
=z |TT
- 11 11 - N

| I | 181“

Figure 4-7. FWT-Opto Dimensions

Figure 4-8 shows the input channel assignments and pinouts for the
FWT-Opto module.

FWT-Opto

FWT-Opto
Bank A

Bank B

Figure 4-8. FWT-Opto Pinouts

XP8100/XP8200 Field Wiring Terminals + 49

XP8100

Figure 4-9 shows an FWT-Opto optical isolation circuit.

+5V
10 kQ
00 :
Ja
/\/\/\/ﬁ 3
+5V
47kQ
10kQ
o1 .
Ja
‘/\/\/\/ﬁ 3
+5V
47KQ
10kQ
02 -
NN
‘/\/\/\/ﬁ 3
+5V
rka v 10kQ
03 .
NN
+ X
com1
47kQ

Figure 4-9. FWT-Opto Optical Isolation Circuit

The opto-isolated inputs share a common return in groups of
/ four. The software channel assignments remain the same for
Banks A and B.

50 ¢+ Field Wiring Terminals XP8100/XP8200

CHAPTER 5: SOFI'WARE REFERENCE

Chapter 5 describes the Dynamic C functions that initialize the XP8100
Series expansion boards, and perform input/output operations. The
following major sections are included.

» Software Input/Output Channel Assignments
* Software Overview

 Digital Inputs/Outputs

* Advanced Input/Output Programming

XP8100 Software Reference ¢+ 51

XP8100

XP8100 Series Software Input/Output Channel
Assignments

Together, the four headers of Banks A and B provide a total of 32 inputs/
outputs. In hardware, the input/output channels are numbered 015 for
Bank A and are also numbered 0-15 for Bank B. However, the channels
must have unique software numbers, and so the inputs/outputs for Bank A
retain their numbering of 0—15, but the inputs/outputs for Bank B are
numbered 16-31.

Therefore, header H1 consists of software I/O channels 0—7, header H2
consists of software I/O channels 8-15, header H3 consists of software I/O
channels 1623, and header H4 consists of software I/O channels 24-31.

See Chapter 1, “Overview,” for the board layouts showing the
& .
exact locations of the headers.

Table 5-1 summarizes the software I/O assignments for each header.

Table 5-1. I/0 Channel Assignments
for XP8100 Series Headers

ey | SOrel0
H1 0-7
H2 8-15
H3 16-23
H4 24-31

52 + Software Reference XP8100

Table 5-2 lists the software I/O channel assignments for each header pin.
The table details the software function number assigned to the actual
hardware pin for headers H1-H4. Refer to this table when planning which
channel to activate or read during program development.

Table 4-2. I/O Channel Assignments forXP8100 Header Pins

Hardware Bank A Bank B
Headers
H1-H4 H1 H2 H3 H4
Pin Software Software Software Software
Channel Channel Channel Channel Channel
Assignment Assignment Assignment Assignment Assignment
0 0 - 16 -
1 1 - 17 -
2 2 - 18 -
3 3 - 19 -
4 4 - 20 -
5 5 - 21 -
6 6 - 22 -
7 7 - 23 -
8 - 8 - 24
9 - 9 - 25
10 - 10 - 26
11 - 11 - 27
12 - 12 - 28
13 - 13 - 29
14 - 14 - 30
15 - 15 - 31

XP8100 Software Reference ¢ 53

XP8100

Software Overview

This section describes a set of simple software functions to use when
controlling the XP8100 Series expansion board inputs/outputs.

See the section “Advanced Programming” later in this chapter
& to get more information on developing applications to meet
tight timing requirements.

Dynamic C Libraries

Several Dynamic C function libraries need to be used with the routines
defined in this chapter. There are three common libraries used by all
Z-World controllers and specific libraries designed for certain controllers.
The chart in Table 5-3 identifies which libraries must be used with particu-
lar Z-World controllers.

Table 4-3. Dynamic C Libraries Required by Z-World Controllers

Library Needed Controller

VDRI VER. LI B All controllers

EZI OCMWN. LI B | All controllers

EZI OPBDV. LI B | All controllers

EZI OTGPL. LI B | BL1000

EZI OLGPL. LI B | BL1100

EZI OMGPL. LI B | BL1400, BL1500

EZI OPLC. LI B BL1200, BL1600, PK2100, PK2200
EZI OPLC2. LI B | BL1700

Before using one of these libraries in an application, first include the
library name in a #use command. For example, to use functions in the
library EZIOPLC. LIB, be sure there is a line at the beginning of the
program in the following format.

#fuse ezioplc.lib

54 + Software Reference XP8100

Supplied Software

These Dynamic C functions are used to initialize the PLCBus. Call these
functions in a program before any code to read inputs or set outputs.

e VdInit()

Initializes the timer mechanism.
LIBRARY: VDRIVER.LIB
e void eioResetPlcBus ()
Resets all expansion boards connected to the PLCBus.

When using this function, initialize timers with vdInit () before
resetting the PLCBus. All PLCBus devices must reset before perform-
ing any subsequent operations.

LIBRARY: EZIOPLC.LIB
e void eioPlcRstWait ()
Provides a delay long enough for the PLCBus to reset.

This function provides a delay of 1-2 seconds to ensure devices on the
PLCBus reset. This function should be called after resetting the
PLCBus.

LIBRARY: EZIOPBDV.LIB
¢ long int eioErrorCode

Represents a global bit-mapped variable whose flags reflect error
occurrences.

This register for this variable is initially set to 0. If the application tries
to access an invalid channel, the flag EIO_NODEV (the first bit flag) is
set in this register. Note that the other bits in EI0O_NODEV deal with
networked controllers.

XP8100 Software Reference ¢ 55

XP8100

Digital Inputs/Outputs

The following functions provide an easy way to read inputs and activate
outputs. The digital input and output functions are located in the Dynamic C
EZIOPBDV.LIB library.

Setting Inputs
¢ int plcXP8lIn(unsigned eioAddr)
Reads the state of an XP8100 Series input channel.

PARAMETER: eioaddr specifies the board address and the input pin
to be read. Use the following formula in the function’s argument to
determine eioAddr.

32*brdNum+pin

The variable brdNum is the board address (the default address is 7, as
explained in Chapter 2) and the variable pin is the input being read
(software pin assignment 0—31).

RETURN VALUE:
* 0 if the board is found and the input channel reads low.
» 1 if the board is found and the input channel reads high.

» Sets the flag EIO_NODEV in eioErrorCode and returns —1 if the
channel does not exist (that is, if eioAddr is greater than 31).

For the XP8100 board, eioAddr is a number ranging from 16
/ through 31. For the XP8110 board, eioAddr is a number
ranging from 0 through 31.

56 ¢+ Software Reference XP8100

Program 5-1 demonstrates how to read the status of a digital input.

Program 5-1. Input Demonstration Program

#use vdriver.lib
#use eziocnmm.lib
#use eziopbdv.lib
/1 uncomment #use ezioplc.lib line bel ow for
/1 PK2100(Rugged G ant), PK2200(Little Star),
/1] BL1200(Little PLC) and BL1600(Little Q
/'l #use ezioplc.lib
/1 uncomment #use eziongpl.lib line below for
/1 BL1400(M cro-G or BL1500(M cro- &)
/| #use eziongpl.lib
char TITLE[] = {*XP81xx Digital Input};
main() {
int channum;
inti, j;
Vdinit();
printf(“%s\n\n”, TITLE);
eioResetPIcBus(); /1 reset the PLCBus
eioPIcRstWait(); /'l delay ensures the
/] PLCBus boards reset
/1 locate all possible
/'l junper-set addresses
// fromO to 7 and
/] display status
for (i=0;i<=7; ++i}
if (plcXP81In(i*32)==-1) { /!l do a read to
/1 locate the board
printf(“‘Board %d is not located\n\n",i);

else {
printf(“Board %d is located\n”,i);
//read each channel fromO to 31 and display status
printf(“Reading all 32 positions\n”);
for (channum = 0; channum <= 31; ++channum) {
j = pleXP81In(i*32+channum);
/1 read the input of the channel
printf(“HV%d reads %d\n”, channum, j);

printf(\nPress a key to continue...\n");
while ('kbhit());
getchar();

XP8100 Software Reference ¢ 57

XP8100

Setting Outputs

int plcXP81Out (unsigned eioAddr, int state);
Writes to an output channel.

PARAMETERS: eioAddr specifies both the board address and the
output to turn on or off. Use the following formula in the function’s
argument to determine eioAddr.

32*brdNum+pin
The variable brdNum is the board address (the default address is 7, as

explained in Chapter 2) and the variable pin is the output being set
(software pin assignment 0—31).

state is 0 if the corresponding output is to be disabled or turned
“OFF,” state to 1 if the corresponding output is to be enabled or
turned “ON.”

RETURN VALUE:
0 if the output is within range.

+ Sets the flag EIO_NODEV in eioErrorCode and returns a -1 if
and only if the channel does not exist (that is, if eioAddr is
greater than 31).

58 ¢+ Software Reference

XP8100

Program 5-2 demonstrates how to set the status of a digital output.

Program 5-2. Output Demonstration Program

#use vdriver.lib
#use vdriver.lib
#use eziocmm.lib
#use eziopbdv.lib
#use ezioplc.lib
/1 uncomment #use ezioplc.lib line below for
/1 PK2100(Rugged G ant), PK2200(Little Star),
// BL1200(Little PLC) and BL1600(Little Q
/] #use ezioplc.lib
/1 unconmment #use eziongpl.lib |ine bel ow for
/1 BL1400(M cro-G or BL1500(M cro-@®)
/] #use eziongpl.lib
char TITLE[] = {*"XP81xx Digital Output"};
main() {
int channum;
int i
vdinit();
printf(“%s\n\n”, TITLE);
eioResetPIcBus(); /'l reset the PLCBus
eioPIcRstWait(); /1 delay ensures the
/1 PLCBus boards reset
/1 locate all possible
/'l junper-set addresses
/1 fromO0-7 and displ ay
/1 status
for (i=0;i<=7; ++) {
if (plcXP81In(i*32)==-1) { //read to | ocate board
printf(“Board %d is not located\n\n”,i);

else {

printf(“Board %d is located\n”,i);
/'l enabl e each chan from 0-31

printf(“Enabling all 32 positions\n”);
or (channum = 0; channum <= 31; ++channum)
plcXP810ut(i*32+channum,1); //w state to out chan
printf(“Press a key to continue...\n");
while (kbhit());
getchar(); /1 disabl e each chan fromO-31
printf(“Disabling all 32 positions\n”);
for (channum = 0; channum <= 31; ++channum)
plcXP810ut(i*32+channum,0); //w state to out chan
printf(“Press a key to continue...\n");
while (kbhit());
getchar();

}
printf(“\n");

XP8100 Software Reference ¢ 59

XP8100

Advanced Programming

While the functions described in the last four pages are easy to use to read
and set input/output channels, they may not be able to meet the require-
ments of critical, real-time applications. This section discusses how to
access the inputs/outputs on the XP8100 Series expansion boards more
efficiently. To this, the reader must be familiar with binary arithmetic, C
programming, and low-level PLCBus operations.

Functions for PLCBus Cycles, Reading and Writing

The PLCBus functions described in this section for the XP8100 Series
expansion boards will make a program more abstract and portable.
Dynamic C’s inport and outport statements or in and out assembly
instructions may still be used for controllers that support the PLCBus
directly. However, the expansion boards still have to be reset and a delay
has to be provided to ensure that all resets have occurred.

The following functions are located in EZIOPBDV. LIB.
e unsigned _eioPlcXP81Addr (char BrdAddr)
Converts the logical address into a 12-bit physical address.

PARAMETER: Brdaddr is the jumper-configured board address,
which ranges from 0 to 7. The logical address of the XP8100 Series
expansion boards is 0000 Opgr, where pqgr is the binary representa-
tion for a board address of 0 to 7.

The function converts the logical address into a 12-bit physical address,
r000 0lpg 0001.

RETURN VALUE: The bit-mingled XP8100 Series physical address.

The following functions are located in EZIOPLC.LIB and can be used to
simplify the multiple writes and reads on the PLCBus.

¢ void eioPlcAdrl2 (unsigned addr)

Specifies an address on the PLCBus using the BUSADRO, BUSADRI,
and BUSADR?2 cycles. addr is broken into three nibbles, and one
nibble is written during each BUSADRXx cycle, with BUSADRO the
first bus cycle.

addr contains the PLCBus cycle addresses. BUSADRO contains the
least significant four bits as shown below.

addr: 0000 rxXyz Olpg 0001

BUSxxxx:. ADR2 ADR1 ADRO

60 ¢+ Software Reference XP8100

¢ void eioPlcAdr4 (unsigned addr)
Writes to PLCBus register BUSADR?2.

addr is the most significant four bits, rxyz. Here xyz is represented
as a group number. This function writes rxyz only in register
BUSADR?2. Table 5-4 on the next page lists the rxy=z addresses.

e char _eioReadDO ()

This function reads the BUSRDO register and returns the four data bits
D3-DO0 read off the PLCBus.

e char _eioReadDl ()

This function reads the BUSRDI1 register and returns the four data bits
D3-DO read off the PLCBus.

¢ void _eioWriteWR(char ch)
This function writes to the BUSWR register.
ch is the four data bits, D3—D0, written in the BUSWR register.

Address Calculation

Addressing an XP8100 Series expansion board first involves explicitly
determining each bit of the board’s address and then arranging those bits in
a particular order. This form of addressing is more complex than the
simple formula presented in the preceding section.

Let p, q, and r represent the most significant to least significant bits of the
jumper-set address of an XP8100 Series expansion board. The “logical”
address of each board in binary notation is then 0000 0000 Opgr. The
default address of any XP8100 Series expansion board is 7, as explained in
Chapter 2.

The actual address that is passed to advanced PLCBus functions, however,
must be rearranged to a physical address, rxyz 0lpqg 0001, where xyz
corresponds to either the board identification address or a group number
for the input/output data. The physical address is passed during a PLCBus
cycle by presenting the least-significant nibble, 0001, to the BUSADRO
register, the middle nibble 01pq to the BUSADRI register, and the most-
significant nibble rxyz to the BUSADR?2 register. Table 5-4 on the next
page lists the rxyz addresses.

For convenience, the function _eioP1lcXP81Addr described in the
previous section is available to transform the logical address into the
physical address r000 01pg 0001 required by the PLCBus.

XP8100 Software Reference ¢ 61

XP8100

Table 5-4 lists the software input/output group numbers and the corre-
sponding register BUSADR?2 values to use when accessing the XP8100’s
input channels via PLCBus registers BUSRDO and BUSRDI1. The bit
positions of all 32 channels are also included. The input/output channels
are shown as channels 00 through 31.

Table 4-4. Software Input Registers

n (I/O Channels)
Group BUSADR2 PLQBus D3 D2 D1 DO
Number rxyz Register
0 r000 BUSRDO X X X 0
BUSRDO 03 02 01 00
0 r100
BUSRD1 07 06 05 04
BUSRDO 11 10 09 08
1 r101
BUSRD1 15 14 13 12
BUSRDO 19 18 17 16
2 r110
BUSRD1 23 22 21 20
BUSRDO 27 26 25 24
3 ri11
BUSRD1 31 30 29 28

Checking for Presence of XP8100 Using Dynamic C
Functions

It is possible to verify whether an XP8100 Series expansion board with a
given bus address is actually responding. If the program addresses an
XP8100 with the lowest three bits of the highest nibble cleared, then the
XP8100 at that address will enter an “ID mode.” A correctly identified
board in the ID mode responds with a nibble that has the least significant
bit cleared.

Use the following procedure and sample program with the Dynamic C
functions to check whether a board actually exists on the PLCBus.

1. Calculate the physical PLCBus address of the board using the function
_eioPlcXP81Addr.

The address will automatically be in “ID mode” in the form
r000 0lpg 0001. Remember that pgr is the jumper-configured
board address, as explained in Chapter 2.

62 + Software Reference XP8100

2. Send the physical address to the PLCBus using the function
eioPlcAdrl2.
3. Read back the nibble D3-DO0 using the function

eioReadDO.

4. Determine whether a board exists on the PLCBus by checking if the
least significant bit DO is cleared or contains a zero. Refer to Table 5-4
to help determine DO.

Program 5-3, XP811IDX.C, shows how to detect XP8100 expansion boards
connected on the PLCBus using Dynamic C functions. Compile and run
this program from the Dynamic C SAMPLES\PLCBUS subdirectory.

Program 5-3. Board Detection Program

XP81l1 DX. C

#use vdriver.lib
#use eziocmm.lib
#use eziopbdv.lib
#use ezioplc.lib
/1 for PK2100(Rugged G ant), PK2200(Little Star),
/1 BL1200(Little PLC), BL1600(Little G
//#use ezionmgpl.lib
/1 for BL1400(Mcro-G or BL1500(M cro-Q®X)

mai n() {
int i;
int brdAdr;
vdinit(); /1 auto hit watch dog
ei oReset Pl cBus(); /'l reset PLCBus

ei oPl cRstWait(); // delay ensures PLCBus bhoards reset
/1 locate all possible junper-set board addresses fromO to 7
for (i =0; i <=7; ++i) {
br dAdr = _ei oPl cXP81Addr (i) ;
I/ convert to PLCBus format
ei oPl cAdr 12(brdAdr); // send board address
if (_ei oReadDO() &1) /1 read nibble, nask bit 0
printf(“Board %d is not located\n”,i);
else
printf(“Board %d is located\n”,i);

XP8100 Software Reference ¢+ 63

XP8100

Checking for Presence of XP8100 Without Using
Dynamic C Functions

The following steps may be used to check whether a board is connected to
the PLCBus without using Dynamic C functions. The procedure requires
accessing the BUSADRO and BUSADRI1 registers during a PLCBus cycle.
The procedure essentially checks if a board with a specific address exists.

1.

The physical address is always in the form rxyz 01lpg 0001.

The letters pgr stand for the board address, which is 0 to 7, in binary
notation. The letters xyz will always be 000 for “ID mode.” Thus, the
string becomes 0000 0101 0001 for a board address of 2 since the
binary notation for 2 is 010.

. First write the nibble 0001 in the BUSADRO register during a PLCBus

cycle.

3. Write 01pq in the BUSADRI register.

Write x000 in the BUSADR?2 register (remember xyz is always 000
for ID mode).

5. Read back the data bits D3—-D0 from the BUSRDO register as n.

. Determine if the least significant bit 0 (D0) of n is cleared. One

method of checking bit 0 is to mask n by performing a “logical and 1”
of n. If the result is zero, the XP8100 board is present.

. At this point, repeat Steps 3-6 to check for another board only if the

BUSADRO register has not been accessed, and use an address number
that is different from the one just checked. Then, change pqr to
identify the next board address.

See Appendix D, “PLCBus States,” for detailed states and
& transitions for the PLCBus. These will be useful for advanced
programming.

64 + Software Reference XP8100

Reading an Input State Using Dynamic C Functions

The specific XP8100 Series expansion board will determine how many
inputs are available, if any.

See the board layouts in Chapter 1, “Overview,” to determine
& which XP8100 Series expansion board is actually being used.

The XP8100 Series of expansion boards is a 5-bit PLCBus device. Each
read register can return up to four bits during a cycle. There are two read
registers, BUSRDO and BUSRDI1.

The XP8100 Series input channels are organized into four groups, and
each group has eight individual channels. Group 0 corresponds to I/O
channels 0—7, Group 1 corresponds to channels 8—15, Group 2 corre-
sponds to channels 16-23, and Group 3 corresponds to channels 24-31.

Use the following procedure when reading an input state to first select the
proper group of inputs and then read the state of that group’s inputs.

1. Use the function eioP1cXP81Addr to calculate the physical PLCBus
board address (x000 0lpg 0001).

2. Use the function eioPlcAdrl2 to send the physical address to the
PLCBus.

3. Use the function eioP1lcAdr4 to send the selected group number
rxyz. Table 5-4 provides the group numbers for the I/O channels.

4. Use either function _eioReadDO or eioReadD1, depending on the I/O
channel number, to read the nibble D3-DO.

5. Determine if a board exists on the PLCBus by checking if the I/0
channel number and corresponding bit position contains a one. Refer
to Table 5-4 for corresponding bit positions D3-DO.

6. At this point, the program may do one of the following.
* Go to Step 1 to select another board
* Go to Step 3 to select another group on the same board

* Go to Step 4 to read from the same channel group

The sample program XP81INX.C demonstrates how to read

/ inputs using the Dynamic C functions supplied. Compile and
run this program from the Dynamic C SAMPLES\ PLCBUS
subdirectory.

XP8100 Software Reference ¢ 65

XP8100

Reading an Input State Without Using Dynamic C
Functions

The following steps demonstrate how to operate the PLCBus to read an
input without using the supplied Dynamic C functions.

See Appendix D, “PLCBus States,” for detailed states and
én’” transitions for the PLCBus. These will be useful for advanced
programming.
1. Refer to Table 5-4 for the register and channel assignments.
2. The physical address must be in the format
rxyz Olpg 0001.

The board’s address is represented in binary notation as pqr. The
group number is xyz.

3. First write the nibble 0001 in register BUSADRO during a PLCBus
read cycle.

4. Write 01pq in register BUSADRI.
5. Write rxyz in register BUSADR?2.

6. Read back the data bits from the proper register (BUSRDO and
BUSRDI1) as n.

7. Determine if a board exists on the PLCBus by checking if the channel
number and corresponding bit position contain a one.

8. The program may now do one of the following if the BUSADRO read
cycle has not been accessed using a 0001.

* Go to Step 3 to select another board
* Go to Step 4 to select another group on same board

* Go to Step 5 to read from the same group.

66 ¢+ Software Reference XP8100

Controlling Outputs Using Dynamic C Functions

Controlling outputs using Dynamic C functions is similar to the procedure
for reading an input’s state. The procedure for writing an output also
considers the XP8100 Series expansion board to have four groups of
input/output channels, with each group having eight channels.

However, the output write procedure deals with only one channel for each
PLCBus cycle, unlike the input procedure which handles four input
channels during each PLCBus cycle.

Table 5-5 lists which PLCBus address to use when accessing a group of
eight channels via the PLCBus BUSWR register.

Table 4-5. Software Output Registers

BUSWR
BUSADR2 n
Group state
Number 0 1 2 3 Channel Data 0=off, 1=on
rxyz ri00 | r101 | r110 | r111 | D3 | D2 | D1 DO
0 0 0 0
00 08 16 24
0 0 0 1
0 0 1 0
01 09 17 25
0 0 1 1
0 1 0 0
02 10 18 26
0 1 0 1
0 1 1 0
03 11 19 27
Output 0 1 1 1
Channel 1 0 0 0
04 12 20 28
1 0 0 1
1 0 1 0
05 13 21 29
1 0 1 1
1 1 0 0
06 14 22 30
1 1 0 1
1 1 1 0
07 15 23 31
1 1 1 1

XP8100 Software Reference ¢+ 67

XP8100

The following procedure first selects the proper group of outputs and then
writes the state to the group’s output channel.

1. Use the function _eioPlcXP81Addr to calculate the physical address
r000 Olpg 0001.

2. Use the function eioPlcAdrl2 to send the physical address to the
PLCBus.

3. Use the function eioP1lcAdr4 to send the selected group number
rxyz. Table 5-5 lists the output registers for the I/O channel group
numbers.

4. Use _eioWriteWr to send the output state D3—D0. Table 5-5 lists the
output registers for the corresponding bit positions D3-D0 and channel
numbers.

5. At this point, the program may do one of the following.
* Go to Step 1 to select another board
* Go to Step 3 to select another group on same board

* Go to Step 4 to write to the same group.

Controlling Outputs Without Using Dynamic C Functions

The following steps demonstrate how to perform the PLCBus operation of
setting an output without using the supplied Dynamic C functions. Refer
to Table 5-5 for the register, channel and group number assignments.

See Appendix D, “PLCBus States,” for detailed states and
transitions for the PLCBus. These will be useful for advanced
programming.

1. The physical address must be in the format rxyz 01lpg 0001. The
board’s address is pqgr and the group number is xyz.

First write the nibble 0001 in register BUSADRO during a PLCBus cycle.
Write 01pgq in register BUSADRI.

Write rxyz in register BUSADR?2.

To turn the output channel on, write the data bits D3—-DO to the
BUSWR register. Refer to Table 5-5 to find the corresponding bit
positions D3-D0.

A

6. The program may do one of the following if the BUSADRO cycle has
not been accessed using a 0001.

* Go to Step 3 to select another board
* Go to Step 4 to select another group on the same board

¢ Go to Step 5 to write to an output of the same group.

68 ¢+ Software Reference XP8100

00€8dX

XP8300

00€8dX

Chaprter 6: OVERVIEW

Chapter 6 gives an overview of the XP8300 relay board and its specific
features.

XP8300 Overview ¢+ 71

Z-World’s XP8300 expansion boards provide a simple way to add relays to
a control system built around a Z-World controller. These relay output
boards can be connected on the PLCBus in conjunction with other expan-
sion boards. The actuation voltage for the board’s relays comes from the
controller via the PLCBus port. The XP8300’s six relays are high-power
relays.

Figure 6-1 illustrates a system of expansion boards mounted on a DIN rail
and connected to a controller. Chapter 7, “Getting Started,” provides
instructions and illustrations for connecting a relay board to a controller’s
PLCBus port. Appendix D, “Simulated PLCBus Connection,” provides
instructions and illustrations for connecting relay boards to a specific
controller that does not have a PLCBus port.

Figure 6-1. Expansion Board System

72 + Overview XP8300

Features

The XP8300 board has six 24 V high-power relays installed as standard
equipment: two are configured as SPDT and four are configured as SPST.
All the relays are accessed through screw terminals on headers H1, H2,
and H4 to allow easy connections to external devices. Each relay is
protected with a 10 A fuse. To help eliminate noise transients, a metal
oxide varistor (MOV) and an RC snubber are attached between pin 1 and
pin 3 of each relay.

The inputs (pin 1) and normally open output contacts (pin 3) for all relays
on an XP8300 board are accessible on headers H1 and H2. The normally
closed outputs (pin 4) for relays 4 and 5 are available at header H4.

The XP8300 also has six LEDs that correspond to the six relays. An LED
turns on when the corresponding relay’s coil is energized. However, an
illuminated LED does not verify that the contacts within the relay actually
switch.

The XP8310 is a 12 V version of the XP8300.

LEDs
z > LEDs
OO “of ez O
‘unJl 03 s @ os @
oo Dl. om PAL .D4‘D6 oo
oo oo
oo oo
oo oo
o o Relay 5 oo
oe Relay 1 Relay 3 <8 oe
oo oo
oo oo
oo oo
oo oo
oo I C7 RI 4 oo
ela
ool Relay© Relay 2 Y -
P2
J2

MOV5

T10

Sle |1CD OO CO Nzl o O O

OO F1 ©F2 ©F3 Oé =3
Sur MOVZ MOV3 ap

H3

D
(@)

oo

®®®®®®®®®®®®®®Qﬂ(ﬂj

Y Y A ot

H1 H2 H4

O e 083

Figure 6-2. XP8300 Relay Expansion Board Layout

XP8300 Overview ¢+ 73

XP8300

Specifications

C L
ﬁ;)@ @ @ O {P*mi@
O e o d9e
n -~
N —
P1 P2 T
H i
o | =
| 0~
5 008000080008 F %%VJ
Yy I
‘ ' '
PREEN 0(-111)5 (23175;5‘ F\ 0187 (4.7) dia.
0.125 4 clear, 4x
(3.2 3.525
(89.5)
0.75
N ‘1f)
[]
U Uvu ¢
0.06
(L5)
Figure 6-3. XP8300 Dimensions
Table 6-1. XP8300 Specifications
Feature Specification
! 2.835" x 3.525" x 0.78"
Board Size (72.0 mm x 89.5 mm x ~20 mm)
Operating Temperature —40°C to +70°C
Humidity 5% to 95%, noncondensing

Input Voltage and Current 24V DC, 100 mA

6 SPDT relays—2 used as SPDT relays ahd
4 used as SPST relays

6 Aat 250V ACor 6 Aat 24V DC

Relays

74 ¢+ Overview XP8300

/

Cuarter 7: GETTING STARTED

XP8300 Getting Started ¢+ 75

XP8300

Connecting Expansion Boards to a Z-World
Controller

Use the 26-conductor ribbon cable supplied with the expansion board to
connect the expansion board to the PLCBus on a Z-World controller. See
Figure 7-1. The expansion board’s two 26-pin PLCBus connectors, P1 and
P2, are used with the ribbon cable. Z-World recommends using the cable
supplied to avoid any connection problems.

Controller O [eoceccescosssesssss (O
PLCBus Port

S

]

©) ©)
XP8300 Controller With PLCBus

Figure 7-1. Connecting XP8300 Expansion Board to Controller PLCBus

é Be sure power to the controller is disconnected before adding
any expansion board to the PLCBus.

Follow these steps to connect an expansion board to a Z-World controller.

1. Attach the 26-pin ribbon cable to the expansion board’s P2 PLCBus
header.

2. Connect the other end of the ribbon cable to the PLCBus port of the
controller.

Be sure pin 1 of the connector cable matches up with pin 1 of
both the controller and the expansion board(s).

3. If additional expansion boards are to be added, connect header P2 on
the new board to header P1 of the board that is already connected. Lay
the expansion boards side by side with headers P1 and P2 on adjacent
boards close together, and make sure that all expansion boards are
facing right side up.

See Appendix C, “Connecting and Mounting Multiple Boards,”
for more information on connecting multiple expansion boards.

