
Rabbit 3000® Microprocessor
Designer’s Handbook

019-0112 • 070720-E

The latest revision of this manual is available on the Digi International Web site,
www.digi.com, for free, unregistered download.

http://www.digi.com/

ii

Rabbit 3000
®

 Microprocessor Designer’s Handbook
Part Number 019-0112 • 070702–E • Printed in U.S.A.

©2013 Digi International. • All rights reserved.

Digi International reserves the right to make changes and
improvements to its products without providing notice.

Trademarks

Rabbit and Dynamic C® are registered trademarks of Digi International.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Digi International.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Digi International.

Rabbit 3000 Designer’s Handbook digi.com iii

Table of Contents

Chapter 1. Introduction ..1
1.1 Summary of Design Conventions ... 1

Chapter 2. Rabbit Hardware Design Overview ...3
2.1 Design Conventions .. 3

2.1.1 Rabbit Programming Connector ... 4
2.1.2 Memory Chips .. 4
2.1.3 Oscillator Crystals... 4

2.2 Operating Voltages .. 5

2.3 Power Consumption .. 5

2.4 Through-Hole Technology .. 6

2.5 Moisture Sensitivity .. 6

Chapter 3. Core Design and Components..7
3.1 Clocks.. 7

3.2 Floating Inputs... 8

3.3 Basic Memory Design... 8
3.3.1 Memory Access Time ... 9
3.3.2 Interfacing External I/O with Rabbit 3000 Designs ... 9

3.4 PC Board Layout and Memory Line Permutation .. 10

3.5 PC Board Layout and Electromagnetic Interference... 10
3.5.1 Rabbit 3000 Low EMI Features.. 10

Chapter 4. How Dynamic C Cold Boots the Target System..11
4.1 How the Cold Boot Mode Works In Detail ... 12

4.2 Program Loading Process Overview... 13
4.2.1 Program Loading Process Details... 13

Chapter 5. Rabbit Memory Organization..15
5.1 Physical Memory... 15

5.1.1 Flash Memory ... 15
5.1.2 SRAM ... 15
5.1.3 Basic Memory Configuration ... 16

5.2 Memory Segments... 16
5.2.1 Definition of Terms... 17
5.2.2 The Base (or Root) Segment... 17

 5.2.2.1 Types of Code Best-Suited for the Base Segment ... 18
5.2.3 The Data Segment... 18
5.2.4 The Stack Segment ... 18
5.2.5 The Extended Memory Segment .. 18

5.3 Separate I&D Space .. 19
5.3.1 Suggestions and Restrictions .. 21
5.3.2 Enable Separate I&D Space.. 21
5.3.3 I&D Space Mappings in Dynamic C .. 21

 5.3.3.1 Compiling to RAM .. 22
 5.3.3.2 Compiling to Flash .. 23

http://www.digi.com

iv digi.com Table of Contents

5.3.4 Writing a Flash Driver...24
5.3.5 Customizing Interrupts..25

 5.3.5.1 Method #1 ..26
 5.3.5.2 Method #2 ..27

5.4 How The Compiler Compiles to Memory ...28
5.4.1 Placement of Code in Memory..28
5.4.2 Paged Access in Extended Memory..28

5.5 Memory Planning ..29
5.5.1 Flash ..29
5.5.2 Static RAM..29

5.6 Making a RAM-Only Board..30
5.6.1 Hardware Changes ..30
5.6.2 Software Changes..30

Chapter 6. The Rabbit BIOS..31
6.1 Startup Conditions Set by the BIOS ..32

6.2 BIOS Flowchart ...33

6.3 Internally-Defined Macros...34

6.4 Modifying the BIOS ..34
6.4.1 Advanced Options ...36

6.5 Origin Directives Used by the Compiler ...37
6.5.1 Origin Directive Syntax ..37
6.5.2 Origin Directive Semantics ..38

 6.5.2.1 Defining a Memory Region ...38
 6.5.2.2 Action Qualifiers ..38
 6.5.2.3 I&D Qualifiers ...39
 6.5.2.4 Follow Qualifiers ...39

6.5.3 Origin Directive Examples..40
6.5.4 Origin Directives in Program Code...41
6.5.5 Origin Directive to Reserve Blocks of Memory ...41

Chapter 7. The System ID and User Blocks ..43
7.1 System ID Block Details ...44

7.1.1 Definition of SysIDBlock..44
7.1.2 Reading the System ID Block ...45

 7.1.2.1 Determining the Existence of the System ID Block ..46
7.1.3 Writing the System ID Block ..47

7.2 User Block Details...48
7.2.1 Boot Block Issues..48
7.2.2 Reserved Flash Space..49
7.2.3 Reading the User Block...50
7.2.4 Writing the User Block...52

Chapter 8. BIOS Support for Program Cloning...55
8.1 Overview of Cloning ...55

8.2 Creating a Clone ..56
8.2.1 Steps to Enable and Set Up Cloning ...56
8.2.2 Steps to Perform Cloning ..56
8.2.3 LED Patterns ...56

8.3 Cloning Questions ...57
8.3.1 MAC Address..57
8.3.2 Different Flash Types ..57
8.3.3 Different Memory Sizes ..57

http://www.digi.com

Rabbit 3000 Designer’s Handbookl digi.com v

8.3.4 Design Restrictions ... 57

Chapter 9. Low-Power Design and Support ..59
9.1 Details of the Rabbit 3000 Low-Power Features .. 60

9.1.1 Special Chip Select Features... 60
9.1.2 Reducing Operating Voltage ... 61
9.1.3 Preferred Crystal Configuration.. 61

9.2 To Further Decrease Power Consumption .. 62
9.2.1 What To Do When There is Nothing To Do ... 62
9.2.2 Sleepy Mode ... 62
9.2.3 External 32 kHz Oscillator ... 63
9.2.4 Conformal Coating of 32.768 kHz Oscillator Circuit... 63
9.2.5 Software Support for Sleepy Mode .. 63
9.2.6 Baud Rates in Sleepy Mode.. 64
9.2.7 Debugging in Sleepy Mode .. 64