Controllers with simulated PLCBus ports require special expander cables,
but are as easily connected. Appendix D, “Simulated PLCBus Connec-
tion,” gives detailed illustrated instructions for connecting relay boards to
controllers without PLCBus ports.

76 ¢+ Getting Started XP8300

XP8300 Configuration

The XP8300 board holds six high-power relays. Each XP8300 relay has

the following specifications: 3 9

+ Standard coil voltage 24 V DC. T Configuration: SPDT

» Contact ratings: 10— Coil Actuation
10 A at24 VDC Voltage: 24 V DC
10A at 120 VAC 4 5
7 A at 250 V AC resistive
maximum. Figure 7-2. Relay Circuit

Pin 1 is the common. Pin 5 goes to a high-voltage/high-current driver on
the relay board. Pin 2 is for the actuation voltage. Turning on the driver
allows current to flow through the coil, switching on the relay. Pin 3 is the
normally open contact. Pin 4 is the normally closed contact.

Each relay is protected by a 10 A fuse on pin 1. To help eliminate tran-
sients, a metal oxide varistor (MOV) is attached between pin 1 and pin 3
on each relay. An LED is connected in line with the coil on each relay, and
lights up when current passes through the coil.

with 10 A fuses, the size of the traces on the printed circuit

f Althought the relays are rated at up to 10 A, and are protected
boards limits the current through each relay to 6 A.

Headers H1, H2, and H4 are used to connect external devices to the relays.
Pin 1 and pin 3 connections for all relays are provided on headers H1 and
H2. In addition, header H4 provides pin 4 connections for relays 4 and 5,
allowing relays 4 and 5 to be used as SPDT relays. Relays O to 3 do not
have their pin 4 available for external connection, and therefore can be
used only as SPST relays.

Figure 7-3 illustrates the pinouts for the relay connection pins on headers
H1, H2, and H4.

H3
H1 H2 H4 QQ
SISNISISN SIS SR
NN o\

Rel 0 Rel 1 Rel 2 Rel 3 Rel 4 Rel 5 Rel 4
in 3 in 3 in 3 in 3 in 3 in 3 in 4
P R 0p R 1p R 2p R 3p R P R P

el el el el el 4 el 5
pin 1 pin 1 pin 1 pin 1 pin 1 pin 1 pin 4

Figure 7-3. Relay Connection Pins

XP8300 Getting Started ¢+ 77

XP8300

Jumper settings on header J2 determine the actuation voltage for the
board’s relays. When pins 1-2 are connected, the actuation voltage is
supplied by the +24 V line on the PLCBus. When pins 2-3 are connected,
the actuation voltage is supplied by the VCC line on the PLCBus.

When no pins on header J2 are connected, an actuation voltage must be
supplied by connecting a 24 V power supply at sockets V+ and GND on
header H3.

The XP8300 relays require an actuation voltage of 24 V, and
/ the XP8310 relays require an actuation voltage of 12 V. These
relays will not work with J2 pins 2—3 connected.

Apply a voltage on header H3 only when header J2 is not

A jumpered. Applying power to the board when J2 pins 1-2 or
2-3 are connected can damage the relay board and other

boards on the bus.

Setting Board Addresses

Jumpers on header J1 (along with PAL encoding) determine the board’s
bus address. Figure 7-4 shows the jumper settings to set addresses 0—7.

0 1 2 3
BDO 1|E=Z|2 BDO 1|« BDO 1/E=31|2 BDO 1|«
BD1 3|E=|4 BD1 3|E=/|4 BD1 3| BD1 3| «
BD2 5/E=l|6 BD2 5/=l|6 BD2 5/E=l|6 BD2 5/E=l|6

J1 J1 J1 J1

J1 J1 J1 J1
BDO 1|E=3|2 BDO 1| . BDO 1|E=3J|2 BDO 1| .
BD1 3|E=2|4 BD1 3|E=dj4 BD1 3|« BD1 3|
BD2 5| ° BD2 5| ° BD2 5| ° BD2 5|

4 5 6 70

Figure 7-4. J1 Jumper Settings for XP8300 Board PLCBus Addresses

78 ¢+ Getting Started XP8300

g

CHaPTER 8: SOFTWARE REFERENCE

XP8300 Software Reference ¢ 79

XP8300

Relay Board Addresses

Physical Addresses

Up to 64 addresses are possible on a single PLCBus. The 12-bit address
of a particular relay board is determined by two factors: (1) the encoding
of the PAL chip installed on the board, and (2) jumper settings on header
J1. Since eight different PALs are available and J1 can be set eight
different ways, 64 unique addresses are possible.

A 12-bit address can be conveniently placed on the bus using 4-bit
addressing. A 12-bit physical address has the following format:

000z 000y pqrx
Jumper bits are defined by the following pin settings:

z =1 when J1 pins 5-6 are not connected
y =1 when J1 pins 3—4 are not connected
x =1 when J1 pins 1-2 are not connected

and
pqr is determined by the PAL.
The physical addresses correspond to the following PLCBus addresses.

000z—BUSADRO
000y—BUSADRI1
pqrx—BUSADR2

Logical Addresses

PLCBus expansion boards have “logical addresses.” Relay-specific
software defines 64 integer board addresses, 0—63. The formula mapping
physical address to logical address is defined by the following equation:

logical address = pqr x 8 + zyx
The PAL encoding (pqr) and jumper bits (z, y, x) are defined above.

For example, a relay board that has PAL FPO4550 (pqr = 101) and J1 pins
5 and 6 connected (zyx = 011) would have the following addresses.

physical address: 000z 000y pqrx =0000 0001 1011 = 0x01B.
logical address: 101, x 8 + 011, =43 = 0x2B.

Certain library functions expect a logical relay address.

80 + Software Reference XP8300

Software

Dynamic C Libraries

Several Dynamic C function libraries are used with the routines defined in
this section. Table 8-1 identifies which libraries are used with specific
Z-World controllers.

Table 8-1. Dynamic C Libraries for Controllers

Library Controller
EZI OGCMWN. LI B All controllers
EZI OPBDV. LI B All controllers
EZI OTGPL. LI B BL1000
EZI OLGPL. LI B BL1100

EZI OMGPL. LI B BL 1400, BL1500

EZI OPLC. LI B BL 1200, BL1600, PK2100, PK2200
EZI OPLC2. LI B BL1700

EZl OBL17. LI B BL1700

Before using a library in an application, first include the library name in a
#use command. For example, to use functions in the library
EZIOPLC.LIB, insert the following line at the beginning of the program:

#use ezioplec.lib

XP8300 Software Reference ¢ 81

XP8300

How to Use the Relay Boards

1. Send a reset command to all boards on the PLCBus.
2. Place the address of the target board on the PLCBus.
3. Operate the relays.

Reset Boards on PLCBus

These Dynamic C functions are used to initialize the PLCBus. Use these
functions in a program before introducing any code to operate the relays.

e VdInit()
Initializes the timer mechanism.
LIBRARY: VDRIVER.LIB
e void plcBusReset()
Resets all expansion boards connected to the PLCBus.

When using this function, initialize timers with vdInit () before
resetting the PLCBus. All PLCBus devices must reset before perform-
ing any subsequent operations.

LIBRARY: EzZIOPBDV.LIB
e void eioPlcRstWait()
Provides a delay long enough for the PLCBus to reset.

This function provides a delay of 1-2 seconds to ensure devices on the
PLCBus reset. Call this function after resetting the PLCBus.

LIBRARY: EZIOPBDV.LIB
e long int eioErrorCode

Represents a global bit-mapped variable whose flags reflect error
occurrences.

This register for this variable is initially set to 0. If the application tries
to access an invalid channel, the flag EIO_NODEV (the first bit flag) is
set in this register. Note that the other bits in EI0O_NODEV deal with
networked controllers.

82 + Software Reference XP8300

Address Target Board
¢ unsigned _eioPlcRelayAddr(unsigned BrdAddr) ;
Converts bit pattern 00000000 00pgrabc to pgrc 000b 000a

where pqr is the PAL number and abc is the address of the selected
board.

PARAMETERS: The low byte of Brdaddr should contain the logical
address (8*PAL# + Board#). The board number is 0—63 (0—7 if only
the factory default PAL is used).

RETURN VALUE: The bit-mingled BUSADR address pgqrc 000b
000a for the XP8300 board.

LIBRARY: EZIOPBDV.LIB

Operate Relays
e int plcXP830ut(unsigned address, int state);

Energizes a relay on an XP8300 expansion board.

PARAMETERS: address is 8*Board# + Relay#. The board number
is 0—63 (0-7 if only the factory default PAL is used). The relay number
range is 0-5.

state indicates whether the relay should be energized—the specified

relay is energized when state is non-zero, but is not energized when
state is zero.

RETURN VALUE: 0 if the specified XP8300 and relay exist, other-
wise —1. If the specified relay/board do not exist, the global variable
eioErrorCode is bit-ored with the constant EIO_NODEV.

LIBRARY: EZIOPBDV.LIB

The p1cXP830ut driver implements other function calls such as
eioPlcAdrl2, eioPlcAdr4, eioReadD0, eioReadD1, and
eioWriteWR.

o Refer to Appendix A, “PLCBus,” for a description of these
other functions.

XP8300 Software Reference ¢ 83

XP8300

Advanced Programming
Controlling a Relay

Once a relay’s address is placed on the bus (the most recent address on the
bus remains in effect), relays can be switched indefinitely. Use the

BUSWR bus cycle to place four bits of data on the bus. Table 8-2 shows
the relay physical addresses and states.

Table 8-2. Relay Addresses and States

Data Bits
Relay
D3 D2 D1 DO
0 0 0 0 0 =relay off
1 0 0 1 1=relayon
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

A formula for turning on a relay is
relay# << 1 | 1

The following code fragments illustrate how to turn on a relay using this
formula for a BL1200, PK2200, or PK2100.

#idefine ON 1
#define OFF 0
#define BOARD 0x0301

#define REL3 6
setl2adr(BOARD) ;

outport(BUSWR, REL3|ON) ;

(or)

// board address is
// 0x0103

// 3 << 1 =6

// select the board
// turn relay 3 on

writel2data(BOARD, REL3|ON) ;

84 + Software Reference

XP8300

Use the following code for a BL1100 or BL1000.

#idefine ON 1
#define OFF 0

#define BOARD 0x0301 // board address is
// 0x0103
##define REL3 3
PBus_Addr (BOARD) ; // select the board
PBus4 Write(REL3|ON); // turn on relay 3
PLC _EXP.LIB

The PLC_EXP.LIB library supports PLCBus controllers when operating
PLCBus expansion boards. This library provides general bus functions
and specific functions for the XP8300expansion boards.

There are four groups of functions in this library. Table 8-3 lists the two
groups used by relay boards. Analogous functions exist in other libraries.

Table 8-3. PLC _EXP. LI B Groups

Group Functions

General pl c_pol | _node, Reset_PBus, Reset_PBus_Wiit
Relay pl c_set _rel ay

e int plc _poll_node(int board)

Returns 1 if the board identified by physical address board can be
found on the PLCBus and 0 if not.

e void plc_set_relay(int board, int relay,
byte state)

Switches a relay on an XP8300 board.

PARAMETERS: relay must be from 0—7 (0—5 on an XP8300 board).
state must be 1 (on) or 0 (off).

board must be a logical board address (0-63).

e void Reset_PBus ()
void rset_pbus_wait()

The function Reset_PBus resets the PLCBus. The function
Reset_PBus_Wait provides the necessary delay (~450 ms) for the
bus to reset.

e int plcrel_addr(int board)

Returns the (nibble-interchanged) bus address for a relay board
identified by a logical address (0-63).

XP8300 Software Reference ¢ 85

XP8300

PBUS_TG.LIB

The PBUS_TG. LIB library allows the BL1000 to operate Z-World’s relay
expansion boards. The PRBUS_TG.LIB library does not support any other
expansion boards.

The functions in this library are identical (except for internal details) to
those in the PBUS_LG.LIB library.

PBUS_LG.LIB

The PBUS_LG. LIB library allows the BL1100 to operate Z-World’s relay
expansion boards. This library does not support any other expansion
boards.

There are three groups of functions in this library. The two groups used by
relay boards are listed in Table 8-4. Analogous functions exist in other
libraries. For example, reset_pbus in PLC_EXP.LIB is used with con-
trollers with a PLCBus and performs the same function as Reset_PBus in
this library, which is used with the BL1100 and the BL1300.

Table 8-4. PBUS LG LI BGroups

Group Functions

PBus12_Addr, PBus4 Wite, PBus4_ReadO,
Genera PBus4_Readl, PBus4_ReadSp, Reset_PBus,
Reset _PBus_Wit, Poll _PBus_Node

Relay Rel ay_Board_Addr, Set_PBus_Rel ay

e void PBusl2_Addr(int addr)

Places a 12-bit address on the PLCBus, in 4-bit mode. That is, it
places three 4-bit nibbles on the bus. The first and third nibbles of
addr must be interchanged: if the bus address is 0x125, addr must be
0x521.

¢ int PBus4_Read0()
int PBus4_Readl(()
int PBus4_ReadSp()

Carries out a bus read cycle. These functions correspond to bus cycles
BUSRDO, BUSRD1 and BUSSPARE, respectively.

¢ void PBus4 Write(byte value)
Carries out a BUSWR cycle.

86 ¢+ Software Reference XP8300

e int Poll_PBus_Node(int addr)

Returns 1 if there is a board at addr on the PLCBus, and 0O if not. The
first and third nibbles of addr must be interchanged: if the bus address
is 0x125, addr must be 0x521.

e int Relay Board Addr(int board)

Returns the (nibble-interchanged) bus address for a relay board
identified by a logical address (0-63).

e void Reset_Pbus()
void Reset Pbus Wait()

The function Reset_PBus resets the PLCBus. The function
Reset_PBus_Wait provides the necessary delay (~450 ms) for the
bus to reset.

¢ void Set_PBus_Relay(int board, int relay,
int state)

Switches a relay on an XP8300 board. relay must be from 0-7.
state must be 1 (on) or 0 (off). board must be specified by a logical
board address (0—63).

DRIVERS.LIB

The functions setl2adr, readl2data, and writel2data in
DRIVERS.LIB use 12-bit bus addresses. When using the functions in the
drivers library, swap the first and third nibbles of the address before pass-
ing the address to the function. For example, if the address is 0x125, pass
0x521.

XP8300 Software Reference ¢ 87

XP8300

Sample Projects

The following two sample programs activate the relays on one or more
XP8300 boards attached to a controller. Two versions of the program are
shown: one for PLCBus controllers, and one for the BL1100 and BL1300.

The following instructions tell how to set up a system, write and compile a
program, and run a sample program to operate relay boards on a bus.

PLCBus Controllers

Instructions

1.

Power up the controller and make sure it is working properly. If you
encounter problems, consult the controller’s reference manual.

Disconnect power from the controller.

3. Using a PLCBus ribbon cable, connect header P2 of the relay board to

the PLCBus on the controller. Make sure both boards are right-side up,
with their input and output headers facing toward you. If you have
additional relay boards, chain them to the first board with PLCBus
ribbon cables.

Check the jumpers on headers J1 and J2 on the relay boards. With only
one board, leave J1 unjumpered. With more than one board, leave J1
unjumpered on the first board and set J1 with a different and unique
address on each additional board. On every relay board, connect pins
1-2 on J2. This connection causes each board to draw its relay-
actuation voltage from the +24 V provided over the PLCBus by the
controller.

When using the standard XP8300 with 24 V relays, the
controller must be powered by a 24 V supply or 24 V must be
brought in externally in order to actuate the relays reliably.

. Power up the controller and bring up Dynamic C on your PC. If you

encounter problems reestablishing communications between your PC
and the controller, consult the controller’s reference manual.

Open and run the sample program. Refer to the Dynamic C Technical
Reference manual for detailed instructions on running a program.

The LEDs on the relay board(s) will begin flashing to indicate the
relays are actuating.

88 ¢+ Software Reference XP8300

Sample Program

The relay board demonstration program can be used to locate all XP8300
expansion boards. The program then loops, activating the relays on each
board. For each board, the program concludes with an all-on/all-off
sequence. To locate each board, the program polls all 64 possible ad-
dresses, then displays the logical address in Dynamic C’s STDIO window
for each board that responds.

/**

Rel ay Board Denp for XP8300 and XP8400
**/
#define ON 1
#define OFF O

mai n() {
int board,relay, found, |ist[64];
Reset PBus(); /1 always do this, first thing
del ay(1000); /1 pause 1000nms for reset
/'l Locate relay boards. Build Iist
/1 and print board |Ds
f ound=0;

printf("\nLogical relay addresses found: ");
for(board=0; board<64; board++){
if(plc_poll_node(plcrel_addr(board))){
l'ist[found++] = board;
printf(" % ", board);
if(found%d0 == 0) printf("\n");

}
}
/1 Activate relays on each board
/1 found
while(1){ /1 1oop forever
for(board=0; board<found; board++){
for(relay=0; relay<8; relay++){
pl c_set_relay(list[board],relay, ON;
del ay(333);
pl c_set_relay(list[board],rel ay, OFF);
for(relay=0; relay<8; relay++){
plc_set_relay(list[board],relay, ON); // all
}
del ay(750);
for(relay=0; relay<8; relay++){
plc_set_relay(list[board],relay, OFF);// all
}
}
}

}

delay(int ms){ /1 Max delay time = 2375 ns
unsigned int ival, i, j;
ival = (int)(ms * 27.30667) + 1
for(i=0; i<ival; i++) j =j;

}

XP8300 Software Reference ¢ 89

XP8300

Controllers with Simulated PLCBus
Instructions for BL1000 and BL1100

1.

Power up the BL1000 or BL1100 and make sure it is working properly.
If you encounter problems, consult the controller’s technical reference
manual.

Disconnect power from the controller.

3. Using the appropriate cable, connect the XP8300 to the PIO port on the

controller. See Appendix D, “Simulated PLCBus Connection,” for
detailed information regarding this cable. With more than one relay
board, chain the additional boards to the first one with PLCBus ribbon
cables. Make sure all relay boards are positioned with headers facing
the same direction.

Check header J1 on the relay board(s) for correct jumper setting(s).
With only one board, leave J1 unjumpered. With more than one board,
leave J1 unjumpered on the first board and set J1 with a different and
unique address on each additional board.

. Make sure that header J2 has no pins connected. Connect a wall

transformer or equivalent 24 V direct current power supply to the
V+and GND terminals on header H3 (when using XP8300).

. Power up the controller and bring up Dynamic C on the host PC. Ifa

problem reestablishing communication occurs, consult Dynamic C
Technical Reference manual.

Open and run the program. See the Dynamic C Technical Reference
manual for details on opening and running programs.

The LEDs on the relay board(s) will begin flashing to indicate that the
relays are actuating.

Sample Program for BL1000 and BL1300

90 + Software Reference XP8300

The program locates all XP8300 boards attached to the PLCBus. The
program then loops, activating the relays on each board. For each board,
the program concludes with an all-on/all-off sequence. To locate boards,
the program polls all 64 possible addresses. The integer (logical) address
of each board that responds is displayed in Dynamic C’s STDIO window.

/***************‘k‘k*************************************

Rel ay Board Denmp - for BL1100
**/
#define ON 1
#define OFF O

mai n() {
int board, relay, found, |list[64];
Reset PBus(); /1 always do this, first thing
Stall (3000); /| pause ~1lsec for reset
/1 Locate relay boards. Build list
/1 and print board |Ds
f ound=0;

printf("\nLogical relay addresses found: ");
for(board=0; board<64; board++){
i f(Poll_PBus_Node(Rel ay_Boar d_Addr (board))){
l'i st[found++] = board;
printf(" % ", board);
if(found%d0 == 0) printf("\n");

}
} /1 Activate relays on each board
/1 found
while(1){ /1 1oop forever

for(board=0; board<found; board++){
for(relay=0; relay<8; relay++){
Set _PBus_Rel ay(list[board],relay, ON);
Stal | (1000);
Set _PBus_Rel ay(list[board], rel ay, OFF);

for(relay=0; relay<8; relay++){
Set _PBus_Rel ay(list[board],relay, ON); // all

}
Stal | (2000) ;
for(relay=0; relay<8; relay++){
Set _PBus_Rel ay(list[board],relay, OFF);// all
}
}
}

XP8300 Software Reference ¢ 91

XP8300

92 + Software Reference

XP8300

XP8500

0058dX

0058dX

Crarter 9: OVERVIEW

Chapter 9 provides an overview and description of the XP8500 analog-to-
digital conversion expansion boards.

XP8500 Overview ¢ 95

XP8500

The XP8500 provides 11 channels of 12-bit analog-to-digital (A/D)
conversion, with onboard signal conditioning for four of these channels to
match the input voltage range between 0 V and 10 V. Gain and bias
resistors may be selected and installed by the user to determine the voltage
ranges of the conditioned input signals.

The XP8500 may be operated either in a ratiometric mode (a mode that
reduces errors arising from power-supply variations) or in an absolute
mode (where an onboard precision voltage reference assures accurate
measurements). The printed circuit board has space for optional sensor-
excitation resistors.

Each XP8500 has its zero offset and gain for the four conditioned channels
stored in an onboard, serial EEPROM. An application can use library
functions to access the EEPROM’s calibration constants to correct
measurements for offset and gain error.

The XP8500 receives its power from the PLCBus +24 V and +5 V. An
onboard voltage regulator develops a clean +5 V supply for the board’s
analog circuitry from the +24 V PLCBus. The same version of the
XP8500 works with both +12 V and +24 V controllers.

Like other Z-World expansion boards, the XP8500 boards can be installed
in modular plastic circuit-board holders attached to a DIN rail. The
XP8500 boards can also be mounted, with plastic standoffs, on any surface
that will accept screws. Up to 16 XP8500 boards addresses are possible
on a single PLCBus.

== For ordering information, call your Z-World Sales Representa-
& v at (530) 757-3737.

96 ¢+ Overview XP8500

Specifications
Table 9-1 summarizes the specifications for the XP8500 expansion board.

Table 9-1. XP8500 Specifications

Board Size 2.835"x 2.125" x 0.75"
(72 mm x 54 mm x 19 mm)

Operating Temperature Range -40°C to +70°C
5% to 95%, noncondensing

Humidity
Power (quiescent, no output) 24V DC, 32 mA
Eleven 12-bit analog inputs

« 4 channels with signal conditioning

Inputs

¢ 7 unconditioned channels

Figure 9-1 shows the dimensions of the XP8500 expansion board.

, B
D H
:]
o]
&

@J:Dl 7
1@

(72)

S
N
‘ Qoooona0) @ (S
i SaTa A AN
0.125 typ| | | !
(32) [| 0.187 dia, 4x
(7 (4.7)
2.125
(54)

~0.75
(19)

Figure B-1. XP8500 Board Dimensions

XP8500 Overview ¢ 97

XP8500

98 ¢+ Overview

XP8500

Crarter 10: GETTING STARTED

Chapter 10 provides instructions for connecting XP8500 expansion boards
to a Z-World controller. The following sections are included.

e XP8500 Components
» Connecting Expansion Boards to a Z-World Controller
» Setting Expansion Board Addresses

e Power

XP8500 Getting Started ¢ 99

XP8500

XP8500 Components

The XP8500 boards offer eleven channels of 12-bit analog-to-digital
conversion. Figure 2-1 illustrates the basic layout and orientation of

components, headers, and connector:

Regulator

S.

J5 J4
\\ / /O

= |_||_ Q
| Uus u9 |

T
us
BE

m 00 0O0O0O0O0ODO0D0O0O0a0

| m——
o g3
-m "
u7 o

PAL

P e e e e e B e e W e

BEH

u3

P1| [=_«J TTIOOTOO0D LC00ANNT

00000 O0OO0O0O0O0O0O0Nao
m 00 0O0O0O0O0O0D0O0O0a0

m o0 o

0

i

Bl -
Duéuu

0000000

HEE BEEH

l

)
N

00000000

o

HRNRREEN

O

Gain and Bias / /
Resistors J2 N

H1

Figure 10-1. XP8500 Board Layout

100 ¢+ Getting Started

XP8500

Connecting Expansion Boards to a Z-World
Controller

Use the 26-conductor ribbon cable supplied with an expansion board to
connect the expansion board to the PLCBus on a Z-World controller. See
Figure 10-2. The expansion board’s two 26-pin PLCBus connectors, P1
and P2, are used with the ribbon cable. Z-World recommends using the
cable supplied to avoid any connection problems.

Controller (O E 888 5 OW
PLCBus Port

/Pini

P2

o | 568 . O

H1

XP8500 Controller With PLCBus

Figure 10-2. Connecting XP8500 Expansion Board to Controller PLCBus

C Be sure power to the controller is disconnected before adding
any expansion board to the PLCBus.

Follow these steps to connect an expansion board to a Z-World controller.

1. Attach the 26-pin ribbon cable to the expansion board’s P2 PLCBus
header.

2. Connect the other end of the ribbon cable to the PLCBus port of the
controller.

Be sure pin 1 of the connector cable matches up with pin 1 of
both the controller and the expansion board(s).

3. If additional expansion boards are to be added, connect header P2 on
the new board to header P1 of the board that is already connected. Lay
the expansion boards side by side with headers P1/H1 and P2/H2 on
adjacent boards close together, and make sure that all expansion boards
are facing right side up.

See Appendix C, “Connecting and Mounting Multiple
é?bﬂ Boards,” for more information on connecting multiple expan-
sion boards.

XP8500 Getting Started ¢ 101

XP8500

4. Each expansion board comes with a factory-default board address. If
more than one expansion board of each type is to be used, be sure to set
a unique address for each board.

The following section on “Setting Expansion Board Ad-
dresses,” and Chapter 4, “Software Reference,” provide details
on how to set and use expansion board addresses.

5. Power may be applied to the controller once the controller and the
expansion boards are properly connected using the PLCBus ribbon
cable.

See Appendix D, “Simulated PLCBus Connection,” for details
&n” on the special connections that enable XP8500 expansion
boards to be used with BL1400 and BL1500 controllers.

Setting Expansion Board Addresses

Z-World has established an addressing scheme for the PLCBus on its
controllers to allow multiple expansion boards to be connected to a
controller.

Remember that each expansion board must have a unique

/ PLCBus address if multiple boards are to be connected. If two
boards have the same address, communication problems will
occur that may go undetected by the controller.

XP8500 Addresses

XP8600 expansion boards are shipped from the factory with no pins on
header J4 or J5 connected. Four different PALs are available. There are
four different ways to configure the pair of pins on header J4 and J5, and
so up to 16 XP8500s may be addressed individually over a single PLCBus.

See Chapter 4, “Software Reference,” for further details on

A how to determine the physical address for XP8500 expansion
boards based on whether the pins on header J4 or header J5 are
connected.

Power

Z-World’s expansion boards receive power from the controller over the
+24 V line of the PLCBus. An onboard regulator converts this to the +5 V
reference used by the XP8500. The XP8500 draws 32 mA at +24 V.

The XP8500 may be used with +12 V controllers without having any
modifications.

102 ¢+ Getting Started XP8500

S

Crarter 11: I/O CONFIGURATIONS

Chapter 11 describes the built-in flexibility of the XP8500 expansion
boards, and describes how to configure the available inputs/outputs. The
following sections are included.

* XP8500 Pin Assignments

* Operating Modes

* Using A/D Converter Boards
* How to Set Up an XP8500

» Selecting Gain and Bias Resistors

XP8500 /0 Configurations ¢+ 103

XP8500

XP8500 Pin Assignments

The XP8500’s eleven 12-bit analog-to-digital converter channels are ac-
cessed through Wago connector H1 (conditioned channels CHO—CH3) and
header H2 (unconditioned channels AIN4—AIN10), as shown in Fig-

ure 11-1. The bias voltage set by J1, VREF+, is available on header H2,
and +5 V (analog) is available on both Wago connector H1 and header H2.

H ND H3 +5ANA —
o ¢ chie e GND 1 [l @ |2 AIN10
G"\ID CTl CTZ GTD GND 3 |®@ ® |4 AIN9
GND 5 | @ ® | 6 AINS
S
GND 9 | ® ® | 10 AIN6
e L e VREF+ 11 | @ @ | 12 AIN5
HR RN +5ANA 13| @ ® |14 AING

T
H1 H2

Figure 11-1. XP8500 Pin Assignments

Operating Modes

The XP8500 operates in an absolute mode (as configured in the factory),
or in a ratiometric mode. Jumpers J1 and J2 configure the XP8500 to
operate in either the absolute or ratiometric mode. J1 selects the reference
voltage supplied to the op-amps bias networks, and J2 selects the reference
voltage supplied to the A/D converter chip. Figure 11-2 summarizes the
jumper connections.

Absolute Mode

Ratiometric Mode

Figure 11-2. XP8500 Jumper Settings for Absolute or Ratiometric Modes

104 ¢+ /0O Configurations XP8500

Jumpers pins 1-2 of both headers J1 and J2 are used to select the absolute-
conversion mode where the input signal is compared against an accurate
fixed voltage reference. With this setting, 2.5 V from the precision voltage
reference goes to both the A/D converter chip and to the op-amp bias
networks.

Jumper pins 2—3 on both headers J1 and J2 are used to select the ratiomet-
ric conversion mode where both the voltage reference and the input will
fluctuate with fluctuations in power because they both use the same power
source. With this setting, a voltage divider derives 2.5 V from the analog
+5 V supply for the A/D converter chip, and the analog +5 V now goes to
the op-amp bias networks. (The 2.5 V from the voltage divider cannot
power the op-amp bias networks directly because it is not a low-impedance
source and the op-amp bias networks would put too large a load on the
divider.)