Chapter 10. Supported Flash Memories ..65
10.1 Supporting Other Flash Devices ... 65

10.2 Writing Your Own Flash Driver.. 66
10.2.1 Required Information for Flash Memory.. 66
10.2.2 Flash Driver Functions.. 67

Chapter 11. Troubleshooting Tips for New Rabbit-Based Systems ..69
11.1 Initial Checks... 69

11.2 Diagnostic Tests... 69
11.2.1 Program to Transmit Diagnostic Tests .. 69
11.2.2 Diagnostic Test #1: Toggle the Status Pin... 71

 11.2.2.1 Using serialIO.exe ... 71
11.2.3 Diagnostic Test #2... 72

Appendix A.Supported Rabbit 3000 Baud Rates ..75

Index ... 77

http://www.digi.com

vi digi.com Table of Contents

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 1

Chapter 1. Introduction

This manual is intended for the engineer designing a system using the Rabbit 3000 microprocessor and
Rabbit’s Dynamic C development environment. It explains how to develop a system that is based on the
Rabbit 3000 and can be programmed with Dynamic C.

With Rabbit 3000 microprocessors and Dynamic C, many traditional tools and concepts are obsolete.
Complicated and fragile in-circuit emulators are unnecessary. EPROM burners are not needed. Rabbit
3000 microprocessors and Dynamic C work together without elaborate hardware aids, provided that the
designer observes certain design conventions.

For all topics covered in this manual, further information is available in the Rabbit 3000 Microprocessor
User’s Manual.

1.1 Summary of Design Conventions

• Include a programming connector.

• Connect a static RAM having at least 128 KB to the Rabbit 3000 using /CS1, /OE1
and /WE1.

• Connect a flash memory that is on the approved list and has at least 128 KB of stor-
age to the Rabbit 3000 using /CS0, /OE0 and /WE0.

• Install a crystal oscillator with a frequency of 32.768 kHz to drive the battery-back-
able clock. (Battery-backing is optional, but the clock is used in the cold boot
sequence to generate a known baud rate of 2400 bps.)

• Install a crystal or oscillator for the main processor clock that is a multiple of
614.4 kHz, or better, a multiple of 1.8432 MHz.

• Do not use pin PB1 in your design if cloning is to be used.

• Be sure unused inputs are not floating.

http://www.digi.com

2 digi.com Introduction

As shown in Figure 1, the Rabbit programming cable connects a PC serial port to the programming con-
nector of the target system. Dynamic C or the Rabbit Field Utility (RFU) runs as an application on the PC,
and can cold boot the Rabbit 3000 based target system with no pre-existing program installed in the target.
A USB to RS232 converter may also be used instead of a PC serial port. Rabbit 3000 based targets may
also be programmed and debugged remotely over a local network or even the Internet using a RabbitLink
card.

Figure 1.1 The Rabbit 3000 Microprocessor and Dynamic C

Dynamic C programming uses serial port A for software development. However, it is possible for the
user’s application to also use serial port A, with the restriction that debugging is not available.

PC Hosts Dynamic C Rabbit Programming
Cable

Programming
Connector

Target
System

Rabbit
Microprocessor

Level
Conversion

PC Serial
Port

http://www.rabbit.com

Rabbit 3000 Designer’s Handbook digi.com 3

2. Rabbit Hardware Design Overview

Because of the glueless nature of the external interfaces, especially the memory interface, it is easy to
design hardware in a Rabbit 3000-based system. More details on hardware design are given in the Rabbit
3000 Microprocessor User’s Manual.

2.1 Design Conventions

• Include a standard Rabbit programming cable. The standard 10-pin programming connector pro-
vides a connection to serial port A and allows the PC to reset and cold boot the target system.

• Connect a static RAM having at least 128 KB to the processor using /CS1, /OE1 and /WE1. It is
useful if the PC board footprint can also accommodate a RAM large enough to hold all the code
anticipated. Although code residing in some flash memory can be debugged, debugging and pro-
gram download is faster to RAM.

• Connect a flash memory that is on the approved list and has at least 128 KB of storage to the proces-
sor using /CS0, /OE0 and /WE0. Non-approved memories can be used, but it may be necessary to
modify the BIOS. Some systems designed to have their program reloaded by an external agent on
each powerup may not need any flash memory.

• Install a crystal oscillator with a frequency of 32.768 kHz to drive the battery-backable real-time
clock (RTC), the watchdog timer (WDT) and the Periodic Interrupt.

• Install a crystal or oscillator for the main processor clock that is a multiple of 614.4 kHz, or better, a
multiple of 1.8432 MHz. These preferred clock frequencies make possible the generation of sensible
baud rates. Common crystal frequencies to use are 7.3728 MHz, 11.0592 MHz, 14.7456 MHz,
18.432 MHz, 22.1184 MHz, 25.8048 MHz or double these frequencies.

• Digital I/O line PB1 should not be used in the design if cloning is to be used. PB1 should be pulled
up with 50K or so pull up resistor if cloning is used. (See “BIOS Support for Program Cloning” on
page 55 for more information on cloning.)

http://www.digi.com

4 digi.com Rabbit Hardware Design Overview

2.1.1 Rabbit Programming Connector

The user may be concerned that the requirement for a programming connector places added cost overhead
on the design. The overhead is very small—less than $0.25 for components and board space that could be
eliminated if the programming connector were not made a part of the system.

The programming connector can also be used for a variety of other purposes, including user applications.
A device attached to the programming connector has complete control over the system because it can per-
form a hardware reset and load new software. If this degree of control is not desired for a particular situa-
tion, then certain pins can be left unconnected in the connecting cable, limiting the functionality of the
connector to serial communications. Digi International develops products and software that assume the
presence of the programming connector.

2.1.2 Memory Chips
Most systems have one static RAM chip and one or two flash memory chips, but more memory chips can
be used when appropriate. Static RAM chips are available in 32K x 8, 64K x 8, 128K x 8, 256K x 8 and
512K x 8 sizes. They are all available in 3 V versions. Suggested flash memory chips between 128K x 8
and 512K x 8 are given in Chapter 10, Flash Memories.

Dynamic C and a PC are not necessary for the production programming of flash memory since the flash
memory can be copied from one controller to another by cloning. This is done by connecting the system to
be programmed to the same type of system that is already programmed. This connection is made with the
Rabbit Cloning Board. The Cloning Board connects to the programming ports of both systems. A push of
a button starts the transfer of the program and an LED displays the progress of the transfer.

Please visit www.digi.com/store/ to purchase the Rabbit Cloning Board.

2.1.3 Oscillator Crystals
Generally, a system will have two oscillator crystals:

• A 32.768 kHz crystal oscillator to drive the battery-backable timer,

• A crystal that has a frequency that is a multiple of 614.4 kHz or a multiple of 1.8432 MHz. Typical
values are 1.8432, 3.6864, 7.3728, 11.0592, 14.7456, 18.432, 25.8048, and 29.4912 MHz.

These crystal frequencies (except 614.4 kHz and 1.8432 MHz) allow generation of standard baud rates up
to at least 115,200 bps. The clock frequency can be doubled by an on-chip clock doubler, but the doubler
should not be used to achieve frequencies higher than about 54 MHz on a 3.3 V system. A quartz crystal
should be used for the 32.768 kHz oscillator. For the main oscillator, a ceramic resonator that is accurate to
0.5% will usually be adequate and less expensive than a quartz crystal.

http://www.digi.com/
http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 5

2.2 Operating Voltages
The operating voltage in Rabbit 3000 based systems will usually be 3.3 V ±10%, but voltages in the range
of 1.8 V to 2.7 V are also possible. The maximum computation per watt is obtained in the range of 3.0 V to
3.6 V. The highest clock speed requires 3.3 V. The maximum clock speed with a 3.3 V supply is 54 MHz
(26.7264 x 2), but it will usually be convenient to use a 14.7456 MHz crystal, doubling the frequency to
29.4912 MHz. Good computational performance, but not the absolute maximum, can be implemented for
a 3.3 V system by using an 11.0592 crystal and doubling the frequency to 22.1184 MHz. Such a system
will operate with 70 ns memories. A 29.4912 MHz system will require memories with 55 ns access time.
A table of timing specification is in the Rabbit 3000 Microprocessor User’s Manual.

2.3 Power Consumption
The following mechanisms are important for determining the current consumption of the Rabbit 3000
while it is operating.

1. A current proportional to voltage and clock frequency that results from the charging of internal and
external capacitances. At 3.3 V (see 2 below) approximately 57% of the current is due to charging and
43% to crossover current.

2. Current is proportional to clock frequency and to VC = V(0.5 x V - 0.7). This is the crossover cur-

rent that results from a brief short circuit when both the P and N transistors of a CMOS buffer are
turned on at the same time. This component drops as the voltage drops relative to the other component,
and becomes negligible at 1.4 V.

3. The current consumed by the built-in main oscillator when it is turned on. This current is propor-
tional to VC above, and is equal to 1 mA at 3.3 V.

4. The current drawn by the logic that is driven at the oscillator (crystal) frequency. This is considered
distinctly because it varies with the crystal frequency, but is not reduced when the clock frequency is
divided. This current becomes zero if the main oscillator is turned off. This current is 2.5 mA at 3.3 V
when the crystal frequency is 14.7 MHz. This current is divided between capacitive and crossover com-
ponents in the same manner as the currents in (1) and (2) above.

All of the above components can be combined in the following formula:

where,

ITOTAL 0.32 V f 0.23 Vc+ f 0.30 Vc+ 0.029 V fc 0.025 Vc fc++=

Vc V 0.5 V 0.7– 
fc frequency of crystal oscillator
f clock frequency in MHz

=
=

=

http://www.digi.com

6 digi.com Rabbit Hardware Design Overview

2.4 Through-Hole Technology
Most design advice given for the Rabbit 3000 assumes the use of surface-mount technology. However, it is
possible to use the older through hole technology and develop a Rabbit 3000 system. One can use one of
the Rabbit 3000-based core modules, small circuit boards that include memory and oscillators. Another
possibility is to solder the Rabbit 3000 processors by hand to the circuit board. This is not difficult and is
satisfactory for low production volumes if the right technique is used.

2.5 Moisture Sensitivity
Surface-mount processing of plastic packaged components such as Rabbit microprocessors typically
involves subjecting the package body to high temperatures and various chemicals such as solder fluxes and
cleaning fluids during solder wave and reflow operations. The plastic molding compounds used for IC
packaging (encapsulation) is hygroscopic, that is, it readily absorbs moisture. The amount of moisture
absorbed by the package is proportional to the storage environment and the amount of time the package is
exposed to the humidity in the environment. During the solder reflow process, the package is heated rap-
idly, and any moisture present in the package will vaporize rapidly, generating excessive internal pressures
to various interfaces in the package. The vapors escaping from the package may cause cracks or delamina-
tion of the package. These cracks can propagate through the package or along the lead frame, thus expos-
ing the die to ionic contaminants and increasing the potential for circuit failures. The damage to the
package may or may not be visible to the naked eye. This condition is common to all plastic surface-mount
components and is not unique to Rabbit microprocessors.

Rabbit microprocessors are shipped to customers in moisture-barrier bags with enough desiccant to main-
tain their contents below 20% relative humidity for up to 12 months from the date of seal. A reversible
Humidity Indicator Card is enclosed to monitor the internal humidity level. The loaded bag is then sealed
under a partial vacuum. The caution label (IPC/JEDEC J-STD-020, LEVEL 3) included with each bag out-
lines storage, handling, and bake requirements.