Using Analog-to-Digital Converter Boards
These steps summarize how to use the A/D converter boards.

1. Send a reset command to all boards on the PLCBus.

2. Place the address of the A/D converter board on the PLCBus.

3. Read an input channel, allowing time for the multiplexer to settle and
for the digital output to be determined.

4. Allow the controller to use the digital information to calculate a
meaningful value for the quantity measured.

5. Use the data to control relays, switches, or other devices with the
controller.

These steps rely on software drivers in Dynamic C function libraries. Use
DRIVERS.LIB and PLC_EXP.LIB for controllers with a PLCBus port.
The XP8500 will also work with BL1400 and BL1500 controllers.

XP8500 /0 Configurations ¢+ 105

XP8500

How to Set Up An XP8500
Conditioned Inputs (CHO-CH3)

Signals from devices connected to a conditioned input channel on H1 go to
an inverting input on one of the four op-amps in U2, as shown in Fig-

ure 3-3. User-selectable precision resistors R1 through R8 (Rg andR,,)
set the gain and bias voltages of the op-amps to match the voltage range of
the input to the fixed 2.5 V range of the A/D converter chip.

0.01 pF
I
Rg
—O0"\V/\V\-0—H
U3 I
+5ANA oD
CHO-CH3 = —
ko VR AINO-AINS | converter [—
VRn+(|
RP3
RP4 —
VREF+
VREF+ [>—"VW——0A"\N\\~

10 kQ Rbias +5ANA

Figure 11-3. Schematic of XP8500 Signal Conditioning

The 10 kQ input resistors, RP3 or RP4, are fixed; 0.01 uF feedback
capacitors roll off the high-frequency response of the op-amps to attenuate
noise. Equation (11-1) gives the 3 dB corner frequency.

1
2rrx Ry x0.01 uF

fam = (11-1)

For the factory default, where the gain is 0.25 using R, = 2370 Q, the 3 dB
corner frequency is 6715 Hz.

Strip sockets accommodate resistors R1-R8, as shown in Figure 11-4. The
factory-installed gain resitors and bias resistors are 2370 Q and 39.2 kQ,
respectively, and provide a range of 0 V to 10 V for the inputs to be
conditioned.

Z-World offers the XP8500 with customer-specified surface-

ﬁ mounted gain and bias resistors installed at R1-R8. For
ordering information, call your Z-World Sales Representative
at (530) 757-3737.

106 ¢+ 1/0 Configurations XP8500

R8 <— Bias Resistors

R6
R1 R3 R5 R7 <—— Gain Resistors

CHO CH2
CH1 CH3

Figure 11-4. Location of XP8500 Gain and Bias Resistors

Table 11-1 provides values for the gain and bias resistors for a range of
input voltages. The section on “Selecting Gain and Bias Resistors” at the
end of this chapter provides a detailed explanation on how to calculate
these values for a particular range of input voltages.

Table 11-1. Gain and Bias Resistors for a Selected Range
of Input Voltages

Roias (KQ)
Input Range . Ryq
) Ceain kQ) Absolute Ratiometric

Mode Mode
-10.0 to +10.0 0.125 1.18 8.06 287
-5.0t0 +5.0 0.250 237 6.65 249
-25t0+2.5 0.500 4.75 4.99 2.00
-2.0t0 +2.0 0.625 5.90 453 1.82
-1.0to +1.0 1.250 11.8 287 1.27
-0.5t0 +0.5 2.500 237 1.69 0.787
-0.25t0 +0.25 5.000 475 0.931 0.442
-0.10to +0.10 12.500 118 0.392 0.196
Oto+ 10.0* 0.250* 2.37* 39.2* 6.49
0to+5.0 0.500 4.75 20.0 4.99
Oto+25 1.000 9.53 100 3.32
Oto+1.0 2.500 232 4.02 1.69

* These are the factory defaults.

XP8500 /0 Configurations ¢+ 107

XP8500

Excitation Resistors

Some transducers, such as thermistors, require an excitation voltage, par-
ticularly in some ratiometric applications. These excitation voltages are
set using excitation resistors in the RP2 sockets, as shown in Figure 11-5.
Either a resistor pack or individual resistors may be used.

+5V|+5 V[+5 V|+5V
CHO CH1 CH2 CH3

RP2 RP2 RP2 RP2

Figure 11-5. Optional XP8500 Excitation Resistors

EEPROM

The jumpers on header J3 write-protect the calibration contents stored in
the upper half of the EEPROM—the lower half cannot be write-protected.
Figure 11-6 shows the jumper settings for the EEPROM.

[
w

Write-Protect
'

. Write-Enable

[
w

Figure 11-6. XP8500 EEPROM Jumper Settings for Header J3

AN See Chapter 12, “Software Reference,” for details on how to
read and write the EEPROM contents.

108 ¢+ 1/0O Configurations XP8500

Unconditioned Inputs (AIN4-AIN10)

The seven unconditioned input channels, AIN4-AIN10, use 10 kQ
pulldown resistors at R9—R 15 as shown in Figure 11-7 to keep the inputs
from floating when they are not being used.

u3 ——
A/D —
Converter [

10 kQ
VREF+I:>—J J

+5ANA

AIN[4-10]

Figure 11-7. Schematic of XP8500 Unconditioned Inputs

These channels are accessed with software by inserting the desired channel
number in the library functions that control the XP8500. These channels
are located on header H2. For optimum results, drive these channels with
low-impedance (< 50 Q) voltage sources such as LM660 op-amps. High-
impedance signal sources are susceptible to coupled noise and will become
distorted when loaded by the 10 kQ pulldown resistors. In addition, only a
low-impedance source can charge the sampling capacitors accurately
within the A/D converter. When designing the signal sources to drive the
extra channels, be sure to consider whether the op-amps can handle the
capacitance of the cable used to connect them to header H2.

Internal Test Voltages

In addition to the 11 external input channels of the A/D converter chip,
three additional internal channels exist to measure reference points within
the chip. The A/D converter compares its internal nodes to REF+ and
REF- so the conversions yield either all 1s or all 0s. These channels are
accessed using ordinary library routines by specifying the appropriate
channel address when calling the functions.

s See Chapter 12, “Software Reference,” for further details on
Channels 11, 12, 13, and 14.

Power-Down Mode

If Channel 14 on the A/D converter chip is called by the software, the chip
enters a power-down mode in which all circuits in the chip go into a low-
current, standby mode. The chip also goes into the power-down mode
when it is first powered on and before the first A/D conversion. The chip
remains in the power-down mode until a channel other than Channel 14 is

XP8500 /0 Configurations ¢+ 109

XP8500

selected. The normal operating current of the A/D converter chip is 1 mA
to 2.5 mA. This consumption drops to 4 pAto 25 pA when the chip is in a
power-down mode. The reduction represents only about 10-20 percent of
the XP8500 board’s analog supply current and none of its digital supply
current

Drift

The AD680JT voltage reference experiences a voltage drift of 10 ppm/°C
(typ) to 30 ppm/°C (max). This drift corresponds to 25 mV/°C to 75 mV/°C,
or 1.75 mV to 5.25 mV over the temperature range of 0°C to 70°C.

The LMC660C op-amp has an offset-voltage drift of 1.3 pV/°C (typ), or
91 uV over the temperature range of 0°C to 70°C.

A greater contribution to overall drift arises from differences in the
temperature coefficients of the gain and bias resistors, and the fixed 10 kQ
resistors in resistor packs RP3 and RP4. These resistor networks and the
one used for the ratiometric voltage divider have a temperature coefficient
of 200 ppm/°C. Because the packages are small, the resistors within each
package are always at essentially the same temperature and their deviations
track closely.

110 ¢ 1/O Configurations XP8500

Selecting Gain and Bias Resistors

The section “How to Set Up An XP8500” provided representative values
of gain and bias resistors for the XP8500’s conditioned channels. This
section provides a detailed explanation on how to calculate these values
for a particular range of input voltages. Figure 11-8 shows a schematic
representation of the signal conditioning for channels CHO—CH3.

0.01 pF
1
Rg
—O0\/\V\-0—
us I
+5ANA oD
CHO-CH3 = —
wka VR AINO-AINS lconverter [
VRn+ + |
RP3
RP4 —
VREF+
VREF+ [>—"\VVW\———0AN\~

10 kQ Rbias +5ANA
Figure 11-8. Schematic of XP8500 Signal Conditioning

Step 1. Select Gain Resistor

The gain and bias resistors, R1-R8 (Rg and R, in Figure 11-8), determine
the input signal’s voltage relative to ground, as well as its range. For
example, assume the XP8500 must handle an input signal spanning -5 V to
+5 V. First select gain resistor R1 to suit a voltage range of 10 V.

The gain of the amplifier is the ratio of its maximum output-voltage swing
to the swing in the software application’s maximum input voltage. The
2.5 V input range of the TLC2543 A/D converter chip (U3) limits the
LMC660 (U2) op-amps’ output swings to 2.5 V. Therefore. Equation (11-
2) expresses an amplifier’s gain in terms of the range of its input voltage.
g= __ 25V (11-2)
ViNeee = ViNpn,

where g is the gain, V| is the maximum input voltage, and V| . is the
minimum input voltage.

The ratio of the user-specified gain resistor R (R, =R1, R3, R5, or R7) to
its associated fixed input resistor (RP4A, RP4C, RP3A, or RP3C) deter-
mines an amplifier’s gain. Equation (11-3) provides the gain for the
configuration shown in Figure 11-8 with the input resistor fixed at 10 kQ.

Ry (11-3)

9= 10,000 Q

XP8500 /0 Configurations ¢+ 111

XP8500

Given a range of 10 V for the input voltage, Equation (E-1) fixes the
amplifier’s gain at 0.25. This gain correctly scales the input signal’s range
to the op-amp’s 2.5 V maximum output range. Therefore, R, must be
2500 Q.

Step 2. Calculate Bias Resistance

Next, if the op-amp is to servo its output properly around the desired
center voltage, the appropriate bias voltage needs to be established at the
op-amp’s noninverting input. Select the bias resistor, R, , to position the
input-voltage range correctly with respect to ground—in this example, -
5Vto+5V.

The value for R, has already been selected, and so the maximum input
voltage, V. determines the maximum voltage seen at the amplifier’s
summing junction (inverting input)—circuit nodes VRO—to VR4—.
Compute VRO- to VR4— using Equation (11-4).

VRn-=V,, x[33 E (11-4)
max + g
The bias voltage, V., must equal its corresponding VRn~ for each op-
amp. A voltage divider, which consists of a bias resistor, R, (R,, =R2,
R4, R6, or R8), and a fixed 10 kQ resistor (RP4B, RP4D, RP3B or RP3D),
derive this bias voltage, V. (V. = VRO+, VR1+, VR2+, or VR3+), from
VREF+. Note that VREF+ is not necessarily the same as REF+. (REF+ is
the positive reference voltage the A/D converter chip uses.)

The XP8500’s conversion mode determines which reference voltage the
op-amps uses. When the XP8500 operates in the absolute mode, VREF+
is2.5VandR_ is

 Vyie X10,000Q

R.. = (11-5a)
Y-V VAR
When the XP8500 operates in the ratiometric mode, VREF+ is +5 V, and
= Vias X10,000 Q (11-5b)
50V -V

Continuing the example, the gain is 0.25 and V,, =+5V; V_ is then
1.0 V using Equation (11-4) R, , therefore, is 6667 Q in the absolute

mode and 2500 Q in the ratiometric mode.
Step 3. Choose Best Standard Resistor Values

The calculated resistor values, of course, will not always be available. In
these cases, use the nearest standard resistor value. For example, use
6650 Q (1% resistors) instead of 6667 Q, or use 6800 Q (5% resistors).

112 + 1/0 Configurations XP8500

Step 4. Bracket Input Range

To be sure of measuring signals accurately at the extremes of the range of
input voltages, be aware of the interaction between the 10 kQ fixed
resistors, RP3—RP4, and the gain and bias resistors, R1-R8. Ideally, a
signal at the minimum input level would be output to the A/D converter’s
input at the maximum expected value of 2.5 V (remember that U2 is an
inverting op-amp).

But real-world resistor values vary within their rated tolerances. Thus, if
the fixed input resistor has a resistance lower than its nominal value, and
the installed resistors have a resistance slightly higher than their nominal
value, the actual input to the A/D converter chip would be greater than
2.5 V. Aloss of accuracy then results because the A/D converter input
would reach its maximum input value before the true signal input reaches
the minimum expected input level.

Similarly, a deviation from nominal values in the bias network could skew
the A/D converter’s input voltage away from the theoretically computed
value. For example, a small positive or negative deviation of the bias
voltage arising from variances in the resistor divider would offset the A/D
converter’s input voltage. This offset would be positive or negative,
tracking the deviation’s sign, and would be equal to the bias deviation
multiplied by the amplifier’s gain plus one. Both of these effects could
occur in the same circuit.

Step 5. Pick Proper Tolerance

Use care when compensating for discrepancies. For example, if standard
5% resistors are used for R1-R8, the values are spaced approximately 10%
apart. If the gain is too high by just a small amount, then going to the next
smallest standard 5% value could decrease the gain, and there would be an
A/D converter excursion approaching 10%. The same caveat applies to
the bias network. Use 1% resistors to have a more precise choice of
values.

Figure E-2 shows the result of adjusting the resistor values such that the
input to the A/D converter stays within its specified 2.5 V range.

Step 6. Confirm Performance

For critical measurements, always check the setup after installing resistors
by measuring test signals at and near the input-voltage limits. See if the

U2 op-amp output voltages fall within the A/D converter’s input range or if
accuracy is lost because of over-excursions at the A/D converter input.

The resistance of the 10 kQ fixed input resistors can be measured after
installing the gain and bias resistors by measuring the voltages at the op-
amps’ inputs and outputs. Using Channel 0 as an example, ground the
CHO input at pin 2 of Wago connector H1.

XP8500 /0 Configurations ¢+ 113

XP8500

Out of range

2R

A/D converter's
input voltage
limit

Op-amp output voltage
deviation arising from
resistor variations

A/D Converter Input (V)

Out of range

o X

XP8500 Input (V) 10

Figure 11-9. Effects on A/D Converter Input from Adjusting Resistor Values

Then measure the voltages at VRO- and at the U2 op-amp output. Because
the currents through the input resistor and R, are essentially identical, the
ratio of the voltages across the resistors is equivalent to the ratio of the
resistances. Therefore, the gain is

— V(UZ)OUT —-VRO- — Rg
VRO' R|N

Again using Channel 0 as an example, measure the voltage VREF and the
voltage at VRO+ (see Figure 11-8). Because the current into the op-amp
input is negligible, the resistance ratio of the two resistors in the voltage
divider alone determines VRO+. The value of the fixed resistor in the
divider can then be calculated based on R, and the value of VRO+.

114 + 1/0 Configurations XP8500

Step 7. Calibrate the A/D Converter

Regardless of whether the mathematically derived resistance values or the
scaled resistance values are found, the inherent component-to-component
variations of 5% or 1% resistors can completely swamp the 0.25%
resolution of the A/D converter. To achieve the highest accuracy possible,
the A/D converter itself must be calibrated.

The software drivers for the A/D converter provide routines to compute
calibration coefficients, given two reference points, and then to store the
calibration coefficients in a defined location in nonvolatile memory. Each
reference point consists of a pair of values: the actual applied test voltage
and the raw converted A/D value (a 12-bit integer). Z-World’s software
will automatically use these calibration coefficients to correct all subse-
quent A/D readings.

Op-Amp Test Points

The factory-installed gain and bias resistors (R1, R3, R5, R7 = 2370 Q and
R2, R4, R6, R8 =39.2 kQ) have a 2% tolerance. These resistors yield a
gain of 0.25 for a unipolar input-signal range of 0 Vto 10 V.

Figure 11-10 shows some convenient points at which to make voltage
measurements of the op-amp.

VRO- VR1- VR2- VRS-

VRO+ | VR1+ | VR2+ | VR3+

R mmm
S \Eﬁ?ﬁﬁﬁﬁﬁ@

ANO / AN1 | AN2\ ANS3 ’

AGND AGND AGND AGND

Figure 11-10. XP8500 LMC660 Op-Amp Test Points

XP8500 /0 Configurations ¢+ 115

XP8500

Step 8. Recalibrate the XP8500

To recalibrate an XP8500, apply two known test voltages to each channel,
chan, to be used. Get the converted reading for each test voltage and pass
the readings and the test voltages, to the function adc4_compute to
calculate the conversion coefficients, zero_offset and invgain, for
that channel. adc4_compute will automatically store the coefficients in
an adc4coeff structure (be sure to declare an adc4coeff structure for
each channel to be calibrated). Lastly, pass the new conversion coeffi-
cients to the function adc4_writecoe£f to store them in the appropriate
locations in the XP8500’s EEPROM.

The sample program ADC4SMP3 . C in the Dynamic C SAMPLES\PLCBUS
subdirectory shows how to calibrate the first four channels of an XP8500
board manually, assuming test voltages of 1.00 V and 9.00 V.

116 + 1/0 Configurations XP8500

CHaPTER 12: SOFTWARE REFERENCE

Chapter 12 describes the Dynamic C functions used to initialize the
XP8500 expansion boards and to control the resulting analog-to-digital
conversions. The following major sections are included.

* Expansion Board Addresses
+ XP8500 Software
* Advanced XP8500 Programming

XP8500 Software Reference ¢+ 117

XP8500

Expansion Board Addresses

Up to 16 XP8500s may be addressed individually over a single PLCBus.
Each XP8500 has a 12-bit address. The address is determined by the
encoding of PAL chip U9 on the board and by the jumper connections on
headers J4 and J5.

Four different PALs are available and the jumpers can be set four different
ways, giving 16 unique addresses in the form

0000 1100 pgxy

where the PAL determines pq while and the jumper connections on headers
J5 and J4 determine x and y, respectively. x and y are zero when their
corresponding jumpers are installed on the headers, and are one when the
jumpers are removed.

The address can be placed on the bus using 4-bit addressing. The func-
tions setl2adr, readl2data, and writel2data (in DRIVERS.LIB) use
12-bit bus addresses.

When using these, and certain other functions, swap the first and third
nibbles of the address before passing the address to the function. For
example, if the address is 0x125, pass 0x521. The function
eioPlcADC4Addr in EZIOPBDV.LIB is available to do this swap.

e unsigned _eioPlcADC4Addr (char BrdAddr)
Swaps bit pattern from 0000 0000 pgxy to pgxy 1100 0000.

PARAMETERS: Brdaddr is the logical address (4*PAL# +
Jumper_number) with a bit pattern of 0000 pgxy, where pq is deter-
mined by the PAL, and xy is determined by the jumper setting.

118 + Software Reference XP8500

XP8500 Software

This section describes a set of simple software functions to use when
controlling the XP8100 Series expansion board inputs/outputs.

Dynamic C Libraries

Several Dynamic C function libraries need to be used with the routines
defined in this chapter. There are specific libraries designed for certain
controllers and there are three common libraries used by all Z-World
controllers. Table 12-1 identifies which libraries must be used with
particular Z-World controllers.

Table 12-1. Dynamic C Libraries Required by Z-World Controllers

Library Controller

VDRI VER. LI B All controllers

EZI OCMWN. LI B | All controllers

EZI OPBDV. LI B | All controllers

EZI OTGPL. LI B | BL1000

EZI OLGPL. LI B | BL1100

EZI OMGPL. LI B | BL1400, BL1500

EZI OPLC. LI B BL1200, BL1600, PK2100, PK2200, ZB4100
EZI OPLC2. LI B | BL1700

PLC_EXP. LI B BL1200, BL1600, PK2100, PK2200

The Dynamic C library EZIOPLC. LIB replaces
/ PLC_EXP.LIB, and is planned to support most Z-World
controllers introduced in the future.

Before using one of these libraries in an application, first include the
library name in a #use command. For example, to use functions in the
library EZIOPLC. LIB, be sure there is a line at the beginning of the
program in the following format.

#fuse ezioplc.lib

XP8500 Software Reference ¢+ 119

XP8500

Initialization Software

These Dynamic C functions are used to initialize the PLCBus. Call these
functions before using other expansion board functions.

e VdInit()
Initializes the timer mechanism.
LIBRARY: VDRIVER.LIB
e void eioResetPlcBus ()
Resets all expansion boards connected to the PLCBus.

When using this function, initialize timers with vdInit () before
resetting the PLCBus. All PLCBus devices must reset before perform-
ing any subsequent operations.

LIBRARY: EZIOPLC.LIB
e void eioPlcRstWait ()
Provides a delay long enough for the PLCBus to reset.

This function provides a delay of 1-2 seconds to ensure devices on the
PLCBus reset. This function should be called after resetting the
PLCBus.

LIBRARY: EZIOPBDV.LIB
¢ long int eioErrorCode

The global variable Iso needs to be defined. eioErrorCode repre-
sents a global bit-mapped variable whose flags reflect error occur-
rences.

This register for this variable is initially set to 0. If the application tries
to access an invalid channel, the flag EIO_NODEV (the first bit flag) is
set in this register. The other bits in EIO_NODEV deal with networked
controllers.

120 + Software Reference XP8500

XP8500 Drivers

Use the software drivers in this section to interface with the XP8500.
e int plcXP85Init(unsigned Addr)

Resets the selected XP8500 and reads back the associated calibration
coefficients into an internal array.

PARAMETER: Addr is the jumper-selected address of the board (0—
7).

RETURN VALUE: 0 if the reset is successful, -1 if the board cannot
be found.
LIBRARY: EZIOPBDV.LIB

e int plcXP85In(unsigned int address)

Reads an XP8500 A/D converter channel. Note that this function reads
back only the raw value—use p1cXP85InC to read back a calibrated
value.

PARAMETER: address is 16*board_address +
channel_number. board_address ranges from 0-3, depending on
the address jumpers, and channel_number ranges from 0—10,
depending on the A/D channel number.

RETURN VALUE: whole number from 0 to 4095, —1 if the XP8500
board is not found. The global variable eioErrorCode is bit-ored
with EIO_NODEV if the board is not found.

LIBRARY: EZIOPBDV.LIB
e float plcXP85InC(unsigned int address)

Reads an XP8500 A/D converter channel and converts the value to a
calibrated value using the constants read by eioAdc4Init. Note that
eioAdc4Init must be called before plcXP85InC. Use plcXP85In
to read back a raw value.

PARAMETER: address is 16*board_address +
channel_number. board_address ranges from 0-3, depending on
the address jumpers, and channel_number ranges from 0—10,
depending on the A/D channel number.

RETURN VALUE: floating-point number that represents the cali-
brated value read by the A/D channel. The global variable
eioErrorCode is bit-ored with EI0_NODEV if the board is not found.

LIBRARY: EZIOPBDV.LIB

XP8500 Software Reference ¢+ 121

XP8500

int eioAdcMakeCoeff(struct _eioAdcCalib *cnvrsn,
unsigned dl1l, unsigned d2, float f1, float £2)

Takes raw values and actual values of two data points, and computes the
calibration coefficients. The function assumes the data points are linear.

PARAMETERS: cnvrsn is a pointer to a calibration structure that
stores the coefficients.

d1 is the raw value for the first data point. d1 should be a whole
number from 0 to 4095.

d2 is the raw value for the second data point. d2 should be a whole
number from 0 to 4095.

£1 is the actual value for the first data point. £1 is a floating-point
number.

£2 is the actual value for the second data point. £2 is a floating-point
number.

RETURN VALUE: 0 if the operation is successful, —1 if the calibra-
tion coefficients cannot be computed.

LIBRARY: EZIOCMMN.LIB

int plcXP85RdCalib(int Addr,
struct _eioAdcCalib *pCalib)

Reads the calibration structure of an A/D converter channel on an
XP8&500.

PARAMETERS: Addr is 16*board_address +
channel_number. board_address ranges from 0-3, depending on
the address jumpers, and channel_number ranges from 0—10,
depending on the A/D channel number.

pCalib points to a calibration structure used to compute the actual
output for a given value.

RETURN VALUE: 0 if the operation is successful, otherwise a
negative number.

LIBRARY: EZIOPBDV.LIB

122 + Software Reference

XP8500

e int plcXP85WrCalib(int Addr,
struct _eioAdcCalib *pCalib)

Writes a calibration structure to the EEPROM storage corresponding to
a channel on the XP8500.

PARAMETERS: Addr is 16*board_address +
channel_number. board_address ranges from 0-3, depending on
the address jumpers, and channel_number ranges from 0—10,
depending on the A/D channel number.

pCalib points to a calibration structure, which should be initialized by
calling eioAdcMakeCoeff.

LIBRARY: EZIOPBDV.LIB

Other XP8500 Drivers

The following software drivers from the PLC_EXP.LIB library are still
supported by Z-World. Z-World recommends using the newer drivers
from the EZIOCMMN . LIB, EZIOPBDV.LIB, and EZIOPLC.LIB libraries.

e int adc4_init(unsigned int board_adr)

Determines if an XP8500 board is on the PLCBus. If the function call finds
the board, the A/D chip TLC2543 is initialized by enabling its chip-select line.
The chip-select line remains enabled until the board powers down.

PARAMETER: board_adr is the physical address of the XP8500
board, defined as 0000 1100 ppxy, where pp is the portion of the
board’s address set by a particular PAL and xy is the portion of the
board’s address set with jumpers.

RETURN VALUE: 1 if the specified XP8500 board is on the PLCBus;
0 if it cannot be found.

e int adcd4_read(unsigned int board_adr, int chan)

Enables an analog-input channel, chan, and reads the A/D data
conversion for the specified channel.

PARAMETERS: board_adr is the physical address of the XP8500
board, defined as 0000 1100 ppxy.

chan ranges from 0 to 10, corresponding to the board’s 11 A/D
channels. In addition, passing channel numbers above 10 will access
the A/D chip’s internal nodes: passing chan = 11 will return (VREF+ —
VREF-)/2, passing chan = 12 will return VREF—, and passing chan =
13 will return VREF+. All data defaults to 12 bits unipolar mode, with
the most significant bit first. The nominal zero point is 4095 for
unipolar input and 2047 for bipolar input.

RETURN VALUE: whole number from 0 to 4095, —1 if the specified
XP8500 board cannot be found.

XP8500 Software Reference ¢+ 123

XP8500

int adc4_set(unsigned int board_adr,
int chan)

Sets the A/D converter chip to the specified channel (chan).

PARAMETERS: board_adr is the physical address of the XP8500
board, defined as 0000 1100 ppxy.

chan ranges from 0 to 10, corresponding to the board’s 11 A/D
channels. Passing chan = 11 will return (VREF+ — VREF-)/2, passing
chan = 12 will return VREF—, passing chan = 13 will return VREF+,
and passing chan = 14 will put the board’s A/D chip, a TLC2543, into
software power-down mode. All data defaults to 12 bits unipolar mode
with MSB first. The returned data’s nominal zero point is 4095 for
unipolar conversion and 2047 for bipolar conversion.

RETURN VALUE: whole number from 0 to 4095 from the last A/D
conversion (caller should be aware of which A/D channel was set
previously); —1 if the specified XP8500 board cannot be found.

Because the A/D converter chip is hardwired to return a
converted value while accepting new settings, adc4_set
A returns a value converted with the chip’s previous settings.
Therefore, subsequent calls to ade4_set using the same
arguments will return conversions using the new settings.

The key to understanding the difference between adc4_read
and adcd_set is the “pipelined” nature of the A/D converter.

/ By design, shifting a command into the A/D converter simulta-
neously shifts a reading out. However, the A/D converter
made this shifted-out reading according to the previous
command’s setup.

So to return a correct reading for a single function call, the
adc4_read command shifts a command into the A/D con-
verter, discards the resulting reading, and makes a second read
from the now properly set up A/D converter. The faster
adc4_set function simply returns the first reading. Succeed-
ing ade4_set calls will return proper readings with the same
arguments.

124 + Software Reference XP8500

e int adc4_sample(unsigned int board_adr,
int chan, int count, int *buf,
unsigned int divider)

Samples data from an A/D chan at uniform intervals of time.

PARAMETERS: board_adr is the physical address of the XP8500
board, defined as 0000 1100 ppxy.

chan ranges from 0 to 10, corresponding to the board’s 11 A/D
channels. In addition, passing channel numbers above 10 will access
the A/D chip’s internal nodes: passing chan = 11 will return (VREF+
— VREF-)/2, passing chan = 12 will return VREF—, and passing chan
= 13 will return VREF+.

count specifies the number of samples to collect.

buf points to a buffer where the samples will be stored.

divider specifies the sample rate based on the formula
sample rate = sysclock/(20 * divider) , or
divider = sysclock * (sample period/20) .

All data default to 12 bits unipolar mode with MSB first. The mini-
mum value for divider depends on the clock speed, the number of
I/O wait states, and the number of memory wait states. The number of
states is approximately

12 * (131 + 4 * IOWait + 38 * Mwait) .

For example, a 9 MHz clock with 4 I/O wait states and 0 memory wait
states has a sample period of approximately 192 us; for 1 memory wait
state, the sample period is approximately 240 ps. For a 6 MHz clock
with 4 I/O wait states and 0 memory wait states, the sample period is
approximately 290 ps; with 1 memory wait state the sample period
becomes approximately 357 us.

RETURN VALUE: 0 if the data collection is successful, —1 if the
XP8500 board cannot be found, -2 if the sampling rate is too fast. The
function will not collect data if the sampling rate is set too fast.

/ This function turns off the interrupts for the duration of each
sampling period.

XP8500 Software Reference ¢+ 125

XP8500

float adc4_convert(int data, struct
adcd4coeff *cnvrsn)

Converts A/D data read by adc4_read() or adcd_set () into
voltage equivalent. An adc4coeff£ structure pointed to by envrsn
stores the conversion constants for this function. The voltage is
voltage = cnvrsn->invgain *
(cnvrsn->zero_offset - data).

RETURN VALUE: voltage value of the A/D data.

int adc4_readcoeff(unsigned int board_adr,
int chan, struct adcd4coeff *cnvrsn)

Reads the constants for converting A/D data to voltages.

PARAMETERS: board_adr is the physical address of the XP8500
board, defined as 0000 1100 ppxy.

chan ranges from 0 to 10, corresponding to the board’s 11 A/D
channels.

cnvrsn is a pointer to the adc4coef£ structure that stores the constant
zero_offset and the data-to-voltage conversion constant invgain.
The structure stores the constants as 6 continuous bytes in reserved
spaces of the XP8500’s EEPROM.

RETURN VALUE: 0 if the constants are read successfully from the
EEPROM, —1 if the XP8500 board cannot be found, -2 if a problem
occurs while accessing the EEPROM.

int adcé4_writecoeff(unsigned int board_adr,
int chan, struct adc4d4coeff *cnvrsn)

Stores the constants for converting A/D data to voltages.

PARAMETERS: board_adr is the physical address of the XP8500
board, defined as 0000 1100 ppxy.

chan ranges from 0 to 10, corresponding to the board’s 11 A/D
channels.

cnvrsn is a pointer to an adc4coe£f structure that stores the constant
zero_offset and the data-to-voltage conversion constant invgain.
The structure stores the constants as 6 continuous bytes in reserved
spaces of the XP8500’s EEPROM.

RETURN VALUE: 0 if the constants are stored successfully in the
EEPROM, -1 if the XP8500 board cannot be found, -2 if a problem
occurs while accessing the EEPROM, —3 if the upper 256 bytes of the
EEPROM are write-protected.

126 + Software Reference XP8500

e int adc4_compute(struct adcéd4coeff cnvrsn,
int datal, float voltl, int data2,
float volt2)

Computes the zero_offset and invgain for the adc4coeff
structure pointed to by envrsn. The function computes the constants
zero_offset and invgain based on A/D readings of two known
input voltages to allow input data to be corrected later using the
formula

voltage = invgain * (zero_offset — data) .
datal is the raw A/D reading for the known input voltage voltil.
dataz2 is the raw A/D reading for the known input voltage volt2.

RETURN VALUE: 0 if the constants are computed successfully, —1 if
the data used resulted in divide by zero while computing the constants.

¢ int adc4_eerd(unsigned int board adr,
int address)

Reads byte data from EEPROM data address.

board_adr is the physical address of the XP8500 board, defined as
0000 1100 ppxy. Addresses range from 0 to 511 for the 512 bytes of
EEPROM memory storage.

RETURN VALUE: non-negative value for data, —1 if the XP8500
board cannot be found, —2 if a problem occurs while accessing the
EEPROM.

e int adc4_eewr(unsigned int board_adr,
int address, char data)

Writes byte data to EEPROM data address.

board_adr is the physical address of the XP8500 board, defined as
0000 1100 ppxy.

address is 0 to 511 for the 512 bytes of EEPROM memory storage.
The top 256 bytes can be write-protected using with jumpers on header
I3.

RETURN VALUE: 0 if the data is successfully written to the
EEPROM, -1 if the XP8500 board cannot be found, -2 if a problem
occurs while accessing the EEPROM, —3 if a write to the top 256 bytes
of EEPROM was attempted while the write-protect jumper is con-
nected.

XP8500 Software Reference ¢+ 127

XP8500

Correcting Readings
The structure adc4coe££ that holds the constants for correcting readings
is defined as follows.

struct adcdcoeff {
int zero_offset;
float invgain;

}
This structure must be declared in an application.

The following equation, which the function ade4_convert uses, adjusts
A/D data from any channel voltage to correct for gain and offset errors.
voltage = invgain * (zero_offset — A/D data).

The top sixty six bytes (addresses 446 to 511) of the XP8500 board’s
EEPROM are reserved to store the calibration constants for the board’s
eleven A/D channels (six bytes per channel).

The factory will calibrate Channels 0 to 3 based on the installed resistors
and store the constants in their appropriate locations in the EEPROM.

Channels 4 to 10 will come with nominal calibration constants of:
zero_offset = 0 and invgain = -0.0006105
stored in their respective locations in the EEPROM.

Sample Program

The sample program ADC4SMP1.C in PLC_EXP.LIB reads data from an
XP8500 board over the PLCBus. The program reads the first four
(conditioned) channels of the XP8500 board, then displays the data
showing both the raw A/D readings and their equivalent voltages.

The program converts the raw readings to voltages based on the calibration
constants stored in the EEPROM. The XP8500 board stores these calibra-
tion constants in the last 66 bytes (6 bytes/channel) of its EEPROM.

Use the following steps to run the sample program.

1. Compile the program by pressing F3 or by choosing Compile from the
COMPILE menu. Dynamic C compiles and downloads the program
into the controller’s memory. During compilation, Dynamic C rapidly
displays several messages in the compiling window, which is normal.

2. Run the program by pressing F9 or by choosing Run from the RUN
menu. It is also possible to single-step through the program with F7 or
F8.

3. To halt the program, press <CTRL-Z>.
4. To restart the program, press F9.

128 + Software Reference XP8500

ADCASMPL. C |

#if (BOARD_TYPE == CPLC_BOARD) ||
(BOARD TYPE==L_STAR)

#use cplc.lib /1 Programruns on PK2200
/1 and PK2100 controllers
/1 only.
#endi f
mai n() {
struct adc4coeff adc4convO; /1 Structs needed
struct adc4coeff adc4convi; /1 only if you
struct adc4coeff adc4conv2; /1 use calibration
struct adc4coeff adc4conv3; /1 constants to

/'l convert raw A/'D
/1 data to voltages.
int dataO, datal, data2, data3;// Raw data.
unsi gned i nt adc4_board; /1 Brd address.
int i;

#if (BOARD_TYPE == CPLC_BOARD) ||
(BOARD TYPE==L_STAR)

uplc_init();
#endi f
reset _pbus(); /1 reset the PLCBus

reset _pbus_wait();

i f(sysclock() > 0x1e00)

reset _pbus_wait(); /1 wait double if the
/Il clock is faster than
/19 MHz

/1 find the first available
/1 XP8500 board on the PLCBus
for(i=0;i<4;i++) {
i f(adc4_init(0x0cO+i)) {
adc4_board = 0x0cO + i;
br eak;

}

if(i >= 4)
printf(“No XP8500 Board detected.\n");
while(1) runwatch();

}
printf(“XP8500 board %x has been
detected.\n", adc4_board);
printf(“Reading XP8500 board calibration
constants...\n");
adc4_readcoeff(adc4_board, 0, &ADC4conv0);
/1 read cal for chanO
adc4_readcoeff(adc4_board, 1, &ADC4convl);
/'l read cal for chanl

continued...

XP8500 Software Reference ¢+ 129

XP8500

adc4_readcoef f (adc4_board, 2, &ADC4Aconv2);
/1 read cal for chan2
adc4_readcoef f (adc4_board, 3, &ADC4Aconv3);
/1 read cal for chan3
printf(“Chan0 Calibration, zero_offset =
%d, invgain = %f\n”", ADC4conv0.zero_offset,
ADC4conv0.invgain);
printf(“Chanl Calibration, zero_offset =
%d, invgain = %f\n”", ADC4convl.zero_offset,
ADC4convl.invgain);
printf(“Chan2 Calibration, zero_offset =
%d, invgain = %f\n”", ADC4conv2.zero_offset,
ADC4conv2.invgain);
printf(“Chan3 Calibration, zero_offset =
%d,invgain = %f\n”, ADC4conv3.zero_offset,
ADC4conv3.invgain);
printf(“Toggle F4 (DOS only) to make
keyboard input active as STDIO.\n");
printf(“Hit any key to read A/D data from
XP8500 board.\n");
for(;;) {

\while(Ikbhit()) runwatch(); /1 wait for
/'l key fromthe PC
getchar(); /1 get the key

data0 = adc4_read(adc4_board, 0);
/1 read A/D Channel 0
datal = adc4_read(adc4_board, 1);
/1l read A/D channel 1
data2 = adc4_read(adc4_board, 2);
/1 read A/ D channel 2
data3 = adc4_read(adc4_board, 3);
/1 read A/D channel 3
printf(“\nData for ADC4 channels 0-3 !!\n");
printf(“chan 0 >> %6d, %8.3f volts\n”,data0,
adc4_convert(dataO, &ADC4conv0));
printf(“chan 1 >> %6d, %8.3f volts\n”, datal,
adc4_convert(datal, &ADC4convl));
printf(“chan 2 >> %6d, %8.3f volts\n”, data2,
adc4_convert(data2, &ADC4conv?2));
printf(“chan 3 >> %6d, %8.3f volts\n”, data3,
adc4_convert(data3, &ADC4conv3));
}

Sample program ADC4SMP3 . C also shows how to recalibrate

/ an XP8500 channel and how to store the new calibration

constants in the EEPROM.

/ Check the board jumpers, PLCBus connections, and the PC/

controller communications if an error message appears.

See the Dynamic C Technical Reference manual for more
e y ofe

detailed instructions.

130 + Software Reference XP8500

Advanced XP8500 Programming

PLCBus-Level Communication

Dynamic C functions perform the bus-level operations described here. A
program controls and communicates with an XP8500 though the PLCBus
interface register, a reserved memory location. This global register
occupies a single address on the PLCBus. After the program has selected a
particular XP8500 (by calling set12addr with the XP8500’s address as
an argument), the program may write data to the XP8500’s EEPROM or
A/D converter chip via BUSWR cycles to the bus interface register.
Similarly, the program can fetch EEPROM data or retrieve converted A/D
results via BUSRDO cycles via the bus interface register. The bus interface
register allows the control program and a selected XP8500 to exchange
only one 4-bit nibble per cycle.

The EEPROM and the A/D converter are both serial I/O devices. Conse-
quently, the IC control lines can be set or cleared only one bit at a time,
and only one bit at a time may be read or written from/to the data lines.

During a BUSWR cycle, each 4-bit nibble transmitted via the bus interface
register through the PLCBus to an XP8500 board sets or resets a control
line according to Table 12-2.

Table 12-2. Effects of Nibbles Passed
Over PLCBus to XP8500

Nibble Function
0000 A/D Clock =0
0001 A/D Clock =1
0010 A/D Write Data=0
0011 A/D Write Data=1
0100 A/D Chip Select =0
0101 A/D Chip Select =1
0110 EEPROM SDA =0
0111 EEPROM SDA =1
1000 EEPROM SCL =0
1001 EEPROM SCL =1
1010 Not Used
1011 Not Used
1100 Not Used
1101 Not Used
1110 Not Used
1111 Not Used

XP8500 Software Reference ¢+ 131

XP8500

The control program must input a series of 4-bit nibbles to read a con-
verted value from a selected XP8500’s serial A/D converter chip or serial
EEPROM. Again, each nibble can carry only one bit of data or control
information. Each 4-bit nibble read back from an XP8500 during a
BUSRDO cycle has the following format.

Bit 3: ENDC—A/D end of conversion
1 = conversion cycle is not in process; OK to send/receive data
0 = conversion cycle is in process; do not send or receive data

Bit 2: SDA—EEPROM serial data out
Bit 1: DOUT—A/D serial data out

Bit 0: Board present
0 = selected board actually present
1 = selected board not found.

The standard Dynamic C library functions for the XP8500 will probably
suffice for all applications. Refer to the manufacturer’s data sheets for the
24C04 EEPROM and the TLC2543 A/D converter if there is a need to
write other routines using the BUSWR and BUSRD cycles.

132 + Software Reference XP8500

XP8800

0088dX

0088dX

Crarter 13: OVERVIEW

Chapter 13 provides an overview and description of the XP8800 motion
control expansion boards.

XP8800 Overview ¢+ 135

XP8800

XP8800 Overview

Z-World’s XP8800 expansion board may be attached to a Z-World
controller with a PLCBus port. The XP8800 does not have the software
drivers to enable it to be used with other Z-World controllers.

The XP8800 controls a single axis of motion. Multiple XP8800s may be
connected to provide up to four axes of control. The benefit of the
XP8800 is that it can handle motor control operations, leaving the master
controller free to perform other tasks.

The onboard motor driver IC (UCN5804) is capable of driving 1 A per
phase and motor voltages up to 35 V. The driver automatically generates
the sequencing for 1-phase, 2-phase, and half-step operations. The
XP8800 includes a 16-bit quadrature decoder/counter (HCTL-2016) that
can count at speeds up to 3 MHz.

An XP8810 version of the XP8800 expansion board is available. The
XP8810 offers optical isolation for the quadrature and sense inputs.

/ Note that there is a common ground for the board and the
inputs. Therefore the optical isolation is not absolute.

Like other Z-World expansion boards, the XP8800 can be installed in
modular plastic circuit board holders attached to a DIN rail. The XP8800
can also be mounted, with plastic standoffs, on any surface that will accept
SCrews.

Features

* Continuous (manual), preset (counted), or origin-seeking modes of
operation.

» Switching between high-speed and low-speed operation, with or
without acceleration and deceleration.

* “Bidirectional” pulse output modes.

» Sensing of origin, end-limit, and slowdown signals.

e Interrupt generation.

* 13-bit (8,191) step rate resolution, 18-bit (256K) counter.
» User-definable output speed range up to 16 kHz.

» Single-phase, dual-phase, and half-step modes.

* 16-bit quadrature decoder/counter.

* Watchdog reset.

» Optional optical isolation for quadrature and sense inputs.

136 ¢+ Overview XP8800

Specifications
Table 13-1 summarizes the specifications for the XP8800 expansion board.

Table 13-1. XP8800 Series Specifications

Parameter Specification

Board Size 2.835"x 4.0" x 0.58"
(72 mm x 102 mm x 15 mm)

Operating Temperature Range -40°C to +70°C
Humidity 5% to 95%, noncondensing

Power (quiescent, no output) 40mA@5VDC
Output One-axis stepper motor control rated at 3p V
¢ 1.25 A per phase in full-step mode
* 1.0 A per phase in half-step mode

Figure 13-1 shows the dimensions of the XP8800 Series expansion boards.

5)

2.835
(72)

1o XXXXITXITN] 1
[
< 0.1625 \0.187 dia, 4x

| (4.1) o @)
(102)
M SRR U 1+ 78

Figure 13-1. XP8800 Board Dimensions

XP8800 Overview ¢+ 137

XP8800

138 ¢ Overview

XP8800

Crarter 14: GETTING STARTED

Chapter 14 provides instructions for connecting XP8800 expansion boards
to a Z-World controller. The following sections are included.

e XP8800 Series Components
» Connecting Expansion Boards to a Z-World Controller

» Setting Expansion Board Addresses

XP8800 Getting Started ¢+ 139

XP8800

XP8800 Components

The XP8800 stepper motor control expansion board controls a single axis
of motion. Figure 14-1 shows the basic layout and orientation of compo-
nents, headers, and connectors.

Quadrature Decoder & Counter

RN1

Q (T u1 M [d 0 f nl[d nl[d RN Q
O ollgYy2 o gus oY pygYe ooy gYe
I R i 0 =01 il il i oo
ool |0 = DIl D s 1 O N A P
ool |0 & Ol] 20 dpllg =il il i o o
ool ld O BUIZD|[0s BTl PIlg B[l
oo O & [i =i il il i o o
ool |0 afili i iR il il i o o
oo |0 s=== O] i f il il 1T o o
ool |0 Ny pld b 19 hlld hld i oo
L IR N R RNz [0
o o O R 0 RN3 [US i) R1 o o
oo |0 d ©o000000000 |l 7] D1 D2 |oo
ool I iy ©@ooocooocooo|l 1) oo
H1| |0 rNa | 0 o s [H2
X1 i I
[o o]J1 b us
D3,D4,D5,D6 E % ZZ
Motor o0
Driver [oo
H6
Qo@@@@@@®@@@@@@@@@ O
il

Screw Terminals

Figure 14-1. XP8800 Board Layout

140 ¢+ Getting Started XP8800

Connecting Expansion Boards to a Z-World
Controller

Use the 26-conductor ribbon cable supplied with an expansion board to
connect the expansion board to the PLCBus on a Z-World controller. See
Figure 14-2. The expansion board’s two 26-pin PLCBus connectors, P1
and P2, are used with the ribbon cable. Z-World recommends using the
cable supplied to avoid any connection problems.

Controller (O
PLCBus Port

o

LO et enneenn0R000008) OJ

XP8800 Controller With PLCBus
Figure 14-2. Connecting XP8800 Expansion Board to Controller PLCBus

Be sure power to the controller is disconnected before adding
A any expansion board to the PLCBus.

Follow these steps to connect an expansion board to a Z-World controller.

1. Attach the 26-pin ribbon cable to the expansion board’s P2 or H2
PLCBus header.

2. Connect the other end of the ribbon cable to the PLCBus port of the
controller.

Be sure pin 1 of the connector cable matches up with pin 1 of
both the controller and the expansion board(s).

3. If additional expansion boards are to be added, connect header P2/H2
on the new board to header P1/H1 of the board that is already con-
nected. Lay the expansion boards side by side with headers P1/H1 and
P2/H2 on adjacent boards close together, and make sure that all
expansion boards are facing right side up.

See Appendix C, “Connecting and Mounting Multiple Boards,”
S for more information on connecting multiple expansion boards.

XP8800 Getting Started ¢+ 141

XP8800

4. Each expansion board comes with a factory-default board address. If
more than one expansion board of each type is to be used, be sure to set
a unique address for each board.

The following section on “Setting Expansion Board Ad-
dresses,” and Chapter 8, “Software Reference,” provide details
on how to set and use expansion board addresses.

5. Power may be applied to the controller once the controller and the
expansion boards are properly connected using the PLCBus ribbon
cable.

Setting Expansion Board Addresses

Z-World has established an addressing scheme for the PLCBus on its
controllers to allow multiple expansion boards to be connected to a
controller.

Remember that each expansion board must have a unique

/ PLCBus address if multiple boards are to be connected. If two
boards have the same address, communication problems will
occur that may go undetected by the controller.

XP8800 Addresses

XP8800 expansion boards are shipped from the factory with no pins on
header H4 connected. An XP8800 expansion board may be assigned any
one of 16 addresses using jumpers on the pins of header H4. The LED at
D2 lights up whenever the XP8800 is addressed on the PLCBus.

See Chapter 16, “Software Reference,” for further details on
how to determine the physical address for XP8800 expansion
boards.

Power

Z-World’s expansion boards receive power from the controller over the
+24 V and VCC lines of the PLCBus. The XP8800 expansion boards use
VCC, which is +5 V. The XP8800 draws from 40 mA (quiescent) to a
maximum of 105 mA.

142 ¢+ Getting Started XP8800

Crarter 15: I/O CONFIGURATIONS

Chapter 15 describes the built-in flexibility of the XP8800 expansion
boards, and describes how to configure the available inputs/outputs. The
following sections are included.

* XP8800 Series Pin Assignments

* Using Expansion Boards

XP8800 /0 Configurations ¢+ 143

XP8800

XP8800 Pin Assignments

External connections are made to the XP8800 expansion board using H5, a
14-pin header, and H6, a 16-screw terminal block. Figure 15-1 shows the
pin assignments.

GND 14| @ @ |13 GND
/WDO 12| ® e |11 /PULSE
/PFO 10| @ @ |9 PDIR
HeaderHS o, 5o o |7 /DRVOE
+5V 6| ® e |5 HSTEP
4 e @ 3 WAVE
+24V 2| e B 1
Motor Drive Quadrature Sense Input Power
. | R —
BBV VRYYYYYYYVVVY
17 17 [[[[[[

PHA PHC GND BIN /EL+ | /SD+ K GND
PHB PHD AIN /ORG /[EL- /SD- +5V 424V

Figure 15-1. XP8800 Output Header H5 and Terminal Block H6

Header H5 Signals

HS5 provides connection points for motor control signals, power and
ground, power failure, and watchdog signals. The motor control signals
are usually used with an amplifier to drive the motor.

IDRVOE—A low signal enables output from the TTL motor driver IC.

GND—is the PLCBus ground, common to the entire system.

/ Connect the motor power supply ground only to GND on the
screw terminal block (H6).

HSTEP—Together with the WAVE signal, HSTEP determines the opera-
tion of the TTL motor driver IC: single-phase, two-phase, or half-step.

PDIR—This signal indicates in which direction the TTL motor driver IC is
to move. A high level means movement in the + direction. A low level
means movement in the — direction.

PFl—is an analog signal input to the power-fail comparator. The /PFO
line becomes active when PFI drops below 1.25 V (£0.05 V).

144 + 1/0O Configurations XP8800

IPFO—is the open-collector power-failure indicator. /PFO goes low when
PFI goes below 1.25 V (£0.05 V). IPFO can be connected to the NMI or
interrupt line on the master controller.

IPULSE —A low pulse on this line signals a one-step move to the TTL
motor driver IC.

WAVE—Together with the HSTEP signal, WAVE determines the operation
of the TTL motor driver IC: single-phase, two-phase, or half-step.

IWDO—This is the active low, open-collector watchdog output line.
When the watchdog is enabled, this line will go low—upon a watchdog
timeout—to generate a hard reset at the PCL-AK pulse generator.

+5 V—is the regulated PLCBus +5 V digital power supply. This supply
should not be used for motor power, but can be used to power external
logic.

+24 V—is the unregulated PLCBus +24 V supply. Though nominally
24V, this can be anywhere from 9 V to 30 V DC. This supply may be used
to drive the motor if the controller’s power supply can handle the current
requirements.

Screw Terminal Block H6 Signals

PHA, PHB, PHC, PHD—are the open-collector motor control outputs.
They connect to the motor phase lines, and can sink up to 1 A, depending
on the ambient temperature.

AIN, BIN—are the TTL-compatible quadrature-encoded input signals.

IORG—is the active-low origin pulse input. JORG goes directly to the
PCL-AK pulse generator, thereby allowing the PCL-AK to generate pulses
until it receives an origin signal. /ORG is readable in the PCL-AK
(address 0) status bits.

[EL+, [EL— —are the active-low end-limit inputs, one for the + direction,
the other for the — direction. These signals go directly to PCL-AK pulse
generator, where they are typically used to indicate end-of-travel, usually
to stop pulse generation. These signals are readable in the PCL-AK
(address 0) status bits.

ISD+, ISD— —are the active-low “slowdown” inputs, one for the +
direction, the other for the — direction. These signals go directly to
PCL-AK pulse generator, where they are typically used to force the
PCL-AK to decelerate to its slower speed. These signals are readable in
the PCL-AK (address 3) status bits.

XP8800 /0 Configurations ¢+ 145

XP8800

K—is protection for the driver chip. K is connected to the motor control
voltage source through protective diodes.

can occur or performance can degrade if this connection is not

i Be sure to connect K to the motor’s voltage source. Damage
made.

+5 V—is the regulated PLCBus +5 V digital power supply. This supply
should not be used for motor power, but can be used to power external
logic.

+24 V—is the unregulated PLCBus +24 V supply. Though nominally 24
V, this can be anywhere from 9 V to 30 V DC. This supply may be used to
drive the motor if the controller’s power supply can handle the current
requirements.

GND—is the PLCBus ground, common to the entire system. The motor’s
power supply ground should be connected here only. There are two GND
connections on H6.

Sample XP8800 Connections

Figure 15-2 shows an example of a stepper motor connected to an XP8800
expansion board.

PLCBus
L XP8800
Z-World
Controller 2 O n <mon & a [-
g = Xzz>> 400l
2 =12 & & vizaa O%569 Lol
Motor
Power
Supply

Mechanical
Switches and
Optical sensors

«,,,,%
)
Quadrature
Gears Encoder

Stepper Motor

Figure 15-2. Sample Stepper Motor Connection to XP8800

146 + 1/0 Configurations XP8800

Optional Optical Isolation

The quadrature and sense inputs (AIN, BIN, /ORG, /EL+, /EL-, /SD+, and
/SD-) may be optically isolated, as shown in Figure 15-3. The XP8810
version of the XP8800 expansion board features this optical isolation.

470 Q
+5V

> OUT

IN[CCO>—

4AN26

Figure 15-3. XP8810 Optical Isolation Circuit

/ Note that there is a common ground for the board and the
inputs so that the optical isolation is not absolute.

XP8800

/0 Configurations ¢+ 147

XP8800

Using Expansion Boards
The following steps summarize how to use the XP8800 boards.
1. Send a reset command to the PLCBus.

2. Place the address of the XP8800 registers on the PLCBus. The address
will actually be the address of one of the components, the PCL-AK
pulse generator, or the quadrature decoder/counter.

3. Operate the XP8800. The following operations are the ones done most
frequently.

* Set XP8800 control register.

* Issue command to PCL-AK pulse generator.

* Set PCL-AK parameters or read PCL-AK registers or status.
* Reset the quadrature counter or read its value.

* Wait for interrupt requests.

4. Once the XP8800 operation is done, issue a soft reset to the PCL-AK
pulse generator.

The Dynamic C STEP. LIB library handles the details of operating the
XP8800.

Resetting XP8800 Expansion Boards
There are many ways to reset the XP8800 and its components.

1. Power-Up Reset

On power-up, both the PCL-AK pulse generator chip and the quadrature
decoder/counter undergo a hardware reset.

The control register powers up to an unknown state, making it necessary
for the application to initialize the control register before using anything
else on the board. (Use the function sm_£ind_boards to do this.)

2. PLCBus Reset

A PLCBus reset command strobes both the PCL-AK and quadrature
decoder/counter reset lines, forcing hardware resets for both. The control
register and motor driver IC are not affected by a PLCBus reset.

3. Watchdog Reset

The watchdog timer is a safety feature that halts the PCL-AK (and there-
fore motion) in the event of a system crash. When the watchdog is turned
on, the application must “hit” the watchdog at least every 1.5 seconds. The
watchdog is “hit” every time the application reads the quadrature counter
(the actual chip need not be present), writes the control register, or calls the
function sm_hitwd. The quadrature counter is nof reset in the event of a
watchdog timeout.

148 + 1/0 Configurations XP8800

Once reset this way, the PCL-AK pulse generator chip will stay reset until
the application hits the watchdog again. Connecting the jumper on header
J1 enables the watchdog. The watchdog is disabled if this jumper is not
connected.

4. PCL-AK Reset

In addition to the watchdog reset and the power-up reset, there are two
other ways to reset the PCL-AK pulse generator:

To achieve a hardware reset, drive the PCL-AK reset line low. This line is
connected to the control register (bit 1). A hardware reset halts all activity
of the controller and resets all internal counters and registers. The function
smc_hardreset will pulse this line and generate the reset.

To achieve a software reset, write a reset command to the controller. A
software reset immediately stops pulse generation and deactivates the
PCL-AK’s interrupt request line if it is active. The contents of PCL-AK
registers are not affected. A software reset is typically used at the end of a
programmed operation that generates an interrupt when it finishes. The
function smc_softreset is used to generate a software reset.

5. Quadrature Counter Reset

The quadrature counter is reset to zero on power-up. Use the function
smq_hardreset at any time to reset the quadrature counter.

XP8800 /0 Configurations ¢+ 149

XP8800

XP8800 Operation
The XP8800 has these three major components.
1. PCL-AK pulse generator.
2. UCNS5804 motor driver.
3. HCTL-2016 quadrature decoder/counter.

These components are coupled with a control register (U3) and control
logic (U2, U4), as shown in Figure 15-4. One or more of these compo-
nents may be left unused. For example, the XP8800 can be used solely as
a quadrature counter by ignoring the PCL-AK and the motor driver ICs.
The XP8800 can even be used as a timer by ignoring or disabling its

< - Pulse & Dir > A
» interrupt request 8 PCL-AK P > Motor B
data Pulse Generator Driver —>C
Reset b
ese Phase
2 Output
R N Control mode:
control (U2, U3, U4) 1 phase
byte 2 phase
» half-step
S
8
= Watchdog
Reset Expansion
Header
8 Quadrature
< ot Decoder/Counter
SD: “slow down”
EL: “end limit”
AB ORG | SD- | EL— ORG: origin
from external SD+ EL+ + Positive direction
quadrature encoder from external sensors — Negative direction
outputs.

Figure 15-4. XP8800 Block Diagram

PCL-AK Pulse Generator

The PCL-AK pulse generator at the heart of the XP8800 controls the
motor driver IC. The bidirectional /PULSE output signal steps a motor. If
PDIR is 1, the move is in the + direction, 0 means the move is in the —
direction. The PCL-AK can generate thousands of different pulse rates.

2 ¢

The PCL-AK can sense external signals such as “slow down,” “end limit,”
and “origin,” and can accelerate and decelerate the motor driver IC
between high-speed and low-speed settings. The PCL-AK is able to
generate interrupt requests in response to certain conditions such as the end
of the operation. The PCL-AK chip can signal the stepper motor to stop
immediately or decelerate to a stop.

150 ¢ 1/O Configurations XP8800

The PCL-AK has the following three basic modes of operation.

1. Continuous Mode—The PCL-AK continues to generate pulses
until instructed to stop or an external signal arrives.

2. Preset Mode—The PCL-AK generates pulses until its preset
counter decrements to 0 or an external signal arrives.

3. Origin Mode—The PCL-AK generates pulses until an “origin”
pulse arrives.

4. Stop Mode—The PCL-AK either generates pulses for the stepper
motor chip to bring the stepper motor to an immediate stop or it
generates pulses leading to a deceleration to a stop.