The requirements outlined on the label only apply to components that will be exposed to SMT processing.
This means that completed board-level products that will not be subjected to the solder reflow processing
do not have to be baked or sealed in special moisture barrier bags.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 7

3. Core Design and Components

Core designs can be developed around the Rabbit 3000 microprocessor. A core design includes memory,
the microprocessor, oscillator crystals, the Rabbit 3000 standard programming port, and in some cases, a
power controller and power supply. Although modern designs usually use at least four-layer printed circuit
boards, two-sided boards are a viable option with the Rabbit 3000, especially if the clock speed is not high
and the design is intended to operate at 2.5 V or 3.3 V—factors that reduce edge speed and
electromagnetic radiation.

Schematics illustrating the use of the Rabbit 3000 microprocessor are available at:

 www.digi.com

3.1 Clocks
The Rabbit 3000 has a built-in oscillator for the fast clock and an input pin for the 32.768 kHz clock. The
fast clock drives the Rabbit 3000 CPU and peripheral clocks, whereas the 32.768 kHz clock is used for the
battery backable clock (aka, the real-time clock), the watchdog timer, the periodic interrupt timer and the
asynchronous cold boot function.

Figure 3-1 Main Oscillator Circuit

The 32.768 kHz oscillator is slow to start oscillating after power-on. For this reason, a wait loop in the
BIOS waits until this oscillator is oscillating regularly before continuing the startup procedure. The startup
delay may be as much as 5 seconds, but will usually be about 200 ms. Crystals with low series resistance
(R < 35 k) will start faster.

For more information on the 32.768 kHz oscillator please see Technical Note 235, “External 32.768 kHz
Oscillator Circuits.” This document is available on our website: www.digi.com

������

������

�	
�

�	��

��	
�

��	
�

�������	
��
����	����
���

http://www.digi.com
http://www.digi.com

8 digi.com Core Design and Components

3.2 Floating Inputs
Floating inputs or inputs that are not solidly either high or low can draw current because both N and P
FETs can turn on at the same time. To avoid excessive power consumption, floating inputs should not be
included in a design (except that some inputs may float briefly during power-on sequencing). Most unused
inputs on the Rabbit 3000 can be made into outputs by proper software initialization to remove the floating
property. Pull-up resistors will be needed on a few inputs that cannot be programmed as outputs. An alter-
native to a pull-up resistor is to tie an unused output to the unused inputs. If pull-up (or pull-down) resis-
tors are required, they should be made as large as possible if the circuit in question has a substantial part of
its duty cycle with current flowing through the resistor.

3.3 Basic Memory Design
Normally /CS0 and /OE0 and /WE0 should be connected to a flash memory that holds the startup code that
executes at address zero. When the processor exits reset with (SMODE1, SMODE0) set to (0,0), it will
attempt to start executing instructions at the start of the memory connected to /CS0, /OE0, and /WE0.

For Dynamic C to work out of the box, the basic RAM memory must be connected to /CS1, /OE1, and
/WE1.

 /CS1 has a special property that makes it the preferred chip select for battery-backed RAM. The BIOS
defined macro, CS1_ALWAYS_ON, may be redefined in the BIOS to 1which will set a bit in the MMIDR
register that forces /CS1 to stay enabled (low). This capability can be used to counter a problem encoun-
tered when the chip select line is passed through a device that is used to place the chip in standby by rais-
ing /CS1 when the power is switched over to battery backup. The battery switchover device typically has a
propagation delay that may be 20 ns or more. This is enough to require the insertion of wait states for
RAM access in some cases. By forcing /CS1 low, the propagation delay is not a factor because the RAM
will always be selected and will be controlled by /OE1 and /WE1. If this is done, the RAM will consume
more power while not battery-backed than it would if it were run with dynamic chip select and a wait state.
If this special feature is used to speed up access time for battery backed RAM then no other memory chips
should be connected to OE1 and WE1.

Table 3.1 Typical Interface between the Rabbit 3000 and Memory

Primary Flash SRAM Secondary Flash

/CS0, /OE0 and /WE0 /CS1, /OE1 and /WE1 /CS2, /OE0 and /WE0

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 9

3.3.1 Memory Access Time
Memory access time depends on the clock speed and the capacitive loading of the address and data lines.
Wait states can be specified by programming to accommodate slow memories for a given clock speed.
Wait states should be avoided with memory that holds programs because there is a significant slowing of
the execution speed. Wait states are far more important in the instruction memory than in the data memory
since the great majority of accesses are instruction fetches. Going from 0 to 1 wait states is about the same
as reducing the clock speed by 30%. Going from 0 to 2 wait states is worth approximately a 45% reduction
in clock speed. A table of memory access times required for various clock speeds is given in the Rabbit
3000 Microprocessor User’s Manual.

3.3.2 Interfacing External I/O with Rabbit 3000 Designs
The Rabbit 3000 provides on-chip facilities for glueless interfacing to many types of external I/O peripher-
als. The processor provides a common I/O read and I/O write strobe in addition to eight user configurable
I/O strobes that can be used as read, write, read/write, or chip select signals. The Rabbit 3000 also provides
the option of enabling a completely separate bus for I/O accesses. The Auxiliary I/O Bus, which uses many
of the same pins used by Parallel Port A and the Slave Port, provides 8 data lines and 6 address lines that
are active only during I/O operations. By connecting I/O devices to the auxiliary bus, the fast memory bus
is relieved of capacitive loading that would otherwise slow down memory accesses. For core modules
based on the Rabbit 3000, fewer pins are required to exit the core module since the slave port and the I/O
bus can share the same pins and the memory bus no longer needs to exit the module to provide I/O capabil-
ity.

As far as external I/O timing is concerned, the Rabbit 3000 provides:

• half a clock cycle of address and chip select hold time for I/O write operations, and

• zero clock cycles of address and chip select hold times for I/O read operations.

This is true if an I/O device is interfaced to the common memory and I/O bus. However, if an I/O periph-
eral is interfaced to the Auxiliary I/O bus, address hold time is no longer an issue as the address does not
change until the next external I/O operation. For more information on I/O timing please refer to the Rabbit

3000® Microprocessor User's Manual.

Some I/O peripherals such as LCD controllers and Compact Flash devices require address and chip select
hold times for both read and write operations. If the peripheral is interfaced to the Auxiliary I/O bus,
address hold time is not an issue. If chip select hold time is required, an unused auxiliary I/O address line
can be used to generate the chip select. In situations where I/O peripherals are interfaced to the common
memory and I/O bus, address and chip select hold times can be extended under software control or with
minor hardware changes. Please refer to Technical Note 227, "Interfacing External I/O with Rabbit
2000/3000 Designs" for additional information. This document is available online: www.digi.com

http://www.digi.com

10 digi.com Core Design and Components

3.4 PC Board Layout and Memory Line Permutation
To use the PC board real estate efficiently, it is recommended that the address and data lines to memory be
permuted to minimize the use of PC board resources. By permuting the lines, the need to have lines cross
over each other on the PC board is reduced, saving feed-through’s and space.

For static RAM, address and data lines can be permuted freely, meaning that the address lines from the
processor can be connected in any order to the address lines of the RAM, and the same applies for the data
lines. For example, if the RAM has 15 address lines and 8 data lines, it makes no difference if A15 from
the processor connects to A8 on the RAM and vice versa. Similarly D8 on the processor could connect to
D3 on the RAM. The only restriction is that all 8 processor data lines must connect to the 8 RAM data
lines. If several different types of RAM can be accommodated in the same PC board footprint, then the
upper address lines that are unused if a smaller RAM is installed must be kept in order. For example, if the
same footprint can accept either a 128K x 8 RAM with 17 address lines or a 512K x 8 RAM with 19
address lines, then address lines A18 and A19 can be interchanged with each other, but not exchanged with
A0–A17.

Permuting lines does make a difference with flash memory and must be avoided in practical systems.

3.5 PC Board Layout and Electromagnetic Interference
Most design failures are related to the layout of the PC board. A good layout results when the effects of
electromagnetic interference (EMI) are considered. For detailed information regarding this subject please
see Technical Note 221, “PC Board Layout Suggestion for the Rabbit 3000 Microprocessor.” This docu-
ment is available at: www.digi.com

3.5.1 Rabbit 3000 Low EMI Features
The Rabbit 3000 has powerful built-in features to minimize EMI. They are noted here. For details please
see The Rabbit 3000 Microprocessor User’s Manual.

• Separate power pins exist for core and I/O rings.

• The I/O bus can be separate from the memory bus.

• The external processor bus cycles are not all the same length.

• The external processor bus does not require running the clock around the PCB.

• The clock spectrum spreader option modulates the clock frequency.

• Some gated internal clocks are enabled only when needed.

• An internal clock doubler allows the external crystal oscillator to operate at 1/2 frequency.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 11

4. How Dynamic C Cold Boots the
Target System

Dynamic C assumes that target controller boards using the Rabbit 3000 CPU have no pre-installed firm-
ware. It takes advantage of the Rabbit 3000’s bootstrap (cold boot) mode, which allows memory and I/O
writes to take place over the programming port.

Figure 4-1 Rabbit Programming Port

The Rabbit programming cable is a smart cable with an active circuit board in its middle. The circuit board
converts RS-232 voltage levels used by the PC serial port to CMOS voltage levels used by the Rabbit
3000. The level converter is powered from the power supply voltage present on the Rabbit 3000 program-
ming connector. Plugging the programming cable into the Rabbit programming connector results in pull-
ing the Rabbit 3000 SMODE0 and SMODE1 (startup mode) lines high. This causes the Rabbit 3000 to
enter the cold boot mode after reset.

���

 !!

"�#�

 $$

%�&!&�

���

!���'!

!
($&�

!
($&�

)�
�	
��

)�
�	
��

)�
�	
��

)�
	�
�

 **
��������			

)�
�	
��

���

+,$

"�#�

 **

%�&!&�

���

-�*�

!���'!

!
($&�

!
($&�

��
������

������

�

�

�

.

�

/

0

1

�

��

��

� �

� .

� /

0 1

�

���������	�

�����
��	���

���������������������������			�
��������

��

+,$

�.

2���	

�0

�.

�1

�/

��

http://www.digi.com

12 digi.com How Dynamic C Cold Boots the Target System

When the programming cable connects a PC serial port to the target controller board, the PC running
Dynamic C is connected to the Rabbit 3000 as shown in the table below.

When Dynamic C cold boots the Rabbit 3000-based target system it assumes that no program is already
installed on the target. The flash memory on the target system may be blank or it may contain any data.
The cold boot capability permits the use of soldered-in flash memory on the target. Soldered-in memory
eliminates sockets, boot blocks and PROM programming devices.

4.1 How the Cold Boot Mode Works In Detail
Cold boot works by receiving triplets of bytes that consist of a high address byte followed by a low address
byte, followed by a data byte, and writing the data byte to either memory or I/O space. Cold boot mode is
entered by having one or both of the SMODE pins pulled high when the Rabbit is reset. The pin settings
determine the source of the incoming triplets:

SMODE1 = 0, SMODE0 = 1 cold boot from slave port.

SMODE1 = 1, SMODE0 = 0 cold boot from clocked serial port A.

SMODE1 = 1, SMODE0 = 1 cold boot from asynchronous serial port A at 2400 bps.

SMODE1 = 0, SMODE0 = 0 start normal execution at address zero.

The SMODE pins can be used as general input pins once the cold boot is complete.

On entering cold boot mode, the microprocessor starts executing a 12-byte program contained in an inter-
nal ROM. The program contains the following code.