Figure 15-5 shows a block diagram of the PCL-AK.

command & —> /PULSE
data in
status and data FL —> PDIR
out
FH
|I:> address CTR IORG
RD <— /EL-
/WR—>] MUL <— JEL+
/RD—> ADR <€<— /SD—
/CS—>> Control <— /SD+
/RESET—>» Reaqisters
PCL-AK 9
clock —>» —> /INT

Figure 15-5. Block Diagram of PCL-AK Pulse Generator Chip

Communicating with the PCL-AK

The PCL-AK is controlled by writing to its command buffer and by writing
values to its control registers. The chip can be monitored to find out what
it is doing by reading the status register or a control register. Only the
counter and ramp-down point registers are readable.

The internal registers of the PCL-AK can be reset by pulsing the /RESET
line. A software reset does not reset the internal registers.

XP8800 1/0 Configurations ¢ 151

XP8800

Table 15-1 provides the meanings for commands used with the PCL-AK.

Table 15-1. PCL-AK Commands

PCL-AK Signals ;
Meaning
ICS Al A0 /RD /WR
0 0 0 1 0 Write command buffer.
0 0 1 1 0 Write register bits 0-7.
0 1 0 1 0 Write bits 8-15.
0 1 1 1 0 Write register bits 16—17 (countef).
0 0 0 0 1 Read status.
0 0 1 0 1 Read register bits 0-7.
0 1 0 0 1 Read register bits 8-15.
o | 1] 1| 0| 1| i eened s b
x X x X D0-D7 at high impedance.
0 X x 0 0 Inhibit.
Registers

Table 15-2 lists the PCL-AK registers.

Table 15-2. PCL-AK Registers

Register Bits Description

CTR 18 Down counter, gives the number of pulsesto generate
for Preset Mode. Thisregister is readable. When read,
it gives the number of remaining pulses.

FL 13 Low frequency from which to accelerate or decel erate.

FH 13 High frequency from which to decelerate or accelerate.

ADR 10 Acceleration/decel eration rate.

RD 16 Ramp-down point. When the PCL-AK isgenerating
pulsesin the Preset Mode, the ramp-down point isthe
point (number of pulses before end-of-count) a which
the PCL-AK will start ramping down (decel erating)
from high speed to low speed. Thisregister isreadable.

MUL 10 Multiplier register, interacts with FL and FH to give
various pulserates.

152 ¢+ 1/0 Configurations

XP8800

Acceleration/Deceleration Rate (ADR) Register

The ADR register—with settings from 2 to 1023—governs the ramping-up
(acceleration) and ramping-down (deceleration) characteristics. When
started in a high-speed mode, the PCL-AK pulse generator starts with the
speed set in the FL register and accelerates to reach the speed set in the FH
register.

The Z-World reference clock frequency is 6 MHz. Thus, a clock period is
1/6 us. The time it takes to accelerate or decelerate is

Ty = (FH —FL) X (rate in ADR)/6 ps.
The relationship between acceleration and the rate in ADR is
CLOCK
—— ~ Pulses
ratein ADR

The stepper motor might not operate if the ADR rate is too small because
the acceleration will then be too fast.

acceleration = /2.

The relationship between the value of a speed register (FL or FH varies
from 1 to 8191) and the actual output frequency of PCK-AL is

L. _FH CLOCK
HIGH “g190” MUL
L, FL CLOGK
LOW " g192° MUL

The term MUL is the value ramp-down point

of the multiplier register, - \|

and can be from 2 to 1023. ©

With Z-World’s 6 MHz ref- ch Hien

erence clock, MUL = 732 g— v

(732.421875 rounded off). @ "W

Referring to Figure 15-6, the -

number of pulses output dur- Time | |
ing T, is represented by ‘T’
the area of the shaded trap- DEC
ezoid. Figure 15-6. Calculating the Number of Pulses

(VHIGH + VLow) XTpec

Number of pulses=) pulses
_ (FH2 - FLZ)XADR
= pulses.
16,384x MUL

XP8800 /0 Configurations ¢+ 153

XP8800

Status Bits

Status bits are available at PCL-AK address 0 and 3. The status bits for
address 0 are explained below.

D7 D6 D5 D4 D3 D2 D1 DO
DO 1—/EL~ (end limit) signal
D1 1—/EL+ signal
D2 1—/ORG (origin) signal
D3 1—counter output =0
D4 1—ramp-down point register (RD) selected
0—other register selected
D5 1—frequency stabilized after ramp down or ramp up
D6 1—operation in progress
D7 O0—/INT (interrupt request) active

Bits 0 and 1 of the address 3 status depend on whether the RD (ramp-down
point) register was selected prior to reading the status. The status bits for
address 3 are explained below.

DO

D1

D2
D3
D4
D5
D6
D7

If RD register is selected

0—stop interrupt signal is being output
else—bit 16 of counter is output

If RD register is selected

O0—ramp-down point interrupt signal is being output
else—bit 17 of counter is output

1—/SD- (slow down) signal
1—/SD+ signal

1—Ramp up in progress
1—Ramp down in progress
1—counter < ramp-down point

0—/PULSE signal is not active
1—/PULSE signal is active

See Z-World Technical Note 101, Operating the PLC-AK

é%ﬁ High-Speed Pulse Generator, for more information on the

PCL-AK chip.

154 + 1/0 Configurations XP8800

UCN5804 Motor Driver IC

The motor driver chip (UCN5804) receives two pulse signals from the
PCL-AK pulse generator. One signal, /PULSE, steps the motor. The other
signal, PDIR, specifies the motor rotation (high = forward, low = reverse).

The driver receives two mode signals from the control register. Their
meanings are summarized in Table 15-3. The Os in the table indicate that
the driver line is ON, that is, it is sinking current.

Table 15-3. Motor Driver Chip Modes

Bit 7 Bit 6 Mode
0 0 Two phase
0 1 Half-step
1 0 Single phase
1 1 Undefined—Do not use

The motor driver chip generates phase signals A, B, C, and D to produce
these modes according to the chart in Figure 15-7. The top line of each
sequence indicates the state of the driver at power-up.

Single Phase Two Phase Half-Step

ABCD ABCD ABCD

0111 0110 0111
o ©
= 1011 0011 0011 2]
3 1101 1001 1011 Q
o [T}
& 1110 1100 1001 o

1101

1100

1110

0110

Figure 15-7. lllustration of Phase Signals A, B, C, and D
Produced by Motor Driver Chip

XP8800 /0 Configurations ¢+ 155

XP8800

Figure 15-8 shows how the phase lines are connected to the motor’s

windings.
3T

1426
D L4 D4

Motor | ¢
Driver 5 122
€23

A

Figure 15-8. Connection of Phase Lines to Motor

Driver Power

To select a voltage for the motor driver chip, be sure to consider the vari-
ous losses in the drive circuit, including the collector/emitter voltage and
the voltage of the blocking diode. Figure 15-9 illustrates these voltages.

Vp Drive voltage
Vv Motor-specific voltage

} Ve Diode forward voltage, typically 0.7 V

UCN5804
Ve Collector-emitter voltage

Figure 15-9. Voltage Drops Associated with UCN5804 Motor Driver Chip

156 ¢ 1/0 Configurations XP8800

Table 15-4 lists typical ratings for the UCN5804 motor driver chip.

Table 15-4. Typical Ratings UCN5804
Motor Driver IC

Ip VCE
0.7A 1.0V
10A 11V
1.25A 1.2V

For example, consider a 5 V, 1 A motor.

Vp =Vu +Vce +Ve
=5V +11V+0.7V
=6.8V

You would need a 6.8 V, 2 A power supply (for 2-phase drive) in addition
to the power required by the logic.

Remember to connect the K line on the screw connector block
(H6) to the high side of the drive voltage.

Quadrature Decoder/Counter

The HCTL-2016 is a 16-bit quadrature decoder and counter. Its two lines,
A and B, accept two quadrature encoded signals, that is, two square waves
90° out of phase. The order in which these signals make transitions deter-
mines the direction that is counted. Figure 15-10 illustrates this counting
operation.

Forward Quadrature (Counting Up)

Reverse Quadrature (Counting Down)

Figure 15-10. HCTL-2016 Quadrature Counting Operation

XP8800 /0 Configurations ¢+ 157

XP8800

There are four states of lines A and B, as shown in Figure 15-11. The
counter counts up or down, depending on the state transition.

GOUNT Up

CHA CHB STATE
Valid ! 0 !
State 1 1 2
Transitions 0 1 3
0 0 4

_/7
Count powW™

Figure 15-11.

The speed at which the

HCTL-2016 Quadrature Counting Operation

counter can operate is limited by the reference

clock (12 MHz). The counter can operate at up to one quarter of this
frequency. Thus, the maximum reliable counting frequency is 3 MHz.

The counter can be read as two successive bytes.

Control Register

The control register is an 8-bit write-only latch that controls the operation
of the XP8800. Table 15-5 explains the meaning of each bit in the register
(bit O is the least significant bit).

Table 15-5. Control Register Bits

Bit Name Meaning

0 RESCNT Reset quadrature decoder/counter. Low meansreset.

1 RESCTL Reset the PCL-AK. Low meansreset.

2 LED LED. Low meansON.

3 SELO Loca addressline.

4 SEL1 Local addressline.

5 DRVOE Enable motor driver IC output. Low means ON.

6 HSTEP Half-step mode for motor driver IC when thishitis 1 and
bit 7is0.

7 WAVE Single-phase mode for motor driver IC when thishitis1

and bit 6is0.

» Two-phase mode when thishitisO and bit 6is0.

158 ¢+ 1/0 Configurations

XP8800

The select lines SELO and SEL1 have a specific meaning. They are
connected to the two address lines of the PCL-AK pulse generator. SELO
is also connected to the quadrature decoder/counter. Coupled with PAL
logic, these select lines allow you to read and write to the PCL-AK and to
read the 16-bit counter value. (The function library STEP.LIB takes care
of the details.)

PLCBus Interrupts

Be careful when processing interrupts from the PLCBus. Interrupts can
come from any source, including other expansion boards. A PLCBus
interrupt service routine must determine where the interrupt originated and
what to do.

XP8800 1/0 Configurations ¢+ 159

XP8800

160 ¢+ I/O Configurations

XP8800

CHaPTER 16: SOFTWARE REFERENCE

Chapter 16 describes the Dynamic C functions used to initialize the
XP8800 Series expansion boards and to control the resulting outputs. The
following major sections are included.

e XP8800 Board Addresses
* Dynamic C Libraries
« XP8800 Software

XP8800 Software Reference ¢+ 161

XP8800

XP8800 Board Addresses

Up to 16 XP8800 addresses are possible on the PLCBus. Power con-
straints usually limit the number of XP8800 expansion boards to four,
allowing four axes of control.

Each XP8800 has three addressable components: the PCL-AK pulse
generator, the quadrature decoder/counter, and the control register. The
address of a particular XP8800 is determined by jumpers on header H4 as
shown here.

abcd1100 x0000Rxx
where

a =0 if H4 pins 1-2 are connected, and 1 if not
b = 0 if H4 pins 3—4 are connected, and 1 if not
¢ =0 if H4 pins 56 are connected, and 1 if not
d =0 if H4 pins 7-8 are connected, and 1 if not
x = does not matter
R = 0 to read or write PCL-AK pulse generator
=1 to read the quadrature counter
=1 to write the control register

The address is placed on the PLCBus as 2 bytes using two bus cycles,
BUSADRO and BUSADRI1. The lower four bits of the first byte (1100)
identify the address as being 8%2 format.

The address is placed on the bus using the functions set82adr and
set8ladr.

The LED (D2) will light up on the XP8800 that matches the address the
software placed on the PLCBus.

Examples

1. Write the control register on the XP8800 whose address jumpers are 3
(abcd = 0011).

out0 (BUSADRO), 3Ch ; 00111100 1st addr byte

out0 (BUSADR1), 04h ; 00000100 2nd addr byte

Set shadow variable = control register value, then...
out0 (BUSWR), <«shadow> ; control bits

162 ¢+ Software Reference XP8800

2. Write a command to the PCL-AK on the XP8800 whose address
jumpers are 8 (abed = 1000).

;first, make select lines 00
out0 (BUSADRO), 8Ch ; 10001100 1st addr byte
out0 (BUSADR1l), 04h ; 00000100 2nd addr byte
Set shadow variable = AND(shadow variable,

OxE7), then

out0 (BUSWR), <«shadow> ; control bits

;now address the PCL-AK and send command
out0 (BUSADR1), 00h ; 00000000 2nd addr byte
out0 (BUSWR), <command> ; command

3. Read the 16-bit quadrature counter on the XP8800 whose address
jumpers are 13 (abed = 1101).

;first, make select lines 00 to get high byte
out0 (BUSADRO), DCh ; 11011100 1st addr byte
out0 (BUSADR1l), 04h ; 00000100 2nd addr byte
Set shadow variable = AND(shadow variable,

OxE7), then
out0 (BUSWR), <«shadow> ; control bits
in0 <high>, (BUSRDO) ; get high byte

;next, make select lines 01 to get low byte
Set shadow variable = OR(shadow variable,

0x08), then
out0 (BUSWR), <«shadow> ; control bits
in0 «<low>, (BUSRDO) ; get low byte

Return counter value = high << 8 + low

In general there is no need to program the XP8800 at these low levels.
Software in the Dynamic C STEP. LIB library takes care of these details.

Logical Addresses

Software in the Dynamic C STEP. LIB library keeps information for all
XP8800s on the PLCBus in a table, sorted by XP8800 address. Thus,
XP8800s have “logical addresses” that are simply indexes in the table.

For example, suppose there are three XP8800s on the PLCBus with
addresses of 3 (0011), 8 (1000), and 13 (1101). Table 8-1 shows the table
used by the software.

The logical addresses for these 3 boards would be 0, 1, and 2. The
physical addresses are stored in the table. The function sm_find_boards
sets up this table.

XP8800 Software Reference ¢+ 163

XP8800

Table 16-1. Example of STEP. LI B
Table for XP8800 Logical Addresses

Index Address
0 0011
1 1000
2 1101

marker —

Dynamic C Libraries

Several Dynamic C function libraries contain the software functions

described in this chapter. The chart in Table 8-2 identifies which libraries
must be used with particular Z-World controllers.

Table 16-2. Dynamic C Libraries Required by Z-World Controllers
for XP8800 Expansion Boards

Library Needed Controller
DRI VERS. LI B BL1200, BL1600, PK2100, PK2200
EZI OCCMWN. LI B BL1200, BL1600, PK2100, PK2200
EZI OPBDV. LI B BL1200, BL1600, PK2100, PK2200
EZI OPLC. LI B BL1200, BL1600, PK2100, PK2200
EZI OPLC2. LI B BL1700
EZl OBL17. LI B BL1700
PLC EXP. LI B BL1200, BL1600, PK2100, PK2200

Before using one of these libraries in an application, first include the
library name in a #use command. For example, to use functions in the

library PLC_EXP.LIB, be sure there is a line at the beginning of the

program in the following format.

#use PLC_EXP.LIB

164 ¢+ Software Reference

XP8800

XP8800 Software

The sample programs SM_DEMO1.C, SM_DEMO2.C, and SM_DEMO3.C in
the Dynamic C SAMPLES\ PLCBUS subdirectory illustrate the use of these
functions.

The software is designed to simplify the task of using the XP8800 on the
PLCBus. Z-World recommends using the software or at least following
the guidelines for the software structure.

1. Only access the control register using driver functions. These functions
keep track of the shadow variables that prevent inadvertently changing
other control lines.

2. Initialize and use the arrays designated for handling multiple board
addresses and status. These are described in detail.

3. If using interrupts, make the declaration
#define USE_STEPPER

early in the main program. This tells the PLCBus interrupt service to
call the function sm_int.

4. Also, if using interrupts, add the call
relocate_intl () ;

This connects the proper PLCBus interrupt service routine to the
interrupt vector.

Data Structures

The XP8800 driver software uses a table to represent all the XP8800s in a
system. There can be up to four XP8800s, and other PLCBus expansion
boards may also be used, subject to power constraints.

Table 4-2 shows how the Dynamic C STEP. LIB library assigns and sorts
the XP8800 logical addresses. These XP8800 “logical addresses” are
simply indexes in the table.

For example, the logical addresses for the three boards in Table 8-1 are 0,
1, and 2. The physical addresses are stored in the table. Call

sm_find boards before doing anything else. This function searches the
PLCBus and initializes the table to represent the state of the XP8800s.

These four arrays define the table.
int sm_addr [17];
char sm_stat [16];
char sm_flag [16];

char sm_shadow[16];

XP8800 Software Reference ¢+ 165

XP8800

The array sm_addr holds the PLCBus address of each XP8800 existing on
the PLCBus. This array has one extra element, because the software
places a marker (address = —1 or OxFFFF) following the last real board
address in the array.

The array sm_stat contains copies of the address 0 status bits of the
PCL-AK pulse generator for each XP8800 on the PLCBus. The array is
updated by the motor control interrupt service routine (ISR) every time a
PLCBus interrupt is generated.

The array sm_£lag is updated at the same time as sm_stat and repre-
sents whether a board is awaiting service (its interrupt line asserted).

The array sm_shadow holds shadow variables for the XP8800 control
registers. Control registers are write-only. If software fails to remember
how control lines are set, chances are good that control lines will become
set incorrectly. The shadow variables provide the memory.

Interrupts

Since the PLCBus has a single shared interrupt line, special care must be
taken when servicing interrupts across it. During PLCBus interrupt
service, all possible interrupt sources must be checked to see if they are
currently awaiting service. These include other PLCBus expansion boards.

The interrupt function sm_int polls all XP8800s on the PLCBus and
updates the arrays sm_stat and sm_£lag for each. It also sends a
software reset to each XP8800 that is asserting an interrupt request. The
software reset clears the interrupt request. If this reset is not issued, the
system would lock up since the interrupt line would never go inactive.

By including the statement
#define USE_STEPPER

early in the main program, the PLCBus interrupt service routine will call
sm_int. Your application should periodically check the status of the
interrupt request flags in the sm_£1lag array to determine when to service
the XP8800.

Although the function sm_int does what it is supposed to do, it probably
does not do what you would want it to do. Z-World has provided sm_int
to demonstrate how to use the XP8800 in an interrupt-driven system.

Since sm_int requires polling flags to provide service, it is not as efficient
as a true interrupt-controlled driver would be. What this function does is
guarantee that interrupts generated by a motor controller are serviced so
that the PLCBus interrupt is not held active by the controller, locking up
the system.

If you wish to do all motor processing in the background, replace the code
in the function sm_int (between the labels mirqg and £in) with your own
code.

166 ¢+ Software Reference XP8800

XP8800 Driver Functions

Tables 8-3, 8-4, 8-5, 8-6, and 8-7 list the various XP8800 software drivers
in the Dynamic C STEP. LIB library.

Table 16-3. XP8800 General and Initialization Functions

Type Function Description

int sm _bdaddr Generates address from jumper value
void | smboard_reset Issues full board reset
int sm find_boards | Findsandinitiaize all XP8800s

void | smhitwd Hits watchdog timer
void | smint Genera 1SR for XP8800s
int sm pol | Polls specified X P8800

Table 16-4. XP8800 Control Register Functions

Type Function Description

void | smctlreg Writes control register and updates shadow
varisble

void | smdrvoe Turns motor driver 1C output on or off

void | smled Turns LED (D1) on or off

void | smsel 00 Sets select linesto 00

void | smsel 01 Sets select linesto 01

void | smsel 10 Sets select linesto 10

void | smselll Sets select linesto 11

XP8800 Software Reference ¢+ 167

XP8800

Table 16-5. XP8800 Motor Controller Functions

Type Function Description

void | snt_cnd Writes to PCL-AK command register

voi d | snt_hardreset Pulses PCL-AK reset line, registers are reset

voi d | snt_nmnual _nove | Startscontinuous movement, movement
continues until told to stop

void | snt_seek_origi n | Startscontinuous movement, movement
continues until origin pulse (/ORG)

voi d | snt_setmove Sets PCL-AK registers for a move operation

voi d | snt_setspeed Sets PCL-AK'’s two speed registers

void | snt_softreset Sends reset command to PCL-AK, registeys
are not reset

char | snt_statO Reads PCL-AK status register (at addresq 0)

char | snt_stat3 Reads PCL-AK status register (at addresq 3)

Table 16-6. XP8800 Quadrature Counter Functions
Type Function Description

voi d sny_har dreset | Pulsesquadrature counter reset line

qutSI gned sny_readl6 Reads entire 16-bit counter value

char sny_read8 Reads counter’s lower 8 bits

Table 16-7. Miscellaneous XP8800 Functions
Type Function Description

voi d set 8ladr Places XP8800 address on bus (shortcut)

void set 82adr Places XP8800 address on bus

unsi gned Uses the motor’s quadrature decoder tg

. sncq_novet o -

int move to location

168 ¢+ Software Reference

XP8800

Miscellaneous XP8800 Function Descriptions

In all the following function descriptions, the parameter index is a
number from 0 to 15 that represents the sequence of boards found by
sm_find_boards. The board with the lowest jumper setting is at position
0, and so on.

e void set82adr(int addr)

Places the specified address on the PLCBus in 8%2 addressing mode.
The term addr is a physical board address. Its upper byte must be
xxxx1100 (binary), and the lower byte should be 0 to read or write the
PCL-AK pulse generator, or 1 to read the quadrature counter or to
write the control register. The upper 4 bits of the address correspond to
the jumpers on the intended XP8800.

The execution time for this function is 87 cycles, assuming 0 wait
states, that is

14.16 us at 6.144 MHz (71 kHz)
9.44 us at 9.216 MHz (109 kHz)
e void set8ladr(int addr)

Places the specified address on the PLCBus in 8x2 addressing mode.
The term addr is the lower byte a physical board address. This
function assumes that the upper byte has already been placed on the
bus. The lower byte should be 0 to read or write the PCL-AK pulse
generator, or 1 to read the quadrature counter or to write the control
register. The main purpose of this function is to save PLCBus cycles.

The execution time for this function is 60 cycles, assuming 0 wait
states, that is

9.77 us at 6.144 MHz (102 kHz)
6.50 s at 9.216 MHz (154 kHz)

e int sm _bdaddr(int jumpers)
Returns the physical PLCBus address for an XP8800 that has the

specified jumper settings on header H4. The term jumpers must be an
integer from 0 to 15.

The function returns the physical PLCBus address in a form directly
passable to set82adr.

e void sm board_reset(int index)

Performs a hardware reset XP8800 identified by index. This resets
the PCL-AK pulse generator and the quadrature decoder/counter, and
disables the motor driver IC and sets it to two-phase mode. The
function also sets the control register’s two select lines to 00.

XP8800 Software Reference ¢+ 169

XP8800

void sm_ctlreg(int index, int value)

Writes value to the control register on the XP8800 specified by
index. The function updates the shadow variable for the control
register.

void sm_drvoe(int index, int onoff)

Turns the motor driver IC of the XP8800 specified by index on or off.
The term onof££ is Boolean: when zero, the motor driver IC gets turned
off. Otherwise, it gets turned on.

int sm_find_boards()

Searches for all possible XP8800s and fills in the XP8800 table, which
is sorted according to physical board address. The table holds physical
addresses in the array sm_addr. The table also holds status bytes and
interrupt service flags, which this function initializes.

The function return is the number of boards found. The function places
a marker (-1 or OXFFFF) following the last entry in the table.

The function sends a control register value of 0xA7 (1010 0111) to all
XP8800s found. This puts the motor driver IC in two-phase mode and
turns it off, makes the select lines 00, turns the LED (D2) on, and resets
both the PCL-AK pulse generator and the quadrature counter.

The function return is the number of XP8800 boards on the PLCBus
that respond to the search.

The XP8800 table consists of these four arrays.
sm_addr a board’s physical PLCBus address.
sm_stat holds the last status (address 0) read from the board’s PCL-AK.

sm_f£lag, when non-zero, indicates the XP8800 has requested an
interrupt and is awaiting service.

sm_shadow holds the last value written to the board’s control register.

This function is among the first to call when operating XP8800
expansion boards. After the table is initialized, function calls will
generally refer to XP8800s by their zable index.

void sm_hitwd(int index)

Resets the watchdog timer on the XP8800 specified by index. It does
this by reading the quadrature counter. (The quadrature chip does not
have to be present.)

170 ¢+ Software Reference XP8800

e void sm_int()
This is a general-purpose XP8800 function that can be called by the
PLCBus interrupt service routine (ISR). This function checks the
status (at PCL-AK address 0) of all boards, updating the sm_stat
array. When an interrupt request is detected, the appropriate sm_£lag
value is set and the function issues a software reset to the PCL-AK to
deactivate the interrupt request.

The application must then monitor the interrupt service flags to deter-
mine when an operation has been completed.

To use this function, do the following.

1. Call sm_£ind_boards at the beginning of the application to
initialize the XP8800 table.

2. Add the following statement early in the application to link
sm_int to the PLCBus ISR.
#define USE_STEPPER // activate sm int

3. Add the following statement early in the application to ensure
that the PLCBus interrupt line is activated.

outport(ITC, (inport(ITC)&OxFD)) ;
// enable INT1
If all motor processing is to be done in the background (that is, as part
of the interrupt service), open and edit STEP.LIB. Find sm_int and
replace the code between the labels mirqg and £in with your own code.

¢ void sm_led(int index, int onoff)

Turns the LED (D1) on the XP8800 specified by index on or off. The
value ono££ is Boolean: when zero, the function turns the LED off.
Otherwise, it turns the LED on.

e int sm _poll(unsigned int address)

Returns 0 if the XP8800 specified by address is present (and respond-
ing) on the PLCBus. The parameter address must be a physical
board address, such as that returned by sm_bdaddr (jumpers).

All PLCBus expansion boards respond to a BUSRDI cycle by sinking
data line O (normally high). The board is not present if a 1 is returned.

¢ void sm_selO00(int index)
Sets the select lines to 00 on the XP8800 specified by index.
¢ void sm_sel0l(int index)

Sets the select lines to 01 on the XP8800 specified by index.

XP8800 Software Reference ¢+ 171

XP8800

¢ void sm_sellO(int index)

Sets the select lines to 10 on the XP8800 specified by index.
e void sm_selll(int index)

Sets the select lines to 11 on the XP8800 specified by index.
¢ void smc_cmd(int index, int data)

Writes data to the command register of the PCL-AK pulse generator
on the XP8800 specified by index.

¢ void smc_hardreset(int index)

Causes a hardware reset of the PCL-AK on the XP8800 specified by
index. This stops any pulse output (that is, motor movement) and
clears the internal registers of the PCL-AK. It does this by giving a
negative pulse on bit 1 of the control register.

¢ void smc_manual_move(int index, int dir,
int speed)

Starts a manual (or continuous) move operation on the XP8800 speci-
fied by index. The motor will move until the application issues a

decelerating stop command, a software or hardware reset, or until the
application detects an end-limit or origin signal (if these are enabled).

The terms dir and speed are Boolean. If dir is non-zero, movement
is in the “+ “direction. Otherwise, movement is in the “~” direction. If
speed is zero, the PCL-AK pulse generator operates at low speed.
(Pulses are generated at the rate in the FL register.) Otherwise, the
PCL-AK pulse generator operates at high speed. (Pulses are generated
at the rate in the FH register.)

It is important to note that this function starts the movement and does
not wait for the movement to complete. The application may then
perform other tasks while the movement takes place.

e void smc_seek_origin(int index, int dir,
int speed)

Starts an “origin mode” operation on the XP8800 specified by index.
The PCL-AK will generate pulses, expecting an origin pulse to occur.
The motor will move until the application issues a decelerating stop
command, a software or hardware reset, or until the application detects
an end-limit or origin signal (if these are enabled).

The terms dir and speed are Boolean. If dir is non-zero, movement
is in the “+” direction. Otherwise, movement is in the “~” direction. If
speed is zero, the PCL-AK pulse generator operates at low speed.

172 ¢+ Software Reference XP8800

(Pulses are generated at the rate in the FL register.) Otherwise, the PCL-
AK pulse generator operates at high speed. (Pulses are generated at the
rate in the FH register.)

It is important to note that this function starts the movement and does
not wait for the movement to complete. The application may then
perform other tasks while the movement takes place.

The function issues a software reset to the board before proceeding.
e void smc_setmove(int index, long CTR, int FL,
int FH,int ADR, int RD, int MUL)

Sets up the registers of the PCL-AK pulse generator on the XP8800
specified by index. The meaning of the registers (listed in Table 7-2)
and their interaction is complex.

See Z-World Technical Note 101, Operating the PLC-AK
High-Speed Pulse Generator, for more information on the
PCL-AK chip.

When the value of the MUL register is 732, the values of the FL and
FH registers approximate “pulses per second,” that is, when
MUL = 732, the actual pulse frequency is

Jfreq, = FH x 1.000576331967 pulses per second
Jreq, =FL x 1.000576331967 pulses per second

e void smc_setspeed(int index, int fast,
int slow)

Sets the high (FH) and low (FL) speed registers of PCL-AK pulse
generator on the XP8800 specified by index. The parameter fast is
for the FH register and the parameter slow is for the FL register. Both
must be in the range 1-8191.

¢ void smc_softreset(int index)

Sends a software reset command to the PCL-AK pulse generator on the
XP8800 specified by index. This stops pulse output (and therefore,
motion) without clearing the internal registers.

e char smc_statO(int index)

Reads the 8-bit status register at address 0 (A1 = A0 = 0) on the
PCL-AK pulse generator on the XP8800 specified by index. The
function returns the status bits DO—D7 explained in Chapter 7, “Status
Bits.”

XP8800 Software Reference ¢+ 173

XP8800

char smc_stat3(int index)

Reads the 8-bit status register at address 3 (A1 =A0 = 1) of the
PCL-AK pulse generator on the XP8800 specified by index. If the
RD register (ramp-down point) is selected before reading the status
with address = 3, bits 0 and 1 are status bits. If any other register is
selected, bits 0 and 1 represent bits 16 and 17, respectively, of the
counter register.

The function returns the status bits DO—D7 explained in Chapter 7,
“Status Bits.”

unsigned int smcq moveto(int index,
unsigned dest, int dir, unsigned accuracy)

Steps the motor on the XP8800 specified by index until the quadrature
decoder/counter reaches the specified dest + accuracy. The
movement is done at the slow rate (specified in the FL register) of the
PCL-AK pulse generator. The movement continues until the quadra-
ture counter reaches the “zone of acceptance” and then stops.

The parameter dir is Boolean: if non-zero, motion is in the “+”
direction. Otherwise, motion is in the “— direction.

The function returns the reading of the quadrature counter when the
function finally stops motion. Inertia and step locations may make this
value different from the final resting place of the motor’s encoder.

The function issues a software reset to the PCL-AK following the
operation.

Example
main () {
uplc_init(); // init master
sm_£find_boards() ; // init all XP8800s

smc_setspeed (0,100,200); // move at 200 pps
smcqg_moveto (0,5000,1,25); // to location 5000+25

delay to allow time for motor to stop fully

loc=smq_readl6 (0) ; // check final pos

if (loc>5025) { // overshot?
smc_setspeed (0,100,20) ; // move back at 20 pps
smcqg_moveto (0,5000,0,25) ;// to location 5000+25

}

174 ¢+ Software Reference XP8800

The function smeq_moveto is not a PID loop. It is the appli-
cation’s responsibility to manage the final position of the mo-

/ tor. The move speed, encoder resolution, and motor degrees/
phase will affect how precise you can get. It is possible to
miss a stop point if you specify too much precision. Read the
quadrature counter after the operation (allowing time for the
motor to come to a stop) to obtain its correct location.

¢ void smg _hardreset(int index)

Sends a hardware reset command to the quadrature counter on the
XP8800 specified by index. The function resets the counter to zero.

e unsigned int smg _readl6(int index)

Returns the entire 16-bit value of the quadrature counter on the
XP8800 specified by index.
e char smq read8(int index);

Returns the lower 8 bits of the quadrature counter on the XP8800
specified by index, a number from 0 to 15 as in smq_readl6.

Sample Program

The sample program simulates a single-axis system with end-limit and
slowdown sensors in both directions.

After initialization, the XP8800 first seeks the origin. Then the motor goes
back and forth a few times, moving in one direction until an “end-limit”
signal occurs, then switches direction. As the motor moves, it responds to
any “slowdown” signal it receives.

The following items are needed to run this program.

* A stepper motor connected to an XP8800 connected, via the
PLCBus, to a Z-World PK2200 or PK2100 controller.

* A length of wire or a test probe to connect various signals to
ground. This simulates the occurrence of end-limit, slowdown or
origin conditions.

The sample program prompts you to make the appropriate connections.

XP8800 Software Reference ¢+ 175

XP8800

/***

Sinulate origin signal.
***/

void wait_origin(int id){

#defi ne ORG 0x04 /1 bit 2
printf(“Connect /ORG to GND “);
printf(“to simulate origin signal... *);
while(!(smc_stat0(id) & ORG)) runwatch();
printf(“ORG detected.\n");

}
/
Simulates end-limit signal. Dir = CW or CCW.
/
void wait_EL(int id, int dir)}{
int mask; // bit O0for B-, bit 1for B+
char sign; Il “+" or “-"
if(dir){
mask = 2; sign = ‘+’; /1l + direction (CW
Jelse{
mask = 1; sign ="-; [/l - direction (CCW

}

printf(“Connect /EL%c to GND “, sign);
printf(“to simulate end-limit... “);

while(!(smc_stat0(id) & mask))runwatch();
printf(“end-limit detected.\n");

}
/ /
#define CCW 0 /1 countercl ockw se direction (-)
#define CW 1 /1 clockwi se direction (+)
/ /
main(){
int FL = 10; /1 1ow speed 10 pps
int FH = 100; /1 high speed 100 pps
int ADR = 500; /1 accel / decel “rate” = 500
int ML = 732; Il mdesH adHUBE’
int ID=0; /l board index
int i;
uplc_init(); /I assume PK2200 or PK2100
Reset PBus(); Il reset PLCBus with delay

Reset _PBus_Wait();
/I Search PLCBus. Build table
if(smfind_boards() == 0){
printf(“No XP8800s."); exit(0);

/1 Use first board. Set up operation
sm_board_reset(ID);
sm_drvoe(ID, 1); /1 motor driver on
sm_led (ID,1); /1 LED on
smc_setmove(ID,0L,FL,FH,ADR,0,MUL);
/] registers

176 ¢+ Software Reference XP8800

/1 find origin

snc_seek_origin(ID, CCW 1); // high speed

wait_origin(I1D);

snc_softreset(I1D);

/1 back & forth

for(i=0; i<3; i++){

/1 move till EL+ slowi ng down upon SD+

/1 0x42 = 01lxx 0010.

/1 @roce pos. dr. mt pest. Pyes. GG
smc_cnd(1D, 0x42);

/1 0x15 = 00x 10 101.

/Il Start. High-speed. FH register
smc_cnd(1D, 0x15);
wait_EL(ID, CW); /1 wait for EL signal
snc_softreset(ID);

/1 move till EL- slow ng down upon SD-

/1 0x4A = 01xx 1010.

/1 @rnoke reg dr. mt pesgt. Pyes. GG
snmc_cnd(1D, Ox4A);

/1 0x15 = 00x 10 101.

[/l Start. High-speed. FH register
snmc_cnmd(1D, Ox15);
wait_EL(ID, CCW); [// wait for EL signal
snc_softreset(I1D);

sm board_reset(ID); /1 cl eanup
}/ *end*/

XP8800 Software Reference ¢+ 177

XP8800

178 ¢+ Software Reference

XP8800

XP8900

0068dX

0068dX

Crarter 17: OVERVIEW

Chapter 17 provides an overview and description of the XP8900 digital-to-
analog conversion expansion boards.

XP8900 Overview ¢+ 181

XP8900

The XP8900 Series is a 12-bit digital-to-analog (D/A) converter expansion
board that can be used in conjunction with any Z-World PLCBus-compat-
ible controller.

Like other Z-World expansion boards, the XP8900 Series boards can be
installed in modular plastic circuit-board holders attached to a DIN rail.
The XP8900 Series boards can also be mounted, with plastic standoffs, on
any surface that will accept screws. Up to eight different XP8900 board
addresses may be used on one PLCBus.

The XP8900 Series consists of two boards, the XP8900 with eight
channels of D/A converter outputs, and the XP8910 with four channels of
D/A converter outputs. Each channel produces a bipolar output of up to
+10 V DC.

The XP8900 Series features an onboard voltage regulator for PLCBus-
powered operation. The XP8900 Series has connectors for user-supplied
analog voltage rails, and is able to sink or source up to 7 mA with the user
rails, or up to 2 mA on its own. The D/A outputs are monotonic.

An XP8900 Series board can be factory-built with one to
o~= cight D/A channels, with 8-bit or 10-bit D/A outputs, or with
ﬂ user-defined output voltage ranges. For more information,

call your Z-World Sales Representative at (530) 757-3737.

#== For ordering information, call your Z-World Sales
& Represenative at (530) 757-3737.

182 ¢+ Overview XP8900

Specifications
Table 17-1 summarizes the specifications for the XP8900 Series expansion
boards.

Table 17-1. XP8900 Series Specifications

2.835" x 4.00" x 0.75"

Board Size (72 mm x 102 mm x 19 mm)

Operating Temperature Range -40°C to +70°C

Humidity 5% to 95%, noncondensing
24V DC, 100 mA min., 30 mA standby

Power Accepts optional external +12 V DC for
analog power

8 12-hit D/A channels (4 channels for
XP8910), bipolar voltage output 0 V to
+10 V, can source/sink up to 2 mA per
channel on internal power (up to 7 mA
per channel with user-supplied rails)

Slew rate: 1 V/us in D/A converter,
Outputs 0.5 V/us in op-amp

Settling time: 10 pus max.

Relative accuracy: £16 LSB (prior to
op-amps)

Gain temperature coefficient: -5 ppm of
full-scale range per °C

The XP8900 Series expansion boards derive +5 V digital power from the
PLCBus supply via LM7805 at U6. When operating without user-supplied
external voltage rails, the XP8900 Series expansion boards get their +12 V
analog power from the PLCBus +24 V supply via LM7812 at U7. Charge
pump NJU7662 at U17 inverts this for onboard -12 V analog power.
Precision +5 V and + 2 V reference voltages are derived from the +12 V
supply via the REF195 at U2 and the voltage divider formed from R33,
R34, and R39. The n-channel FET FDV301N at Q1 is used to switch the
2 V reference to 0 V during a power-on reset.

XP8900 Overview ¢+ 183

Figure 17-1 shows the dimensions of the XP8900 Series expansion boards.

- [k B-m—=—O—
i MIEE @@
mE B e
g8
ooooldy ooo =
0O O @ o o B B oD gA
el T aE 38

[Ef=)=Rs]
[Ef=)=Rs]
BEEE
[Ef=)=Rs]
[Ef=)=Rs]
== =]
[Ef=)=Rs]
[Ef=)=Rs]

B B

. (IO
@ I

T
OO0000000000000000C

] 1 |

\ ~0.6
(15)
~0.75
(19)

Figure 17-1. XP8900 Board Dimensions

XP8900

184 ¢+ Overview XP8900

Crarter 18: GETTING STARTED

Chapter 18 provides instructions for connecting XP8900 Series expansion
boards to a Z-World controller. The following sections are included.

e XP8900 Series Components
» Connecting Expansion Boards to a Z-World Controller
» Setting Expansion Board Addresses

e Power

XP8900 Getting Started ¢+ 185

XP8900

XP8900 Series Components

The XP8900 Series of expansion boards offers up to eight channels of
digital-to-analog conversion outputs. Figure 18-1 shows the basic layout
and orientation of components, headers, and connectors.

u7
® 12V
Reg

nnin, (& [rIcs 3
il s I-
C35 [0 - C20

U000 R39 R33

>
F— o
>

©
m@§
@@
é

U9 U0 Ul UL H uis us us U16

O B &

oo ! oo I [I g

c1 c2 cn c12 Cl3 Cl4 CI5 Cl6 =
C3L C26 Elj C18 030 c27 C2

R7 R22 R24R6 RIS rao) &) RS2 R14

alalnl R B2 nmnnpmnn R8L RES
u4 U3 c22M c36 32

Op-Amps 5 % I 0

nininininininininininl

0oooooooooooao

| = = = R = R = Y = R = R = R = R = R = I =

P2

o
=

Op-Amps | [T [T
IR

nooououg - -

Ri Ris - .El R3 R Sgg - i +h Ro6 RiL : RNL ﬁ
c24 c25 P3' g " @
o | UOIUUOOO0U00000A00UY ~ = Res
o o Ei]
NO0000N0000N000000000° % 15 @
Jll J|2

Figure 18-1. XP8900 Series Board Layout

186 ¢+ Getting Started XP8900

Connecting Expansion Boards to a Z-World
Controller

Use the 26-conductor ribbon cable supplied with an expansion board to
connect the expansion board to the PLCBus on a Z-World controller. See
Figure 18-2. The expansion board’s two 26-pin PLCBus connectors, P1
and P2, are used with the ribbon cable. Z-World recommends using the
cable supplied to avoid any connection problems.

Controller (O 1 | OW
PLCBus Port

© o B i o O \
b ad DEE)
E‘;‘;JD@HDEI%M

mEmEEAr m @ E%j::E /Pini

P2

o | s
XP8900 Controller With PLCBus

Figure 18-2. Connecting XP8600 Expansion Board to Controller PLCBus

é Be sure power to the controller is disconnected before adding
any expansion board to the PLCBus.

Follow these steps to connect an expansion board to a Z-World controller.

1. Attach the 26-pin ribbon cable to the expansion board’s P2 PLCBus
header.

2. Connect the other end of the ribbon cable to the PLCBus port of the
controller.

Be sure pin 1 of the connector cable matches up with pin 1 of
both the controller and the expansion board(s).

3. If additional expansion boards are to be added, connect header P2 on
the new board to header P1 of the board that is already connected. Lay
the expansion boards side by side with headers P1 and P2 on adjacent
boards close together, and make sure that all expansion boards are
facing right side up.

See Appendix C, “Connecting and Mounting Multiple
Boards,” for more information on connecting multiple expan-
sion boards.

XP8900 Getting Started ¢+ 187

XP8900

4. Each expansion board comes with a factory-default board address. If
more than one expansion board of each type is to be used, be sure to set
a unique address for each board.

The following section on “Setting Expansion Board Addresses,”
&y and Chapter 8, “Software Reference,” provide details on how
to set and use expansion board addresses.

5. Power may be applied to the controller once the controller and the
expansion boards are properly connected using the PLCBus ribbon
cable.

See Appendix D, “Simulated PLCBus Connections,” for
details on the special connections that enable these expansion
boards to be used with the BL1000, BL1100, BL1400, and
BL1500 controllers.

Setting Expansion Board Addresses

Z-World has established an addressing scheme for the PLCBus on its
controllers to allow multiple expansion boards to be connected to a
controller.

Remember that each expansion board must have a unique

/ PLCBus address if multiple boards are to be connected. If two
boards have the same address, communication problems will
occur that may go undetected by the controller.

Every XP8900 Series board is shipped from the factory with a default
address of 7. An XP8900 Series board may be assigned any address
between 0 and 7 using jumpers on the pins of header P3 to configure the
board address. Figure 18-3 shows the jumper settings to set addresses 0—7.
A maximum of eight XP8900 Series boards may be addressed by a
controller at one time.

Pins 1-2 on header P3 are on the lower end of P3 when the
/ XP8900 board is oriented in line with a controller and other
expansion boards as shown in Figure 18-2.

188 ¢+ Getting Started XP8900

8 7 8 7 8
6 5 6 5 6
4 3 4 3 4
2 | 1 2 —— 2
| | | |
P3 P3
P3 P3
8 7 8 8 8
6 — 6 6 6
4 3 4 4 4
2 g | 1 2 2 2
|] |]
4 7

Figure 18-3. P3 Jumper Settings for XP8900 Series PLCBus Addresses

Power

Z-World’s expansion boards receive power from the controller over the
+24 V line of the PLCBus. An onboard regulator converts this to the +5 V
and the £12 V reference used by the expansion boards. With no output,
the XP8900 Series expansion boards draw about 30 mA; with all their
output channels operating at maximum current (2 mA per channel on
internal power, 7 mA per channel with external voltage), the XP8900
draws 45 mA (75 mA if the external power rails are connected).

XP8900 Getting Started ¢+ 189

XP8900

Using Digital-to-Analog Converter Boards
The follow steps summarize how to use the D/A converter boards.
1. Send a reset command to the PLCBus.

2. Place the address of the D/A converter on the PLCBus.

3. Send data serially to one of the D/A converters (Register A). When
Register A is filled, load the data to D/A converter Register B where it
is converted and output.

4. Use the board’s analog output to control motors, attenuators or other
analog devices.

These steps are done using software drivers in Dynamic C function libraries.

These steps are done using software drivers in Dynamic C function librar-
ies. Use DRIVERS.LIB and PLC_EXP.LIB.for controllers with a PLCBus
port. Use PBUS_TG.LIB for a BL1000, and use PBUS_LG.LIB for a
BL1100 or a BL1300.

190 ¢+ Getting Started XP8900

Crarter 19: I/O CONFIGURATIONS

Chapter 19 describes the built-in flexibility of the XP8900 Series expan-
sion boards, and describes how to configure the available inputs/outputs.
The following sections are included.

* XP8900 Series Pin Assignments
* XP8900 Series Circuitry

XP8900 1/0 Configurations ¢+ 191

XP8900

XP8900 Series Pin Assignments

The XP8900 has eight channels of bipolar voltage outputs, each with its
own individual ground, and terminals for user-supplied positive and
negative voltage rails, also with their own individual grounds. These are
all located on Wago connectors J1 and J2, as shown in Figure 19-1.

The pin assignments for the XP8910 are similar, except there are only four
output channels. There are no outputs on pin 9 of J1, and there are no
outputs on pins 1, 3, and 5 of J2.

GND GND GND GND GND GND GND GND GND GND
OUTO | OUT1| OUT2|{ OUT3|0UT4 |OUT5 | OUT6 | OUT7 | +12IN | -12IN

N

IO A A A
123456789101234567 80910

[[
J1 J2

Figure 19-1. XP8900 Wago Connectors J1 and J2

No special configurations are needed for the D/A converter outputs, which
are controlled by the software drivers.

An external £12 V DC may be connected to the XP8900 Series boards to
reduce analog noise or to increase the current drive. Figure 19-2 provides
the jumper settings for headers H1, H2, and H3 to accommodate the
external power. The external £12 V supply is connected to the XP8900
Series board via pins 7 and 9 on Wago connector J2.

H1 H2 H3
L] []
=1
+12 V from -12 V from
PLCBus PLCBus
H1 H2 H3
] []
[+ *]
+12 V from -12 V from
external external
source source

Figure 19-2. XP8900 Series +12 V Supply Jumper Settings

192 + I/O Configurations XP8900

XP8900 Series Circuitry

The XP8900’s D/A circuitry consists of eight 12-bit AD5320 D/A convert-
ers, U9 to U16, and two OP497G quad op-amp chips, U3 and U4. The
outputs of the D/A converters are amplified, and the analog outputs appear
on Wago connectors J1 and J2. The input comes on the PLCBus from the
program running on the controller.

Figure 19-3 illustrates the operation of the D/A conversion.

+12INCD—0 +12VREF
U2

R39 36 kQ

Vs REF U3 or U4
SLEEP OUT 15V Ri ’_/W\/—‘ +21ij
GND
T ressoka %m ouT[0-7]
= = o S8 mI I
J2V_EN - - =
FDV301N
; 200 kQ

205kQ| 205 kQ

CPOUT 4 -12VREF

-12NCO>—>0
H2

Figure 19-3. Schematic lllustration of D/A Conversion in XP8900 Series

The analog outputs do not need any special configuration. The desired
analog output voltage is set using the software drivers.

The XP8900 Series expansion boards derive +5 V digital power from the
+24 V PLCBus supply via LM7805 at U6. When operating without user-
supplied external voltage rails, the XP8900 Series D/A converters get their
+12 V analog power from the PLCBus +24 V supply via LM7812 at U7.
Charge pump NJU7662 at U17 inverts this for onboard -12 V analog
power. Precision +5 V and + 2 V reference voltages are derived from the
+12 V supply via REF195 at U2 and the voltage divider formed from R33,
R34, and R39. The n-channel FET FDV301N at Q1 is used to switch the
2 V reference to 0 V during a power-on reset.

The XP8900 Series D/A converters have the capability of receiving their
+12 V or -12 V supply from an external source. This provides for greater
control of electrical noise in the analog output signals.

The XP8900 Series D/A converters may be used with 12 V

/ controllers only when £12 V is supplied externally to pins 7
and 9 of Wago connector J2. Remember to set the jumpers on
headers H1, H2, and H3 as shown in Figure 19-2.

XP8900 /0 Configurations ¢+ 193

XP8900

194 ¢+ 1/0O Configurations

XP8900

CHaPTER 20: SOFTWARE REFERENCE

Chapter 4 describes the Dynamic C functions used to initialize the XP8600
and XP8900 Series expansion boards and to control the resulting analog
outputs. The following major sections are included.

* Expansion Board Addresses
* XP8900 Series Software

XP8900 Software Reference ¢+ 195

XP8900

Expansion Board Addresses

XP8900 Series

Up to eight XP8900 Series expansion boards may be addressed over a
single PLCBus using a logical address of 0 to 7.

The 12-bit address of a particular XP8900 is determined by the jumper
setting on header P3. P3 may be set eight different ways. The unique
physical address is in the form

0010 000x yzRR
where

x = 1 when P3 pins 1-2 are not connected
y = 1 when P3 pins 3—4 are not connected
z =1 when P3 pins 5-6 are not connected

and RR is reserved for the registers. There are no PAL codes.

The 12-bit address can be placed on the bus using 4-bit addressing. The
functions setl2adr, readl2data, and writel2data (in
DRIVERS.LIB) use 12-bit bus addresses.

When the address is passed to set12adr, it should be in the format
yzRR 000x 0010

where the least significant nibble in the physical address, yzZRR, has
swapped places with the most significant nibble in the physical address,
0010.

196 ¢+ Software Reference XP8900

XP8900 Series Software

This section describes a set of simple software functions to use when
controlling the XP8900 Series expansion boards.

Dynamic C Libraries

Several Dynamic C function libraries need to be used with the routines
defined in this section. The chart in Table 20-1 identifies which libraries
must be used with particular Z-World controllers.

Table 20-1. Dynamic C Libraries Required by Z-World Controllers
for XP8900 Series Expansion Boards

Library Needed Controller

EZI OCMWN. LI B All controllers

EZI OPBDV. LI B All controllers

EZI OTGPL. LI B BL1000

EZI COLGPL. LI B BL1100

EZI OMGPL. LI B BL 1400, BL1500

EZI OPLC. LI B BL1200, BL1600, PK2100, PK2200
EZI OPLC2. LI B BL1700

EZI OBL17.LIB BL1700

Before using one of these libraries in an application, first include the
library name in a #use command. For example, to use functions in the
library EZIOPLC.LIB, be sure there is a line at the beginning of the
program in the following format.

#use ezioplec.lib

The #use eziopbdv.lib already included in other library
/ calls for the XP8900 Series expansion boards, and does not
have to be repeated.

XP8900 Software Reference ¢+ 197

XP8900

Using Digital-to-Analog Converter Boards

The follow steps summarize how to use the D/A converter boards.

1.
2.
3.

Send a reset command to the PLCBus.
Place the address of the D/A converter on the PLCBus.

Send data serially to one of the D/A converters (Register A). When
Register A is filled, load the data to D/A converter Register B where it
is converted and output.

Use the board’s analog output to control motors, attenuators or other
analog devices.

These steps are done using software drivers in Dynamic C function libraries.

Reset Boards on PLCBus

These Dynamic C functions are used to initialize the PLCBus. Use these
functions in a program before introducing any code to operate the relays.

vdInit()

Initializes the timer mechanism.

LIBRARY: VDRIVER.LIB

void plcBusReset()

Resets all expansion boards connected to the PLCBus.

When using this function, initialize timers with vdInit () before
resetting the PLCBus. All PLCBus devices must reset before perform-
ing any subsequent operations.

LIBRARY: EZIOPBDV.LIB

The XP8900 output voltages cannot be reset by resetting the
PLCBus. The rest of this chapter provides information on
setting or resetting the XP8900 output voltages.

void eioPlcRstWait ()

Provides a delay long enough for the PLCBus to reset.

This function provides a delay of 1-2 seconds to ensure devices on the
PLCBus reset. Call this function after resetting the PLCBus.

LIBRARY: EZIOPBDV.LIB

198 ¢+ Software Reference XP8900

long int eioErrorCode

Represents a global bit-mapped variable whose flags reflect error
occurrences.

This register for this variable is initially set to 0. If the application tries
to access an invalid channel, the flag EIO_NODEV (the first bit flag) is
set in this register. Note that the other bits in EI0O_NODEV deal with
networked controllers.

Address Target Board

int plcXP89Init(int Addr)

Initializes XP8900 Series board. Call this function before using the
other p1cxP89.. functions. This function also initializes the XP8900
Series D/A converters to tristate their outputs. Call plcXP89Sw to turn
the voltage reference on. The first plcXP890ut call enables the output
of the corresponding D/A converter channel. Both the voltage refer-
ence and the D/A converter channel must be set up correctly to get the
proper output.

PARAMETER: Addr is the logical address, 0—7, of the board set by
jumpers.

RETURN VALUE: -1 if the board cannot be found, 0 if the initializa-
tion is completed.

LIBRARY: EZIOPBDV.LIB

voi d mai n(voi d) {
pl cBusReset () ; /'l reset the PLCBus
if(plcXP89lnit(4)){
j' él se {

=

}

XP8900 Software Reference ¢+ 199

XP8900

Operate Target Board

int plcXP89Sw(int Addr, int state)

Turns the D/A converters and references to op-amps on or off. Note
that all channels on a particular board are switched at the same time.

PARAMETERS: Addr is the logical address, 0—7, of the board set by
jumpers. Both the reference (switched on by this call) and the D/A
converter output (switched off by this call, switched on by plcx890ut)
must be set correctly to get the proper output.

state indicates whether the D/A converter and reference voltage
should be turned on or off. The reference is turned on when state is
nonzero. Otherwise the D/A converters will tristate and the reference
will output 0. The output voltage of all channels should be approxi-
mately 0 at the op-amp when the D/A converter is off.

RETURN VALUE: -1 if the board cannot be found, 0 if the operation
is completed.

LIBRARY: EZIOPBDV.LIB

The XP8900 output voltages may fluctuate to 2 V for each
/ channel while p1cX89Sw is executing to turn on the op-amp
reference and to switch off the D/A converter.

int plcXP890ut(int Addr, unsigned int oValue)

Sends the 12-bit ovalue to the proper D/A converter channel. Call
plcXP89Init and plcXP89Sw before calling pleXP890ut. Note that
plcxP890ut does not switch the voltage reference on or off. Both the
D/A converter and the voltage reference must be set up correctly to get
the proper voltage output. plcXP89Sw enables the voltage reference.

PARAMETERS: addr is 8*board number + channel_number. Note
that board number and channel_number start from zero. board number

ranges from 0 to 7 as set by the address jumpers. channel number
ranges from 0 to 7 (XP8900), or from 0 to 3 (XP8910).

oValue is the 12-bit value to send to the D/A converter.

RETURN VALUE: -1 if the D/A converter cannot be found, 0 if the
operation is successful. If the D/A converter does not exist, this
function also bit-ors the constant EIO_NODEV to eioErrorCode.

LIBRARY: EZIOPBDV.LIB

pl cXP89Qut (42, 2048)
/1 make channel 2 on board 5 output about 0 V

200 + Software Reference XP8900

Table 8-2 summarizes these three functions. The order in which they
appear in Table 8-2 is the sequence in which they should be used to start an
XP8900 Series board.

Table 20-2. Summary of Basic XP8900 Series Function Calls

Function Description

pl cXP89I ni t | Disables everything, leaves output of OV for al channels

pl cXP89Sw | Enables voltage reference so the output will be at the voltage
level specified by pl cXP89CQut

pl cXP89Qut Sets all channelsto midpoint or other acceptable value (the
output experiences a dight jump as channels are being set;
remember to set al 4 or 8 channels since one call sets only
one channel)

e int plcXP89WrCalib(int chan,
struct _eioAdcCalib *pCalib)

Writes a calibration structure to the EEPROM storage corresponding to
a channel on the XP8900 Series board.

PARAMETERS: chan is the channel number, 0-63, of the XP8900
Series D/A channel. chan = 8*board number + channel number.
_eioAdcCalib *pCalib is a pointer to a calibration structure
initialized by calling eioAdcMakeCoeff.

RETURN VALUE: 0 if the calibration is successful, otherwise returns
a negative number.

LIBRARY: EZIOPBDV.LIB

pl cXP89W Cal i b(15, &cstruct)
/Il wite calib info in cstruct to channel 7 of
/1 XP8900 Series board 1

XP8900 Software Reference ¢+ 201

XP8900

int plcXP89RdCalib(int chan,
struct _eioAdcCalib *pCalib)

Reads the calibration structure of a D/A channel from an XP8900
Series board.

PARAMETERS: chan is the channel number, 0-63, of the XP8900
Series D/A channel. chan = 8*board number + channel number.

_eioAdcCalib *pCalib is a pointer to a calibration structure. Use
eioAdcDigitize to compute the actual D/A output of a given analog
value.

RETURN VALUE: 0 if the operation is successful, otherwise returns a
negative number.

LIBRARY: EZIOPBDV.LIB

pl cXP89RdCal i b(32, &ci nf 0)
/Il read calib info of channel 0 of XP8900
/1 XP8900 Series board 4 into cinfo

int eioAdcMakeCoeff(struct _eioAdcCalib *cnvrsn,
unsigned d1l, unsigned d2, float f1l, float £2)

Takes the raw values and actual values of two data points, then com-
putes the calibration coefficients (assumes linearity).

PARAMETERS: struct _eioAdcCalib *cnvrsn is a pointer to a
calibration structure that stores the coefficients.

d1 is the raw (quantized) value of the first data point.

d2 is the raw (quantized) value of the second data point.

£1 is the actual (real) value (in volts) of the first data point.
£2 is the actual (real) value (in volts) of the second data point.

RETURN VALUE: -1 ifit is not possible to compute the calibration
coefficients, otherwise 0.