; origin zero
00 ld l,n ; n=0c0h for serial port A

 ; n=020h for parallel (slave port)
02 ioi ld d,(hl) ; get address most significant byte
04 ioi ld e,(hl) ; get least significant byte
06 ioi ld a,(hl) ; get data
08 ioi or nop ; if the high bit of the MSB of the address is 1

; (i.e., d[7] ==1) then ioi, else nop
09 ld (de),A ; store in memory or I/O
10 jr 0 ; jump back to zero

; note wait states inserted at bytes 3, 5 and 7 waiting
; for serial port or parallel port ready

Table 4-1 Programming Port Connections

PC Serial Port Signal Rabbit 3000 Signal

DTR (output) /RESET (input, reset system)

DSR (input) STATUS (general purpose output)

TX (serial output) RXA (serial input, port A)

RX (serial input) TXA (serial output, port A)

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 13

The function of the boot ROM program depends on the settings of the pins SMODE0 and SMODE1 and
on whether the high bit of the high address byte (first byte of a received triplet) that is loaded to register D
is set. If bit 7 of the high address byte is set, then the data byte (last byte of the triplet) is written to I/O
space when received. If the bit is clear, then the data byte gets written to memory. Boot mode is terminated
by storing 80h to I/O register 24h, which causes an instruction fetch to begin at address zero.

Wait states are automatically inserted during the fetching of bytes 3, 5 and 7 to wait for the serial or paral-
lel port ready. The wait states continue indefinitely until the serial port is ready. This will cause the proces-
sor to be in the middle of an instruction fetch until the next character is ready. While the processor is in this
state the chip select, but not the output enable, will be enabled if the memory mapping registers are such as
to normally enable the chip select for the boot ROM address. The chip select will stay low for extended
periods while the processor is waiting for the serial or parallel port data to be ready.

4.2 Program Loading Process Overview
On start up, Dynamic C first uses the PC’s DTR line on the serial port to assert the Rabbit 3000 RESET
line and put the processor in cold boot mode. Next, Dynamic C uses a four stage process to load a user pro-
gram:

1. Load an initial loader (cold loader) to RAM via triplets sent at 2400 baud from the PC to a target in cold
boot mode.

2. Run the initial loader and load a secondary loader (pilot BIOS) to RAM at 57600 baud.

3. Run the secondary loader and load the BIOS and user program to flash after compiling them to a file,
optionally negotiating with the Pilot BIOS to increase the baud rate to 115200 or higher so the loading can
happen quickly.

4. Run the BIOS. Then run and debug the user program at the baud rate selected in Dynamic C.

NOTE: Step 4 is combined with step 3 when using 4 K (or greater) sector flash.

4.2.1 Program Loading Process Details
When Dynamic C starts, the following sequence of events takes place:

1. The serial port is opened with the DTR line high, closed, then reopened with the DTR line low at 2400
baud. This pulses the reset line on the target low (the programming cable inverts the DTR line) and pre-
pares the PC to send triplets.

2. A group of triplets defined in the file COLDLOAD.BIN consisting of 2 address bytes and a data byte
are sent to the target. The first few bytes sent are sent to I/O addresses to set up the MMU and MIU and do
system initialization. The MMU is set up so that RAM is mapped to 0x00000, and flash is mapped to
0x80000.

3. The remaining triplets place a small initial loader program at memory location 0x00000. The last triplet
sent is 0x80, 0x24, 0x80, which tells the CPU to ignore the SMODE pins and start running code at address
0x00000.

4. The initial loader measures the crystal speed to determine what divisor is needed to set a baud rate of
19200. The divisor is stored at address 0x3F02 for later use by the BIOS, and the programming port is set
to 57600 baud.

5. The PC now bumps the baud rate on the serial port being used to 57600 baud.

http://www.digi.com

14 digi.com How Dynamic C Cold Boots the Target System

6. The initial loader then reads 7 bytes from the serial port. First a 4-byte address field: the physical
address to place the secondary loader, followed by a 2-byte length field: the number of bytes in the sec-
ondary loader. The 7th byte is a checksum (simple summation) of the previous 6 bytes. Whether or not the
checksum matched, it is echoed back as an acknowledgement.

7. The data segment is then mapped to the given physical location, using the DATASEG register. The data
segment boundary will also be set to 0x6000, so the secondary loader will always be located at the same
place in logical space, regardless of where it physically resides.

8. The initial loader finally enters a loop where it receives the specified number of bytes that compose the
secondary loader program (pilot.bin sent by the PC) and writes those bytes starting at 0x6000 (logi-
cal). The first byte sent this way MUST be 0xCC, as an indicator to the initial loader. This byte will be
stored as 0x00 (nop), instead of 0xCC. A 2-byte checksum will be sent after the secondary loader has been
received, using the 8-bit Fletcher Algorithm (see RFC1145 for details), such that the load can be verified.
After all of the bytes are received, and the checksum has been sent, program execution jumps to 0x6000.

9. The secondary loader does a wrap-around test to determine how much RAM is available, reads the
flash ID, the CPU ID, and initializes the flash-write routines. This information is made available for trans-
mittal to Dynamic C when requested.

10. The secondary loader now enters a finite state machine (FSM) that is used to implement the Dynamic
C/Target Communications protocol. Dynamic C requests the CPU ID, flash information, RAM size, and
19200 baud rate divisor to define internally defined constants and macros. At this stage, the compiler can
request the baud rate be increased to a higher value. The secondary loader is now ready to load a BIOS and
user program.

11. Dynamic C now compiles the BIOS and user programs. Both are compiled to a file, then the file is
loaded to the target using the Pilot BIOS’ FSM. After the loading is complete, Dynamic C, using the Pilot
BIOS’ FSM, tells the Pilot BIOS to map flash to 0x00000, map RAM to 0x80000, and start program exe-
cution at 0x0000, thereby running the compiled BIOS.

12. If the Pilot BIOS detects a RAM compile or small-sector flash that uses sector-write mode, Dynamic
C uses a slightly different loading procedure. The BIOS will be compiled as normal, and loaded using the
Pilot BIOS. After the BIOS is loaded, Dynamic C will tell the Pilot BIOS to start it, and the rest of the pro-
gram will be loaded through the compiled BIOS.

13. Once the compiled BIOS starts up, it runs some initialization code. This includes setting up the serial
port for the debug baud rate (set in the Communications Options dialog box prior to Dynamic C v. 8. For
later versions of Dynamic C, go to the Communications tab in Options | Project Options), setting up serial
interrupts and starting the BIOS FSM. Dynamic C sets a breakpoint at the beginning of main() and runs
the program up to the breakpoint. The board has been programmed, and Dynamic C is now in debug mode.