LIBRARY: EZIOPBDV.LIB

ei oAdcMakeCoef f (&ci nf o, 96, 4000, 9. 97, - 10. 33)
/1 the actual value at quantized value 96 is 9.97 V
I/ the actual value at quantized val ue 4000 is -10.03 V
/1 conmpute the coefficients and put into cinfo

202 ¢+ Software Reference XP8900

e long eioAdcDigitize(float £,
struct _eioAdcCalib *pCalib)

Converts analog value to digital number according to calibration
coefficients. This function is used to convert an analog value such as
voltage to the actual digital number for a D/A converter device.

PARAMETERS: f£ is the analog value to output.

_eioAdcCalib *pCalib is a pointer to a structure that stores the
calibration coefficients.

RETURN VALUE: Long integer that corresponds to the number to
send to a D/A converter device.

LIBRARY: EZIOPBDV.LIB

L=ei oAdcDi gi ti ze(2. 54, &ci nf o) ;
// L will contain the digitized value to output
/1 to DIA converter device given the
/1 calibration coefficients in cinfo so that
/1 the output is about 2.54 of sone real units

XP8900 Software Reference ¢+ 203

XP8900

Sample Program

The sample program XP89_1.C in the Dynamic C SAMPLES\PLCBUS
subdirectory demonstrates how to calibrate the D/A converter channels.

The basic sample program is designed for the BL1200, BL1600, PK2100,
and PK2200 controllers. Remember to uncomment the lines that apply to
the controller being used with the XP8900 Series expansion board.

To use this program properly, it may be necessary to edit the statements
that initialize the channel, margin, £1, and £2. The program may also be
compiled as is, with watch expressions added to override the assignment
statements (be sure to execute the watch expression AFTER the assignment
statement is executed).

Use the following steps to run the sample program.

1. Compile the program by pressing F3 or by choosing Compile from the
COMPILE menu. Dynamic C compiles and downloads the program
into the controller’s memory. During compilation, Dynamic C rapidly
displays several messages in the compiling window, which is normal.

2. Run the program by pressing F9 or by choosing Run from the RUN
menu. It is also possible to single-step through the program with F7 or
F8.

3. To halt the program, press <CTRL-Z>.
4. To restart the program, press F9.

/ Check the board jumpers, PLCBus connections, and the PC/
controller communications if an error message appears.

See the Dynamic C Technical Reference manual for more
& detailed instructions.

204 + Software Reference XP8900

XP89_1.C

#use eziocnm.lib

/* #use ezioplc.lib // for BL1200, BL1600, PK2100, PK2200 */
/* #use eziotgpl.lib// for BL1000 */

/* #use eziolqgpl.lib// for BL1100 */

/* #use eziongpl.lib// for Bl 1400 & BL1500 */

/* #use eziobl 17.1ib// for BL1700 */

/* #use ezioplc2.lib// for BL1700 */

mai n() {
auto int i;
auto struct _eioAdcCalib c;
auto int channel;
auto float f1, f2, fout;

auto long |;

auto int margin;

channel = 0; /] execute watch expression
/1 to override

mar gi n = 0x40; /] execute watch expression

/1 to override
pl cBusReset ();
if (plcXP89lnit(channel / 8)) {
printf(“DAC8 board not found\n”);
} else {
plcXP89Sw(channel / 8,1);
/1 enabl e voltage reference
plcXP890ut(channel,margin);
/1 use meter to record |evel
f1=10; /] use watch expr to override
plcXP890ut(channel,0xfff-margin);
/1 use neter to record |evel
f2 =-10; /1 use watch expr to override
eioAdcMakeCoeff(&c,margin,0xfff-margin,f1,f2);
if (plcXP89WrCalib(channel,&c)) {
printf("Can’t write calibration constant\n");

memset(&c,0,sizeof(struct _eioAdcCalib));
if (plcXP89RdCalib(channel,&c)) {
printf("Can’t read calibration constant\n");

fout = 2.345; /1 use watch expr to override
| = eioAdcDigitize(fout, &c);
plcXP890ut(channel,(unsigned)l);
/1 use neter to check voltage now

XP8900 Software Reference ¢+ 205

XP8900

206 ¢ Software Reference

XP8900

APPENDICES

sadipuaddy

saolpuaddy

|

Areenpix A: PLCBuUs

Appendix A provides the pin assignments for the PLCBus, describes the
registers, and lists the software drivers.

"
o
2
T
c
o
Q
Q
<

User’s Manual PLCBus ¢ 209

"
3]
L2
T
c
o
Q
Q
<

PLCBus Overview

The PLCBus is a general-purpose expansion bus for Z-World controllers.
The PLCBus is available on the BL1200, BL1600, BL1700, PK2100, and
PK2200 controllers. The BL1000, BL1100, BL1300, BL1400, and
BL1500 controllers support the XP8300, XP8400, XP8600, and XP8900
expansion boards using the controller’s parallel input/output port. The
BL1400 and BL1500 also support the XP8200 and XP8500 expansion
boards. The ZB4100’s PLCBus supports most expansion boards, except
for the XP8700 and the XP8800. The SE1100 adds expansion capability
to boards with or without a PLCBus interface.

Table A-1 lists Z-World’s expansion devices that are supported on the

hy's

PLCBus.
Table A-1. Z-World PLCBus Expansion Devices

Device Description
Exp-A/D12 Eight channels of 12-bit A/D converters
SE1100 Four SPDT relays for use with all Z-World controllers
XP8100 Series | 32 digital inputs/outputs
XP8200 _Uilg/ if;«\":ll;rslglultr/gﬂtsué IP31?géi1r-dcurrent digital outputs
XP8300 Two high-power SPDT and four high-power SPST rel
XP8400 Eight low-power SPST DIP relays
XP8500 11 channels of 12-bit A/D converters
XP8600 Two channels of 12-bit D/A converters
XP8700 One full-duplex asynchronous RS-232 port
XP8800 One-axis stepper motor control
XP8900 Eight channels of 12-bit D/A converters

Multiple expansion boards may
be linked together and con-

GND 26| 0 O |25 VCC (+5V)
AOX 24| 0 0|23 /RDX

nected to a Z-World controller LCDX 22| 0 o |21 /WRX

to form an extended system.

Figure A-1 shows the pin lay-

D1X 20| o0 © |19 DOX
D3X 18| 0 o |17 D2X
D5X 16| 0 0 |15 D4X
D7X 14| 0 0 |13 D6X

out for the PLCBus connector. GND 12| 0 o |11 A1X
GND 100 o9 A2X
GND 8|o 0|7 A3X
GND 6|0 0|5 strobe/STBX
+24V 4|0 0|3 attention /AT
(+5V)VvCC 2({om |1 GND

Figure A-1. PLCBus Pin Diagram

210 + PLCBus

PLCBus Expansion Boards

Two independent buses, the LCD bus and the PLCBus, exist on the single
connector.

The LCD bus consists of the following lines.

* LCDX—positive-going strobe.

* /RDX—negative-going strobe for read.

* /WRX-—negative-going strobe for write.

* A0X—address line for LCD register selection.

* DO0X-D7X—bidirectional data lines (shared with expansion bus).

The LCD bus is used to connect Z-World’s OP6000 series interfaces or to

drive certain small liquid crystal displays directly. Figure A-2 illustrates
the connection of an OP6000 interface to a PLCBus header.

Yellow wire
on top

— PLCBus Header
— Note position of connector
— relative to pin 1.

From OP6000 —

KLB Interface Card —

Header J2 /%

Pin 1

Figure A-2. OP6000 Connection to PLCBus Header

The PLCBus consists of the following lines.

* /STBX—negative-going strobe.

* Al1X-A3X—three control lines for selecting bus operation.

* D0X-D3X—four bidirectional data lines used for 4-bit operations.
* D4X-D7X—four additional data lines for 8-bit operations.

» /AT—attention line (open drain) that may be pulled low by any device,
causing an interrupt.

The PLCBus may be used as a 4-bit bus (DOX—D3X) or as an 8-bit bus
(DOX-D7X). Whether it is used as a 4-bit bus or an 8-bit bus depends on
the encoding of the address placed on the bus. Some PLCBus expansion
cards require 4-bit addressing and others (such as the XP8700) require
8-bit addressing. These devices may be mixed on a single bus.

User’s Manual PLCBus ¢ 211

"
o
2
T
c
o
Q
Q
<

Appendices

There are eight registers corresponding to the modes determined by bus
lines A1X, A2X, and A3X. The registers are listed in Table A-2.

Table A-2. PLCBus Registers

Register Address A3 A2 Al Meaning
BUSRDO Cco 0 0 0 Read data, one way
BUSRD1 C2 0 0 1 Read data, another way
BUSRD2 C4 0 1 0 Spare, or read data
Read thisregister to

BUSRESET c6 0 1 1 reset the PLCBuUs

BUSADRO cs 1 0 0 First address nibble or
byte

BUSADRL cA 1 0 1 Second address nibble
or byte

BUSADR? cc 1 1 0 Third address nibble or
byte

BUSWR CE 1 1 1 Write data

Writing or reading one of these registers takes care of all the bus details.
Functions are available in Z-World’s software libraries to read from or
write to expansion bus devices.

To communicate with a device on the expansion bus, first select a register
associated with the device. Then read or write from/to the register. The
register is selected by placing its address on the bus. Each device recog-
nizes its own address and latches itself internally.

A typical device has three internal latches corresponding to the three
address bytes. The first is latched when a matching BUSADRO is de-
tected. The second is latched when the first is latched and a matching
BUSADRI is detected. The third is latched if the first two are latched and
a matching BUSADR?2 is detected. If 4-bit addressing is used, then there
are three 4-bit address nibbles, giving 12-bit addresses. In addition, a
special register address is reserved for address expansion. This address, if
ever used, would provide an additional four bits of addressing when using
the 4-bit convention.

If eight data lines are used, then the addressing possibilities of the bus
become much greater—more than 256 million addresses according to the
conventions established for the bus.

212 + PLCBus PLCBus Expansion Boards

Place an address on the bus by writing (bytes) to BUSADRO, BUSADRI1
and BUSADR?2 in succession. Since 4-bit and 8-bit addressing modes
must coexist, the lower four bits of the first address byte (written to
BUSADRO) identify addressing categories, and distinguish 4-bit and 8-bit
modes from each other.

There are 16 address categories, as listed in Table A-3. An “x” indicates
that the address bit may be a “1” or a “0.”

Table A-3. First-Level PLCBus Address Coding

First Byte Mode Addresses Full Address Encoding
————=0000 4bitsx3 256 0000 XXXX XXXX
-—-—=-=-0001 256 0001 XXXX XXXX
-—-——--0010 256 0010 XXXX XXXX
-—-=--0011 256 0011 XXXX XXXX
———-—x0100 5hitsx3 2,048 X0100 XXX XXXXX
-—--x0101 2,048 X0101 XXX XXXXX
-—-—=-x0110 2,048 X0110 XXX XXXXX
-—-=-x0111 2,048 X0111 XXX XXXXX
——xx100 0| 6bitsx3 16,384 XX1000 XXXXX XXXXXX
-—-xx1001 16,384 XX1001 XXXXX XXXXXX
——XxXxx1010] 6bhitsx1 4 X010
-——-——--1011 4bitsx1 1 1011 (expansion register
XXXX110O0| 8hitsx?2 4,096 XXOBXLO0 XXXXXXXX
XXXx1101 8hitsx3 1M XXXKLOTL XXXXXXXX XXXXX

XXX
XXXxx1110| 8bhitsx1 16 xxxk110
XXXxx1111 8bhitsx1 16 Xxxk111

This scheme uses less than the full addressing space. The mode notation
indicates how many bus address cycles must take place and how many bits
are placed on the bus during each cycle. For example, the 5 x 3 mode
means three bus cycles with five address bits each time to yield 15-bit
addresses, not 24-bit addresses, since the bus uses only the lower five bits
of the three address bytes.

User’s Manual PLCBus ¢ 213

"
o
2
T
c
o
Q
Q
<

Appendices

Z-World provides software drivers that access the PLCBus. To allow
access to bus devices in a multiprocessing environment, the expansion
register and the address registers are shadowed with memory locations
known as shadow registers. The 4-byte shadow registers, which are saved
at predefined memory addresses, are as follows.

SHBUSL SHBUSI+1
SHBUSOD SHBUSO+1 SHBUSO+2 SHBUSO+3
| Busexpansion | BUSADRO | BUSADRL | BUSADR2 |

Before the new addresses or expansion register values are output to the
bus, their values are stored in the shadow registers. All interrupts that use
the bus save the four shadow registers on the stack. Then, when exiting the
interrupt routine, they restore the shadow registers and output the three
address registers and the expansion registers to the bus. This allows an
interrupt routine to access the bus without disturbing the activity of a
background routine that also accesses the bus.

To work reliably, bus devices must be designed according to the following
rules.

1. The device must not rely on critical timing such as a minimum delay
between two successive register accesses.

2. The device must be capable of being selected and deselected without
adversely affecting the internal operation of the controller.

Allocation of Devices on the Bus

4-Bit Devices

Table A-4 provides the address allocations for the registers of 4-bit
devices.

Table A-4. Allocation of Registers

Al A2 A3 Meaning

digital output registers, 64 registers
64 x 8 = 512 1-bit registers

000j 001j xxXj | analog output modules, 64 registers

000j 000j XXX]

digital input registers, 128 registers
128 x 4 =512 input bits

000j 10x] xxXj | analog input modules, 128 registers

000j 01xj XXX]

000j 11xj xxxj | 128 spare registers (customer)

001j XXX] xxXj | 512 spare registers (Z-World)

j controlled by board jumper
X controlled by PAL

214 + PLCBus PLCBus Expansion Boards

Digital output devices, such as relay drivers, should be addressed with
three 4-bit addresses followed by a 4-bit data write to the control register.
The control registers are configured as follows

bit3bit2 bitl bit0
A2 Al A0 D

The three address lines determine which output bit is to be written. The
output is set as either 1 or 0, according to D. If the device exists on the
bus, reading the register drives bit 0 low. Otherwise bit 0 isa 1.

For digital input, each register (BUSRDO) returns four bits. The read
register, BUSRDI, drives bit 0 low if the device exists on the bus.

8-Bit Devices

Z-World’s XP8700 and XP8800 expansion boards use 8-bit addressing.
Refer to the XP8700 and XP8800 manual.

Expansion Bus Software

The expansion bus provides a convenient way to interface Z-World’s
controllers with expansion boards or other specially designed boards. The
expansion bus may be accessed by using input functions. Follow the
suggested protocol. The software drivers are easier to use, but are less
efficient in some cases. Table A-5 summarizes the libraries.

Table A-5. Dynamic C PLCBus Libraries Used by
Z-World Controllers

Library Needed Controller

DRI VERS. LI B All controllers

EZI OTGPL. LI B BL1000

EZI OLGPL. LI B BL1100

EZI OMGPL. LI B BL 1400, BL1500
EZI OPLC. LI B BL1200, BL1600, PK2100, PK2200, ZB4100

EZI OPLC2. LI B BL1700

PBUS_TG LI B BL1000
PBUS LG LI B BL1100, BL1300
PLC_EXP. LI B BL 1200, BL 1600, PK2100, PK2200

"
o
2
T
c
o
Q
Q
<

User’s Manual PLCBus ¢ 215

"
3]
L2
T
c
o
Q
Q
<

There are 4-bit and 8-bit drivers. The 4-bit drivers employ the following
calls.

void eioResetPlcBus|()

Resets all expansion boards on the PLCBus. When using this call,
make sure there is sufficient delay between this call and the first access
to an expansion board.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.
void eioPlcAdrl2(unsigned addr)

Specifies the address to be written to the PLCBus using cycles
BUSADRO, BUSADRI, and BUSADR2.

PARAMETER: addr is broken into three nibbles, and one nibble is
written in each BUSADRX cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.
void setl6adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

PARAMETER: adr is a 16-bit physical address. The high-order
nibble contains the value for the expansion register, and the remaining
three 4-bit nibbles form a 12-bit address (the first and last nibbles must
be swapped).

LIBRARY: DRIVERS.LIB.
void setl2adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

PARAMETER: adr is a 12-bit physical address (three 4-bit nibbles)
with the first and third nibbles swapped.

LIBRARY: DRIVERS.LIB.
void eioPlcAdr4(unsigned addr)

Specifies the address to be written to the PLCBus using only cycle
BUSADR2.

PARAMETER: addr is the nibble corresponding to BUSADR2.
LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

216 ¢+ PLCBus PLCBus Expansion Boards

e void setd4adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

A 12-bit address may be passed to this function, but only the last four
bits will be set. Call this function only if the first eight bits of the
address are the same as the address in the previous call to setl2adr.

PARAMETER: adr contains the last four bits (bits 8—11) of the
physical address.

LIBRARY: DRIVERS.LIB.
¢ char _eioReadDO()
Reads the data on the PLCBus in the BUSADRO cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADRO
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.
¢ char eioReadDl()
Reads the data on the PLCBus in the BUSADRI cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADRI1
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.
¢ char _eioReadD2()
Reads the data on the PLCBus in the BUSADR?2 cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADR2
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.
¢ char readl2data(int adr)

Sets the current PLCBus address using the 12-bit adr, then reads four
bits of data from the PLCBus with BUSADRO cycle.

RETURN VALUE: PLCBus data in the lower four bits; the upper bits
are undefined.

LIBRARY: DRIVERS.LIB.

"
o
2
T
c
o
Q
Q
<

User’s Manual PLCBus ¢ 217

¢ char read4data(int adr)

Sets the last four bits of the current PLCBus address using adr bits 8—
11, then reads four bits of data from the bus with BUSADRO cycle.

PARAMETER: adr bits 811 specifies the address to read.

RETURN VALUE: PLCBus data in the lower four bits; the upper bits
are undefined.

LIBRARY: DRIVERS.LIB.
¢ void _eioWriteWR(char ch)
Writes information to the PLCBus during the BUSWR cycle.
PARAMETER: ch is the character to be written to the PLCBus.
LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.
e void writel2data(int adr, char dat)

Sets the current PLCBus address, then writes four bits of data to the
PLCBus.

PARAMETER: adr is the 12-bit address to which the PLCBus is set.
dat (bits 0-3) specifies the data to write to the PLCBus.
LIBRARY: DRIVERS.LIB.

¢ void writeddata(int address, char data)

Sets the last four bits of the current PLCBus address, then writes four
bits of data to the PLCBus.

PARAMETER: adr contains the last four bits of the physical address
(bits 8-11).

dat (bits 0-3) specifies the data to write to the PLCBus.
LIBRARY: DRIVERS.LIB.

The 8-bit drivers employ the following calls.

e void set24adr(long address)

Sets a 24-bit address (three 8-bit nibbles) on the PLCBus. All read and
write operations will access this address until a new address is set.

PARAMETER: address is a 24-bit physical address (for 8-bit bus)
with the first and third bytes swapped (low byte most significant).

LIBRARY: DRIVERS.LIB.

"
3]
L2
T
c
o
Q
Q
<

218 + PLCBus PLCBus Expansion Boards

¢ void set8adr(long address)

Sets the current address on the PLCBus. All read and write operations
will access this address until a new address is set.

PARAMETER: address contains the last eight bits of the physical
address in bits 16-23. A 24-bit address may be passed to this function,
but only the last eight bits will be set. Call this function only if the first
16 bits of the address are the same as the address in the previous call to
set24adr.

LIBRARY: DRIVERS.LIB.
e int read24datalO(long address)

Sets the current PLCBus address using the 24-bit address, then reads
eight bits of data from the PLCBus with a BUSRDO cycle.

RETURN VALUE: PLCBus data in lower eight bits (upper bits 0).
LIBRARY: DRIVERS.LIB.
¢ int read8datalO(long address)

Sets the last eight bits of the current PLCBus address using address bits
16-23, then reads eight bits of data from the PLCBus with a BUSRDO
cycle.

PARAMETER: address bits 16-23 are read.
RETURN VALUE: PLCBus data in lower eight bits (upper bits 0).
LIBRARY: DRIVERS.LIB.

e void write24data(long address, char data)

Sets the current PLCBus address using the 24-bit address, then writes
eight bits of data to the PLCBus.

PARAMETERS: address is 24-bit address to write to.
data is data to write to the PLCBus.
LIBRARY: DRIVERS.LIB.
e void write8data(long address, char data)

Sets the last eight bits of the current PLCBus address using address bits
16-23, then writes eight bits of data to the PLCBus.

PARAMETERS: address bits 16-23 are the address of the PLCBus
to write.

data is data to write to the PLCBus.
LIBRARY: DRIVERS.LIB.

"
o
2
T
c
o
Q
Q
<

User’s Manual PLCBus ¢ 219

Appendices

220 + PLCBus PLCBus Expansion Boards

B

Aprpenpix B: CONNECTING AND
Mounting MuLTiPLE BOARDS

"
3]
L2
T
c
]
Q
Q
<

User’s Manual Connecting and Mounting Multiple Boards ¢+ 221

Connecting Multiple Boards

Eight or more expansion boards can be connected (“daisy chained”) at one
time. The actual number of expansion boards may be limited by capacita-
tive loading on the PLCBus.

Be sure that each expansion board has a unique address to prevent commu-
nication problems between the controller and the expansion board.

Follow these steps to install several expansion boards on a single PLCBus.
1. Place all expansion boards right side up.

2. Use the ribbon cable supplied with the boards.

3. Connect one board to the main controller.
4

. Connect another expansion board to the first expansion board, connect-
ing each board’s header P1 to the adjacent board’s header P2.

Figure B-1 illustrates a controller with expansion boards attached.

XP8300 Controller

Figure B-1. Connecting Multiple Expansion Boards

Do not twist the ribbon cable or mount the expansion boards
upside down! Damage may occur. Be sure Pin 1 of P1 and P2
A of each board matches up with Pin 1 of the previous board.
Pin 1 should be at the lower right when the expansion board is
right side up, that is, the board markings are right side up.

When several expansion boards are connected, there may be a voltage
drop along the network of expansion boards. No action is necessary as
long as the digital voltage, VCC, is greater than 4.9 V on the last board.

VCC can be measured at pin 2 on header P1, and GND is pin 1
on header P1.

"
o
L2
)
c
o
Q
Q
<

222 + Connecting and Mounting Multiple Boards PLCBus Expansion Boards

There are two ways to compensate for the voltage dropoff. The easiest
way is to connect +5 V DC and ground from the host controller to pins 2
and 1 of header P1 on the last expansion board. Another solution, which
can approximately double the number of boards that could otherwise be
connected to a single controller, is a Y cable available from Z-World.
Figure B-2 illustrates the use of the Y cable.

P1
P2
@) P1
A
Relay 2
[Relor2] s
= gob
(RS]y o]

S BT ll———mp,

O

5 ©

€ o

goco|

=05

oo | |

gio|

G- ©

o0 |l

%879‘33 }

mlifew) B

%% PIO | F——¢

gis 7180

pocd|

RSy

RSy

pocd|

mlskan] o)

ol QLHE[]QQ
Controller

Figure B-2. Use of Y Cable to Connect Multiple Expansion Boards

o—= For more information, call your Z-World Technical Support
ﬂ Representative at (530) 757-3737.

"
3]
L2
T
c
]
Q
Q
<

User’s Manual Connecting and Mounting Multiple Boards ¢+ 223

"
o
L2
)
c
o
Q
Q
<

Mounting

Expansion boards can be installed in modular plastic circuit-board holders
attached to a DIN rail, a widely used mounting system, as shown in Figure B-3.

The circuit-board holders are 77 mm wide and come in lengths of

11.25 mm, 22.5 mm, and 45 mm. The holders, available from Z-World
and from other suppliers, snap together to form a tray of almost any length.
Z-World’s expansion boards are 72 mm wide and fit directly in these
circuit-board holders.

Z-World’s expansion boards can also be mounted with plastic standoffs to

any flat surface that accepts screws. The mounting holes are 0.125 inches
(1/8 inch) in from the edge of a board, and have a diameter of 0.190 inches.

Figure C-3. Mounting Expansion Boards on DIN Rail

o= For information on ordering DIN rail mounts, call your
Z-World Sales Representative at (530) 757-3737.

224 + Connecting and Mounting Multiple Boards PLCBus Expansion Boards

APPENDIX C:
SmuLatep PLCBus CONNECTIONS

"
o
2
T
c
o
Q
Q
<

User’s Manual Simulated PLCBus Connections ¢+ 225

Some Z-World controllers do not have a PLCBus, but signals on their
configurable PIO ports or KIO ports are those that would be available on a
PLCBus. Appendix C provides the hookup information to allow expansion
boards to be used with these controllers.

Table C-1 provides a list of which expansion boards may be used with
which non-PLCBus controllers.

Table C-1. Expansion Board Compatibility
with non-PLCBus Controllers

Expansion Z-World Controller
Board BL1000 | BL1100 | BL1300 | BL1400 | BL1500
XP8100
XP8300 X X X X X
XP8500 X X
XP8800
XP8900 X X

"
3]
L2
T
c
o
Q
Q
<

226 ¢+ Simulated PLCBus Connections PLCBus Expansion Boards

BL1000

The XP8300 expansion board may be connected to a BL1000 using an
expander cable (Z-World part number 540-0015). Fasten the cable’s 20-pin
connector to header J9 as shown in Figure C-1. Pins 1 and 2 of the con-
nector must hang over the end of the header. Fasten the cable’s PLCBus
connector to header P1 or P2 of the expansion board, observing the orien-
tation of pin 1, as shown.

Note that the first two pins of this
connector must hang over the end of

Picks up VCC, GND the header. A 20-pin connector is used
and PBO—PB7. Leaves because 18-pin connectors are not Pin17
PAO-PA7 available. available.

PIO PLCBus
Signal Signal

PBO (J9:17) Di1X
PB1 (J9:15) DOX
PB2 (J9:13) D3X
PB3 (J9:11) D2X
PB4 (39:9) ALX
PB5 (J9:7) A2X
PB6 (J9:5) A3X
PB7 (J9:3) /STBX
+5V (J9:1) +5V

J9

\\\\\\R

i

PLCBus
Connector

Figure C-1. BL1000 Expander Cable Connection

Software for interfacing the BL1000’s PIO port to a PLCBus port may be
found in the Dynamic C PBUS_TG. LIB library.

Use an external power supply with expansion boards con-

/ nected to the BL1000. There is no provision in the special
cable to supply +24 V from the controller to header P1 or P2
on the expansion boards.

"
o
2
)
c
o
Q
Q
<

User’s Manual Simulated PLCBus Connections ¢+ 227

"
3]
L2
T
c
o
Q
Q
<

BL1100

The XP8300 expansion boards may be connected to a BL1100 using an
expander cable (Z-World part number 540-0015). Fasten the cable’s 20-pin
connector to the combined headers JO10 and J10 as shown in Figure C-2.
Pins 1 and 2 of the expander cable connector must hang over the end of the
combined headers. Fasten the cable’s PLCBus connector to XP8200
header P1 or P2. Note the orientation of pin 1.

Software for interfacing the BL1100’s PIO port to a PLCBus port may be
found in the Dynamic C PBUS_LG.LIB library.

Note that the first two pins of this
connector must hang over the end of

Picks up VCC, GND the header. A 20-pin connector is used
and PAO—PA7. Leaves because 18-pin connectors are not Pin 17
PBO-PB7 available. available. e

PO PLCBUS| jo10[%:

Signal Signal J10 |m "«
PAO (310:1) /STBX e
PAL(J10:3) A3X
PA2 (J10:5) A2X
PA3 (J10:7) ALX
PA4 (J10:9) D2X
PA5 (J10:11) D3X
PAG6 (J10:13) DOX
PA7 (J10:15) DIX
+5V (J010:1) +5V

PLCBus
Connector [|

.
.

Figure C-2. BL1100 Expander Cable Connection

Use an external power supply when connecting expansion

/ boards to the BL1100. There is no provision in the expander
cable to supply +24 V from the controller to header P1 or P2
on the expansion boards.

BL1300

The XP8300 expansion board may be connected to header P5 on the
BL1300 using the same special cable used to connect them to the BL1000
or to the BL1100, as shown in Figure D-2. The first two pins of the special
cable hang over the end of header P5 as before. However, the wire leading
to pin 1 on the BL1300’s header P5 must be cut, and may then be used to
supply +5 V from an external source to the expansion board. Software
from the Dynamic C PBUS_LG. LIB library may be used.

Use an external power supply with expansion boards con-

/ nected to the BL1300. There is no provision in the special
cable to supply +24 V from the controller to header P1 or P2
on the expansion boards.

228 + Simulated PLCBus Connections PLCBus Expansion Boards

BL1400 or BL1500

XP8300, XP8500, and XP8900 expansion boards may be connected to header H3
on either the BL1400 or the BL1500. To add these expansion boards, the user
must either make a custom cable or use an adapter board (Z-World part number
101-0050). To assist with making the connection via a ribbon cable, Table C-2
maps the signals from the controller’s PIO to the expansion board.
Dynamic C’s EZIOMGPL. LIB library may be used for programming.

Table C-2. PIO to PLCBus Signal Map

BL1400/B11500 Expansion Board
H3 Pin No. PIO Port Signal Pin No. PLCBus Signal

1 VCC (+5V) 2 VCC (+5V)
2 PAO 5 /STBX

3 PA1 19 DOX

4 PA2 20 D1X

5 PA3 17 D2X

6 PA4 18 D3X

7 PA5 11 A1X

8 PAG 9 A2X

9 PA7 7 A3X

10 GND 10 GND

The adapter board provides an easy way to add an expansion board to either
BL1400 or BL1500 controllers. Power is supplied to the controller via the
power jack and to the expan-

sion board via a screw termi- Controller Power

nal. For specifics on how to in-
stall an adapter board with a
specific controller, see that
controller’s user’s manual.