14. If the programming cable is removed and the target board is reset, the user’s program will start run-
ning automatically because the BIOS will check the SMODE pins to determine whether to run the user
application or enter the debug kernel.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 15

5. Rabbit Memory Organization

The Rabbit 3000 architecture is derived from the original Z80 microprocessor. The original Z80 instruc-
tion set used 16-bit addresses to address a 64 KB memory space. All code and data had to fit in this 64 KB
space. To expand the available memory space, the Rabbit 3000 adopts a scheme similar to that used by the
Z180. The 64 KB space is divided into segments and the Rabbit’s Memory Mapping Unit (MMU) maps
each segment to a block in a larger memory. The larger memory is 1 megabyte. The segments are effec-
tively windows to the larger memory. The view from the window can be adjusted so that the window looks
at different blocks in the larger memory. Figure 5-1 shows the memory mapping schematically.

Please see Technical Note 202, “ Rabbit Memory Management in a Nutshell,” for more details on how
memory mapping works. This document is available at:

www.digi.com/support/

5.1 Physical Memory
The Rabbit 3000 has a 1 MB physical memory space. In special circumstances more than 1 MB of mem-
ory can be installed and accessed using auxiliary memory mapping schemes. Typical Rabbit 3000 systems
have two types of physical memory: flash memory and static RAM memory.

5.1.1 Flash Memory
Flash memory in a Rabbit 3000-based system may be small-sector or large-sector type. Small-sector mem-
ory typically has sectors of 128 to 4096 bytes. Individual sectors may be separately erased and written. In
large-sector memory the sectors are often 16 KB to 64 KB or more. Large-sector memory is less expensive
and has faster access time. The best solution will usually be to lay out a design to accept several different
types of flash memory, including the flexible small-sector memories and the fast large-sector memories.

Flash memory follows a write-once-in-a-while and read-frequently model. Depending on the particular
type of flash used, the flash memory may wear out after it has been written approximately 10,000 to
100,000 times.

5.1.2 SRAM
Static RAM memory may or may not be battery-backed. If it is battery-backed it retains its data when
power is off. Static RAM chips typically used for Rabbit systems are 128 KB, 256 KB, or 512 KB.

When the memory is battery-backed, power is supplied at 2 V to 3 V from a backup battery. While pre-
serving memory contents with battery power, the shutdown circuitry must keep the chip select line high.

http://www.digi.com

16 digi.com

5.1.3 Basic Memory Configuration
A basic Rabbit system typically has two static memory chips: one flash memory chip and one RAM chip.
Additional static memory chips may be added. If an application requires storing a lot of data in flash mem-
ory, it is recommended that another flash memory chip be added, creating a system with 3 memory chips—
2 flash memory chips and one RAM chip.

Trying to use a single flash memory chip to store both the user’s program and live data that must be fre-
quently changed can create software problems. When data are written to a small-sector flash memory, the
memory becomes inoperative during the 5 to 20 ms that it takes to write a sector. If the same memory chip
is used to hold data and the program, then the execution of code must cease during this write time. The 5-
20 ms is timed out by a small routine executing from root RAM while system interrupts are disabled,
effectively freezing the system for 5-20 ms. The 5-20 ms lockup period can seriously affect real-time oper-
ation.

5.2 Memory Segments
From the point of view of a Dynamic C programmer, there are a number of different uses of memory. Each
memory use occupies a different segment in the logical 16-bit address space. The four segments are shown
here:

Figure 5-1 Typical Memory Map of 16-bit Addressing Space

This figure shows that the Rabbit 3000 does not have a “flat” memory space. The advantage of the Rabbit
3000’s memory organization is that the use of 16-bit addresses and pointers is retained, ensuring that the
code is compact and executes quickly.

NOTE: The relative size of the base and data segments can be adjusted by increasing or
decreasing the BIOS macro DATAORG in increments of 0x1000.

�	#�

�	
�

34�-5��-6	�

34�5��-6	�

34�5��-6	�

34�5��-6	�

��

���78

98:7;*��	�55��77	!
�*���<;*��	�55��77	!
�*�

��7�
!�<��-6

&�6�-5�5

����:
!�<��-6

!6�*�
!�<��-6

$�6�
!�<��-6

�	#�

/.	#�

��	#�

�/	#�

����	���6	!�<��-6�

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 17

5.2.1 Definition of Terms
The following definitions clarify some of the terms that will be encountered in this chapter.

Extended Code: Instructions located in the extended memory segment.

Extended Constants: C constants located in the extended memory segment. They are mixed together with
the extended code.

Extended Memory: Logical addresses above 0xDFFF.

Extended RAM: RAM not used for root variables or stack. Extended memory in RAM may be used for
large buffers to save root RAM space. The function xalloc() allocates space in extended RAM mem-
ory.

Root Code: Instructions located in the base segment.

Root Constants: C constants, such as quoted strings, initialized variables or data tables, that are located in
the base segment.

Root Memory: Logical addresses below 0xE000. Please note that root memory is not the same as the root
segment. The root segment is contained in root memory, as are the data and stack segments. The root seg-
ment is also known as the base segment.

Root Variables: C variables, including structures and arrays that are not initialized to a fixed value, are
located in the data segment.

5.2.2 The Base (or Root) Segment
The base segment has a typical size of 24 KB. The larger the base segment, the smaller the data segment
and vice-versa. Base segment address zero is always mapped to 20-bit address zero. Usually the base seg-
ment is mapped to flash memory since root code and root constants do not change except when the system
is reprogrammed. It may be mapped to RAM for debugging, or to take advantage of the faster access time
offered by RAM.

The base segment holds a mixture of code and constants. C functions or assembly language programs that
are compiled to the base segment are interspersed with data constants. Data constants are inserted between
blocks of code. Data constants defined inside a C function are put before the end of the code belonging to
the function. Data constants defined outside of C functions are stored as encountered in the source code.