PLCBus Power

Use an external power supply
with expansion boards con-
nected to the BL1400 or
BL1500 because there is no
provision to supply power from
the controller to header P1 or
P2 on the expansion boards.
The adapter board has a jack
and a screw terminal for the
external +12 V/+24 V.

Adapter Board
Controller

Figure C-3. Adapter Board Connections

User’s Manual Simulated PLCBus Connections ¢+ 229

"
o
2
T
c
o
Q
Q
<

"
3]
L2
]
c
o
Q
Q
<

230 ¢+ Simulated PLCBus Connections PLCBus Expansion Boards

e

D

ApPPENDIX D:

PLCBus S1ATES

User’s Manual

PLCBus States ¢ 231

"
o
2
T
c
o
Q
Q
<

"
3]
L2
T
c
o
Q
Q
<

PLCBus State Tables

This appendix is provided for advanced programmers who wish to write
their own application drivers for the XP8100 expansion boards, and
require detailed information about PLCBus cycles.

Two state tables are provided. Table D-1 presents the PLCBus states, and
Table D-2 describes what state the PLCBus transitions to from a given
input.

Table D-1. State Definitions

State State Number (see Table G-2)

0 Board not selected

BUSADRO recognized

BUSADRL recognized

BUSADR?2 recognized for ID mode
BUSADR?2 recognized for Group 0
BUSADR?2 recognized for Group 1
BUSADR?2 recognized for Group 2
BUSADR?2 recognized for Group 3

N|jojlo(b~A|W[IN]|F

Reading State Table D-2

The letters pgr represent the binary version of the jumper-set address of
the XP8100 Series board (r is the least-significant bit). The letters xyz
represent the group number for data from an I/O channel, and efgh
represent the data bits D3—DO.

To use Table D-2, read across the “state” row to the current state of the
PLCBus. Then read down the “action” column to the particular PLCBus
cycle to be performed in that state. The number corresponding to the next
state that the PLCBus will transition to is at the intersection of the row and
column. Some of the cases also have a superscripted reference to a note
that explains how to interpret the value returned.

232 + PLCBus States PLCBus Expansion Boards

Table D-2. PLCBus State Table

State
Action o|l1|2|3|4|5|6]|7
BUSADRO 0001 1|1 (1111|111
BUSADR1 - 00pq ol2|2|2]|2|2|2]|2
BUSADR2 —r 000 ol1|3|3|3|3|3]3
BUSADR2 —r 100 o1 4| 4| 4a|4a|4a]4
BUSADR2 —r101 o|l1|5|5|5|5|5]|5
BUSADR2 —r110 o|l1|6|6|6|6]|6]|6
BUSADR2 —r111 olr |7 |7 | 7|7 |7]|7
BUSWR —efgh 0| 1|2 |3 |45 |6 |7
BUSDRO - ef gh Ol 1|2 |34 |5 |6 |7
BUSDRL -efgh 0| 1] 2] 3|4 |56 |7
BUSADRO ! 0001 | 0O | O | O | O] O
BUSADR1L ~!01pg || O | 1 | 1 | 1
BUSADR2 ~!rxyz [0 | 1 |2 |2 | 2| 2] 2|2

Notes

(@ h=0 indicates an XP8100 exists; h=1 indicates there isno XP8100
Series board at this address.

(b) h=0 indicate off, 1 indicates on, ef g specifies which of the 8
output channelsin the group is selected.

(©) h indicates the state of the zeroth (lowest number) input channd in
the group of 8, e indicates the state of the third input channel in the
group of 8.

(d) h indicates the state of the fourth input channel in the group of 8, e
indicates the state of the seventh input channel in the group of 8.

"
o
2
T
c
o
Q
Q
<

User’s Manual PLCBus States ¢+ 233

"
3]
L2
]
c
o
Q
Q
<

234 + PLCBus States PLCBus Expansion Boards

Symbols
4-bit bus operations 212, 214
5 x 3 addressing mode 213
8-bit bus operations 211, 213, 215
A
A/D calibration

XP8500....... 96, 115, 116, 127

calibrated readings............ 128

calibration coefficients 116, 126
A/D conversion

XP8500 ..eeeieeiieiieieieeenee 96
conversion time.................. 96
converter chip 106, 109

absolute mode

XP8E500 ..o 104

acceleration

XP8E8OO ..o 153

actuation voltage

XP8300 ..eeeieeiieiieeeieeenee 78

addresses

encoding......ccceevveeeveervenuennne 213

MOAES ...veeiieieeieeieeieeeeene 213

PLCBUS ..c.coceveiiienee 212, 213

relay boardscceeverenennn. 80

XP8100
calculationcccveeuvennenee. 61
jumper settingsc......... 28
readingcccceeeeveeiivenvennnenn 64
SOftWareccceeevevveeneennn. 61

XP8300 ..eeeeieieiieieieeienee 80
jumper settingsc......... 78

XP8E500 ..o 102
jumper settings 118
logicalc.cooevveveeeieiinns 118
physicalcccovevveriirnennns 118

XP88OO ..o 142, 162
logicalc.cooevveveeeieiinns 163
physicalcccovevveriirnennns 162

addresses (continued)

XP8E0O ..o 188
jumper settings 189
physicalcccoveveriirrannns 196

analog inputs

XP8500
readingccceeveveervenneens 123
sampling........cocevevveevenne. 125
selectingcceeevvevvennenne. 124

attention linec.cceceeeevenene 211
B
bias resistors

XP8500 ..o 112

bias voltage calculation

XP8500 ..o 112

bidirectional data lines............. 211
block diagram

XP8E8OO ..o 150

board layout

XP8100 .eeeieeeeeeeieeeieeenee 20

XPEI10 e 20

XP8120 i 21

XP8300 ..eeeiieeeiieieieeeenee 73

XP8E500 ..o 100

XP8E8OO ..o 140

XP8E0O ..o 186

bus

eXPansionceeeveeee. 211-215
addressescoceeveeiennnee 214
devices ...cooovvvnnienns 214, 215

operations
4-Dit i 212

BUSADROcccecevenenee. 212, 213
BUSADRIccceinne. 212, 213
BUSADR2ccecevuenee. 212, 213
BUSADRS3 ..o 218, 219
BUSRDO....... 215, 216, 217, 219
BUSRDI ..o 215, 216
BUSWR ..o, 216

User’s Manual

Index ¢+ 235

C
coil voltage
XP8300 ..o 77
conditioned channels
gain and bias resistors 107
XP8500 ..o 106
connecting expansion boards
XP8100 .. 27
XP8300 ..o 76, 77
XP8500 .. 101
XP8BOO ... 141
XP8I0O ... 187
connecting nonPLCBus controllers
adapter boardccoene... 229
adapter cables 227, 228
BL1000 ..o 227
BL1300 . 228
Cable ..o 227
connectors
26-pin
pin assignments................. 210
contact ratings
XP8300 .. 77
control registerscocceennnne. 215
XP8800

148, 158, 162, 165, 166

dimensions (continued)

XP8300 .. 74
XP8500 .. 97
XP8BOO ..o 137
XP8I0O ... 184
DIN railcccvvereeeieierieceene 224
DIP relayscccevvevenerieiennnns 210
display
liquid crystalcccceevuennene 211
drift
XP8500 .. 110
E
EEPROM
XP8500....... 96, 108, 127, 128
jumper settings 108
Write-protect.........cocevuennee 108
€ITOT MESSAZES ..eevverureereenreennnenn 30
excitation resistors
XP8500 ..o 108

expander cable
connect expansion board to
nonPLCBus controller
227, 228
expansion boards
compatibility with nonPLCBus

controllersccceeeuvennne 226
COL;(H;Z% 00 154 installation
................................ adapter board for BL1400/

D BL1500c.coiciieeiienen, 229
BL1000cccoievereerrennen. 227
D/A conversion BL1100 ..., 228
XP8900covieveeieereereene 182 BLI1300 oo, 228
AD5320 converter chip ... 193 BL1400 ..., 229
CITCUIL vvevreeereeeiie e 193 BLIS00 e, 229
stability ... 182 Ly, S 216

DOX-D7X ..cooeeiieeerrerieeenes 211 expansion bus
daisy chainingc.ccccceveeneee 222 210, 211, 212, 213, 214, 215
deceleration addressesooooveveecverienennn. 214
XP88OO ..., 153 deVICES woovvvvriieeeaaeea, 214, 215
dimensions functions ... 216, 217, 218, 219
FWT-Opto...coovvveiirieiienen, 49 rules for devices.................... 214
FWT38 .o, 45 software driverscccou..... 215
FWTS50 ..o, 47 4-bit dAriverscvveeeeeeenn. 216
XP8100 Seriescceeveenneenee. 24 8-bit driversooveevenn... 218
236 ¢ Index PLCBus Expansion Boards

exXpansion registerocueen.... 214
external power supply
XP8E0O ..o 192
F
factory configurations
XP8E100 .eeeieeeeeeeieieeeenee 19
features
XP8100 Seriescccceeerveeueene 18
XP8300 ..eeeeieeiieiieieieeeenee 73
XP8500 ..o 96
XP8E8OO ..o 136
XP8E0O ..o 182
field wiring terminals 18
installationcccccceeeenuenne. 44
filters
XP8E500 ..o 106
frequency response
XP8E500 ..o 106
fuses
XP8300 ..eeeiieeeiieiieieieeeenee 77
FWT-Opto
dimensionsc.ccceeerueruennene 49
optical isolation circuit 50
PINOULS .eoonvveeiiieeieeieeeeeieene 49
specificationscccceevennen. 48
FWT38
dimensionsc.ccceeerueruennene 45
PINOULS .eoonvveeiiieeieeieeeeeieene 46
specificationsccceeevennen. 45
FWT50
dimensionsc.ccceeerueruennene 47
PINOULS .eoonvveeiiieeieeieeeeeieene 47
specificationscccceevennen. 46
G
gain
XP8500 ...eeeeeieieinne, 111, 113
gain calculation 111
gain 1esistorseevvveenvennee. 111

H

half-step mode
XP88OO ..o 145
hardware reset
XP8800 148, 149, 151
headers
XP8100 Series layout 26
XP8300
HI e 77
H2 e 77
H3 e 77
H4 o 77
XP8900
HI e, 192
H2 e, 192
H3 e, 192
T e, 192
T2 e, 192
|
initializing
XP8500 ..o 123
XP8900coccvveerrenen. 198, 199
input range
XP8500couieereereeereereene 113
installation
expansion boards 187, 222, 223
XP8I00 ..eeieeiicieeeeeeieeeeene 27
XP8300 ...ueiecuiieieereeereeeeeene 76
XP8500ocicuiicrieeieeerieee 101
XP88OO ..o 141
XP80O ..o 187
INEETTUPLS oo 211, 214
TOULINES ..ocvvveeeeieeeeiieeeiieeas 214
XP8500cccuiicrieeieeeeeenn 125
XP8800 159, 165, 166
J
jumper settings
XP8100
board addresses.................. 28

User’s Manual

Index ¢+ 237

jumper settings (continued)

optical isolation circuit 50

XP8300 ...eeieeieeieeieerieeeeeae 77 outputs
board addresses.................. 78 XP80O ..o 192
T e, 78 overview
T2 e 78 XP8I100 ..o 18
XP8500 105, 108, 118 XP8300ocveeeeeeriereeeeereeeene 71
XP8900cooveeeeeeeecreerrenae 196 XP8500icveeeeeeriereeeeerieeene 96
external +£12 V rails 192 XP88OO ..o 136
internal pOWer 192 XP8900ovveeiiieeieee, 182
K P
K oo 40, 146 PAL encoding
XP8300icveeeeeeriereeeeereeeene 78
L XP8500 oo 118
17> J 211 XPBI00 s 196
LCD BUS e 211 PCL-AK pulse generator chip
176, GO 211 150, 151
LEDs commandsceceveenennne. 152
XP8300 wovvooooeeoeeoee 73 control registers ... 151
XP880O . 162 modes............... s 151
liquid crystal display 211 modes of operation 151
logical addresses speed registersoouunnen. 153
XP8300 ... 80 SEALUS .evveeeevieeeiiee e 154
XP8S500 ..oorreeerreserreeserrn 118 PDIR oo 144, 155
XP8ROO 163, 165 PFL oo, 144
PHA .o, 145, 155
M PHB ..o 145, 155
PHC ..o 145, 155
memory-mapped I/O register ... 212 PHDccc.ccoooueanne. 145, 155
mode physical addresses
addressingcocoocvenene. 213 XP8500 ..oveoreeereerreereene. 118
modes XP88OO ...cvveoveeveerereis 162
XP8500 ..o 104, 105 XP8IOO ..o 196
motor driver ICcccoeevenen. 136 pin assignments
MOUNEING .vvvenveereeveeirenieeneeennes 224 FWT-OPLO oo 49
end Capsocvviiiiiiiinan, 224 FWT38 ..o, 46
multiplier register FWT50 oo 47
XP88OO ... 153 XP8100 oo 32, 33
0 XP8300icveeeeeriereeieereenene 77
XP8500 ...oocvieeeeeeeereereenee. 104
offsets XP88BOOeovveeeeeeeeereerrene 144
XP8500 ...veeoreerreerreereene. 113 XP8IOO oo 192
operating relay boards 82
238 ¢ Index PLCBus Expansion Boards

PLCBus

162, 210, 211, 212, 214, 215
TAT oo, 211
26-pin connector

pin assignments 210
4-bit bus operations 211
4-bit driversccceceeveenenee. 216
4-bit operations .. 211, 213, 214
8-bit driversccceceevveeueee 218
8-bit operations .. 211, 213, 215
adapter boardcccuee... 229
adapter cables 227, 228
addressesoveeeeennnnnnn. 212, 213
control registers 215
expansion boards 210, 212
Input registersccocvevverneenen. 62

installing boards
101, 141, 187, 222
interface register

XP8500 .. 131
interrupt service request....... 165
LCD connections 211
reading datacocevenenen. 212
(<] ARSI 148
ribbon cablescceuveenne. 222
rules for devices 214
shadow registers................... 214

software drivers
215, 216, 217, 218, 219

special cablingc......... 187
state definitions 232
state table 232, 233
writing datacceeeveeneene. 212
XPE100 ..o 210
XP8300 ..o 210
XP8E500 ..o 210
XP8E8OO ..o 210
XP8E0O ..o 210
Y cable ..cccvevieeiieieeiiees 223
power failure
XP88OO ..o 144, 145

power requirements

XP8100 .eeeieeeeeeeieeeieeenee 28
XP8300 ..eeeiieeeiieieieeeenee 78
XP8E500 ..o 102
XP8E8OO ..o 142
XP8E0O ..o 189
power-down mode
XP8E500 ..o 109
power-up
XP8E8OO ..o 148
pulse generator chip 150
TESEL cuveeeeiieierieeee st 149
Q
quadrature decoder
136, 148, 150, 157
reference clockccen..... 158
(11 SRR 148, 149
quadrature inputs 145, 147
R
ramp-down point
XP8E8OO ..o 154
ratiometric mode
XP8E500 ..o 104
read inputs
XP8E100 weeeeeeeieiieieeeenee 65
reading data on the PLCBus
212, 217
reference clock
quadrature decoder 158
registers
PLCBUS ..cveieeeeeeeee 67
relays
tUINING ON .evveveeerieveere e 84
XP8300
actuation voltage 78
specifications 77
reset
expansion boards 216
XP8E8OO ..o 148
resistor tolerance..........cc.c..c..... 113
ribbon cables..........coocereenennnes 222

User’s Manual

Index ¢+ 239

S signals
XP8800 (continued)
sample programs HSTEP ..o 144
XP8100 status bits PCL-AK 154
COmPIle ..o 30 /N2 S 145
INPULS e, 57, 59 single-phase mode
read digital input 7 XP8800 ..o, 145
set digital output 59 slow down
XP81ID.C ..o 29 XP88B00 ..o, 154
KPBLIDX.Co.ooriniiiniiiniinns 03 SOMtWAIE ©..vooovveeeeeeeeeer e 51
XP8300 ..o, 88 libraries
XP8500oeuviiieiiennne 116, 129 54, 81, 119, 164, 197, 212
ADC4SMP1.C 128, 129 DRIVERS.LIB .. 81, 87, 105,
XP88OOeonveeeieeeee 175 164, 190, 215
SM _DEMO1.Cccceevnunen. 165 EZIOBL17.LIB ... 197
SM _DEMO2.Ccccceununen. 165 EZIOCMMN.LIB 81, 197
SM _DEMO3.Cccceevennnn. 165 EZIOLGPL.LIB 197, 215
XP8900ovvieeiiieieeee, 204 EZIOMGPL.LIB 197’ 215
screw terminal block EZIOPBDV.LIB 82, 83,
XP88OOcouveeeieeeee 144 118, 197, 198
select PLCBus address............. 216 EZIOPL2 .LIB oo 215
sense inputs EZIOPLC.LIB 82, 197,
XP88OOeonveeeieeeieee 147 198-202, 203, 215
signal conditioning EZIOPLC2.LIB 81, 197
XP8500 ... 96 EZIOTGPL.LIB 197’ 215
signals PBUS_LG.LIB 81, 86, 90,
PLCBus 164, 227, 228
/RDX oot 211 PBUS_TG.LIB .. 81, 86, 164,
ISTBX et 211 227, 228, 229
TWRX oo 211 PLCBUSooovveeerrerernnane. 212
AOX e 211 PLC_EXP.LIB .. 81’ 85’ 105’
AlX, A2X,A3X ... 211, 212 128, 164
XP8800 STEP.LIB..cooovoreereennnan. 163
/DRVOEccoevvierennn, 144 VDRIVER.LIB 82’ 198
ELA s 145, 147 XP8500 ..o 119
1 U 145, 147 PLCBUS ..o 215
IORG ... 145, 147 4-bit driversccoo...... 216
/PFO it 145 8-bit drivers ..o, 218
/PULSEooovviiieeieen, 145 @ioPlcAdrl2 oo, 216
ISDAH e 145, 147 eioPlcAdrd .ooooiieoeii, 216
T3] D R 145, 147 eioReadDO ... 217
IWDO .ot 145 eioReadDl ..o, 217
AIN e, 145, 147 eioReadD2.......ccccecueuenne 217
BIN ..o 145, 147 eioResetPlcBus........... 216
eioWriteWRccccoenn. 218
240 ¢+ Index PLCBus Expansion Boards

software

PLCBus (continued)
outport 216, 219
readl2data 217
read24data 219
read4data.......ccceeeunnen.. 218
read8data........ccccuuee... 219
setl2adr......ccccceeeneenn. 216
setl6adr.......cccceeueenn. 216
set24adrcceeeeunennn. 218
setdadrcceeveeenenn. 217
set8adrocevveeenreenns 219
writel2data 218
write24data 219
writeddata 218
write8data 219
PLCBus cycles........cooveennenee. 60
XP8100
advanced programming 60
brdNumcccceeeeennn. 56, 58
BUSWR register 67
digital outputs 68
EIO_NODEV.......... 55, 56, 58
eioErrorCode ... 55, 56, 58
eioPlcAdrl?2 60, 61
eioPlcRstWait 55
eioPlcXP81Addr 60
eioReadDO0.......cccceceuveeeenns 61
eioResetPlcBus............. 55
eioWriteWRcccueeenn. 61
/O channel assignments .. 52, 53
input functions 56
INPUt State ...cevvveerreeieeneenns 66
miscellaneous functions 55
output functions 67
PlcPK81In........ccuurnnnenn. 56
pPlcPK810Outcuoeeeneee. 58
state (definition) 58
state (use) .. 58, 65, 67, 68
VAInit .oooviiiiiiiiiiiiiieenn, 55
Write Outputsccceeeevennnen. 67
XP8300 ... 81
HUSE oo, 81
BUSWR ... 84, 86

software
XP8300 (continued)
EIO_NODEV.......ccovvuvreeeenne 82
eioErrorCode 82
eioPlcRelayAddr........... 83
eioPlcRstWait 82
logical addresses 80
PBusl2_Addr 86
PBus4_ReadO 86
PBus4_Writecceuuuen... 86
Plc_poll_node 85
Plc_set_relay............... 85
plcBusReset 82
Plcrel_addr 85
plcXP830utcuueenneen. 83
Poll_PBus_Node............. 87
Relay Board_ Addr......... 87
Reset_PBus 86, 87
reset_pbus 85, 86
Reset_PBus_Wait......... 87
Set_PBus_Relay............. 87
setl2adr......cccceeeneennnnn. 87
VAINit oo 82
writel2dataceee.. 87
XP8500coueeeeeereeereereenne 119
adc4_compute 127
adc4_convert 126, 128
adcd_eerd........ccoeeeunn. 127
adc4_eewr............oee. 127
adcd_init....coeeiieinnn, 123
adc4_read.... 123, 124, 126
adc4_readcoeff 126
adc4_sample 125
adc4_set.............. 124, 126
adc4_writecoeff......... 126
adc4dcoeff............. 126, 128
calibrationccceceeunenne 115
CONVETSION ...vveenvreeeveeerenns 126
EIO_NODEV......ccoovvureeenn. 120
eioAdcMakeCoeff 122
eioErrorCode 120
eioPlcADC4Addr 118
eioPlcRstWait 120
eioResetPlcBus........... 120

User’s Manual

Index ¢ 241

software software
XP8500 (continued) XP8800 (continued)
€ITOT MESSAZES ..veevvererennns 128 smc_seek_origin......... 172
invgainccceeeeieens 128 smc_setmove 173
PlcXP85In.......ccccuneeeneen. 121 smc_setspeed 173, 174
plcXP85INC ..o 121 smc_softreset.... 149, 173
plcXP85Initcooeeeees 121 smc_statO.......cccoeeuveens 173
plcXP85RdCalib........... 122 smc_stat3......occeeeienns 174
readl2data 118 smcq_moveto 174
setl2adr......ccccceeeneenn. 118 smq_hardreset 149, 175
VAInit .oooviiiiieeiieeenen. 120 smq_readl6 175
writel2data 118 smq_read8.........cceeui. 175
zero_offset 128 USE_STEPPER 165, 166
XP880O0 165, 167, 169 XP8900
#USE i, 164 #USE oo, 197
board address 162 EIO_NODEV........courennenn. 199
Fil e, 166 eioAdcDigitize........... 203
MiTQ oo, 166 eioAdcMakeCoeff 202
relocate_intl 165 eioErrorCode 199
reset ...coevveieeiennns 151, 166 eioPlcRstWait 198
set8ladr............... 162, 169 plcBusReset 198
set82adr 162, 169 plcXP89Init 199
shadow variables..... 165, 166 plcXP890uUt 200
sm_addrcceeeeneenns 166 plcXP89RdCalib........... 202
sm_bdaddr...........cue... 169 PlcXP89SwW.....cccccuvenennen. 200
sm_board_reset........... 169 plcXP89WrCalib........... 201
sm_ctlreg.......cee. 170 readl2data 196
sm_drvoecccceeeenneenn. 170 setl2adr......ccoevennnenn. 196
sm_find boards. 148, 163, VAINit coooovvviiiiiiiinnnn.. 198
165, 170 writel2data 196

sm_£1agccoeeveereenenenne 166 specifications
sm_hitwd.............. 148, 170 FWT-Opto..ooovvveereeiieiene, 48
sm_int ... 165, 166, 171 FWT38 e, 45
sm_led....cccoevieeeiiieenns 171 FWTS50 e, 46
sm_pPolloccooeviiieeirienns 171 XP8100 ... 22
sm_se100ccccuverurennnnn. 171 1101011 ARSIt 22
sm_selOlccoouennen. 171 L1130 10| R 23
sm_sellO0......cccceevennnenn. 172 XP8300 ...ccoeveeeeeeeeeiireeeeeeens 74
sm_selll.........ccoumnn... 172 XP8500 ...ccoeveeeieieeeiiieieeeeenn 97
sm_shadow..........ceuun..... 166 XP88OO ... 137
sm_stat ...ccooeeieeeiieen, 166 XP8900oeeeiiieieee, 183
sme_cmdoooeeeeeeeenne. 172 standard resistor values
smc_hardreset 149, 172 XP8500 ..uueeeieeieieeieeeeenen. 112
smc_manual_move......... 172

242 + Index PLCBus Expansion Boards

state tables

USE weenetenieeitenieeneesieeeeeeeenee e 232
stepper motor controller 136
T
temperature

XP8100

deratingcccevveveereennnnne. 36
limitationscccceeeeerenene 36
test points

XP8500 ..o 109, 115
tolerance

USRI R170) (UURRURON 113
two-phase mode

XP8E8OO ..o 145
U
UCNS5804

typical specifications 157
unconditioned channels

XP8E500 ..o 109
using D/A converter boards 105,

190, 198
\'}
V+

XP8300 .eeeeeeeeeiieenee 78, 90
VCC

XP8300 .eeeeeeeeeiieenee 78, 90
w

watchdog timer
XP88OO ..o 148, 149
writing data on the PLCBus
212, 218

X

XP8I00 ..o 18
CMOS outputsccccveerveenneenn 39
COMMuNIcationsceuu...... 29

connecting expansion boards . 27

XP8100 (continued)
digital outputscceevvennen. 36
HIT e 41
H2 e 41
H3 e 41
H4 e 41
high-voltage drivers
K e 40
/O banks.......ccceeeeeerenennne 32
I/O configuration 34
jumper settings 42
inputs
configuration 34
specifications 22
J1 36, 42
J2 e 42
I3 36, 42
J4 o 42
outputs
configurationc.......... 36
specifications 23
OVEIVIEW ..ovuveiieieienienieienens 18
pinout
pinout headers H1-H4 41
pinouts
HI-H4 .o, 41
sinking drivers
locationccccevereeneeneennene 38
sinking outputs 36, 37
sourcing drivers
installationccceeennene. 38
locationccccevereeneeneennene 38
sourcing outputs............... 36, 37
TTL outputs ...cceeeeveereereeennen. 39
VETSIONS .ovvenveenreieenienieeienieenne 19
XP8300 ..o 72
features.......cooveeeerenencnienne 73
XP8310
features.......cooveeeerenencnienne 73
XP8500 ..o 96, 119
absolute modecccceuene. 112
addressesc.ccevveerienienieennen. 118
AINA-10 .o 109
bias resistors 105, 112

User’s Manual

Index ¢+ 243

XP8500 (continued) XP8500 (continued)

bias voltage calculation 112 test pointsceeveeneene. 109, 115
calibrated readings................ 128 unconditioned channels 109
calibration ... 96, 115, 116, 127 VRO oo, 112
calibration coefficients 116, 126 VR i, 112
calibration software 115 VREF ..o 114
configurationsev... 106 Wago connector
CONNECHIONS ..oveeueeveeneeneeenene 109 HI o, 104
drift o 110 XP8800 ..o 136
EEPROM 96, 108, 127, 128 24V e 145, 146
excitation resistors 108 F5V e, 145, 146
frequency response 106 /DRVOE.....ccoovevieverrerne. 144
5211« USRI 111, 113 JEL oot 145
gain calculation 111 TELA i 145
€N 1eSISLOTS ..vvovvevrenreerenras 111 JORG ..ot 145
headers IPFO it 145
H2 e 109 /PULSE 150, 154, 155
Nitializingccooveveveereennn 123 /RESET ..covvoiiiieiiiieieienen, 151
input filteringccceueenne. 106 ISD e 145
INPUL TANEE .eeovvevrenreeereieenans 113 ISDH e, 145
jumper settings addressesoooveeeueennne 162, 163
J1 e 105 ADR oo 153
J2 105 AIN L 145
T3 108 aternate USesccoevververunene 150
J4 118 BIN .o 145
IS5 118 block diagram 150
low-pass filterccccueueeee 106 board layoutccoceveenennen. 140
MOAES ..o 104 connection to PLCBus 141
OffSELS .o 113 control register ... 148, 158, 162
PAL encoding........c..ccveueee.. 118 end limitsccoceveveeverneennnne 150
pin assignments 104 features.......coeveveeeveceecnennnnns 136
power-down mode 109 FL oo 153
RI-R8 .o 106, 111 GND ..o 144, 146
RO-RIS i 109 hardware reset 149
reading inputsceeueen. 123 headers
RP3 e 106 H4 162
RP4 o 106 HS e 144
sample programs 116 HO6 e, 145
SAMPING ...oovivreieireieieeeans 125 HSTEP ..o 145
selecting analog input channel ... INPUL POWET ..o 142
... 124 interruptsoeveevvennenne. 159, 166
setting up jumpers
HT e 106 J1 e 149
SOftWarecccooeeevenieniecnne 119 K 146

244 + Index PLCBus Expansion Boards

XP8800 (continued)

optically isolated inputs
o) 415311 P

pulse generator chip
quadrature decoder 148,

SELO .coviiriiiieneieieeeee

using boardsccoceveneen.
watchdog.......ccveevieveienenen,
WAVE ..., 144,

XP8I0O ... 182
analog Noiseccceeverveennens 192
bipolar outputs 182
board layoutccocevennennen. 186
CITCUITY v 193
D/A conversion 182
HIT e 192
H2 192
H3 e 192
INPUL POWET ..oevveerierenreeeeenene 189
J1 e 192
J2 192
pin assignments 192
PLCBus address................... 188
Stability ..ooocoveveeieiieieeiene, 182

Y cables ..oovvvviiiiiiieieeeeen 223

User’s Manual

Index ¢+ 245

246 ¢ Index PLCBus Expansion Boards

ScHEmATICS

User’s Manual Schematics