Except in small programs, the bulk of the code is executed using the extended memory (xmem) segment.
Code operates at the same speed whether addressed through the base segment or the xmem segment. It just
takes a few cycles longer to call xmem functions and return from them.

http://www.digi.com

18 digi.com

 5.2.2.1 Types of Code Best-Suited for the Base Segment
• Short subroutines of about 20 instructions or less that are called frequently will use significantly

less execution time if placed in root memory because of the faster calling linkage for 16-bit versus 20-
bit addresses. For a call and return, 20 clocks are used compared to 32 clocks.

• Interrupt routines. Interrupt vectors use 16-bit addressing so the entry to an interrupt routine must be
in the base segment.

• The BIOS core. The initialization code of the BIOS must be at the start of the base segment.

• A function that modifies the XPC must always be run in root memory.

5.2.3 The Data Segment
The data segment has a typical size of 28 KB, starting at 24 KB and ending at 52 KB (0xD000). The data
segment is mapped to RAM and contains C variables. Data allocation starts at or near the top and proceeds
in a downward direction. It is also possible to place executable code in the data segment if it is copied from
flash to the data segment. This can be desirable for code that is self modifying, code to implement debug-
ging aids or code that controls write to the flash memory and cannot execute from flash. In some cases
RAM may require fewer wait states so code executes faster if copied to RAM.

5.2.4 The Stack Segment
Usually the stack segment is from logical address 0xD000 to 0xDFFF. It is always mapped to RAM and
holds the system stack. Multiple stacks may be implemented by defining several stacks in the 4 KB space
or by remapping the 4 KB space to different locations in physical RAM memory, or by using both
approaches. Multiple stack allocation is handled by µC/OS-II internally.

For example, if 16 stacks of 1 KB length are needed then 4 stacks can be placed in each 4 KB mapping and
4 different mappings for the window can be used.

5.2.5 The Extended Memory Segment
This 8 KB segment from logical address 0xE000 to 0xFFFF is used to execute extended code and it is also
used by routines that manipulate data located in extended memory. While executing code the mapping is
shifted by 4 KB each time the code passes the 60 KB point. Up to a MB of code can be efficiently exe-
cuted by moving the mapping of the 8 KB window using special instructions (long call, long jump and
long return) that are designed for this purpose. This uses up only 8 KB of the 16-bit addressing space.

The xmem segment can map to any 4 KB page of the 1MB physical address space. For example if XPC is
set to 0xF2, then the 16-bit address 0xE000 maps to the physical address 0x00000.

Please see Technical Note 202, “Rabbit Memory Management in a Nutshell,” for more details on how
memory mapping works. This document is available at: www.digi.com

http://www.digi.com

http://www.digi.com/support/supporttype?type=documentation

Rabbit 3000 Designer’s Handbook digi.com 19

5.3 Separate I&D Space
Separate instruction and data space is a hardware memory management scheme that uses address line
inversion to double the amount of logical address space in the base and data segments. In other words, this
doubles the amount of root code and root data available for an application program.

Without separate I&D space, recall that in a typical memory map of the 16-bit address space, the base seg-
ment holds a mixture of code and constants and is mapped to flash; the data segment holds C variables and
is mapped to RAM. With separate I&D space, code and data no longer have to divide this space because
they share logical addresses by inverting address lines depending on whether the CPU is fetching instruc-
tions or data.

The following diagram shows the logical address space when separate I&D space is enabled and
SEGSIZE = 0xD3. The boundary at 0x3000 is determined by the macro DATAORG in the BIOS. The
boundary may be changed, however, care must be taken. To change the boundary, enter the macro name
and a new boundary value in the “Defines” dialog box, which is accessed via Dynamic C’s Options | Com-
piler dialog box prior to version 8. With later versions of Dynamic C, go to the Defines tab in Options |
Project Options.

Figure 5-2 16-Bit Logical Address Space

NOTE: This diagram illustrates how I&D space works; the actual values used in the
BIOS may differ from those shown here.

�
&
	!�<��-6

!6�*�	!�<��-6

$�6�	!�<��-6

��7�	!�<��-6

�/=>;6	��<;*��	�55��77	!
�*�

$�6�	!�<��-6

��������	
���
���

$�6�	!�<��-6

������
���

��$��� ��$���

������������ ������

��$���

����6	"�5�� ����6	$�6��

��7�	!�<��-6
����6	"�5��

��7�	!�<��-6

�"�-76�-67�

������ ������ ������

http://www.digi.com

20 digi.com

I&D logical addresses map to physical addresses by inverting address lines A16, A19 or both. The MMU
Instruction/Data Register (MMIDR) determines which lines are inverted. Please see the Rabbit 3000
Microprocessor User’s Manual for more information about the MMIDR.

The following diagram shows the physical address space when separate I&D space is enabled,
SEGSIZE = 0xD3 and code is compiled to flash.

The inversion of A16 causes the root constants in the data space to be addressed in the next higher 64 KB
block of the flash. The inversion of A19 causes the root data in the data space to be addressed in RAM
(0x80000), starting at 0x83000 as directed by the lower nibble of SEGSIZE.

��������

����������

�������

���$���

�������

�������

��#

���6	"�-76�-67

���6	$�6�

��1����

..#
��1����

��1$���

��"����

������
���

������
���

1#

���6	"�5�

�������

��0����

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 21

5.3.1 Suggestions and Restrictions
By default, Dynamic C compiles without I&D space enabled; so no changes are needed for embedded
applications that do not need more code or data space.

There are some new restrictions when using separate I&D space.

• Interrupt vectors that are modifiable at runtime have 80 clock cycles added to the execution time of the
interrupt. The default case for system defined interrupt vectors is nonmodifiable. Nonmodifiable means
that the interrupt vector is set at compile time and may not be changed unless the application is recom-
piled.

• You can not reference code as data or data as code in logical memory below the stack. When using sep-
arate I&D space, the processor makes a distinction between fetching an instruction from memory and
fetching data from memory.

• There are some changes in the flash driver that are handled internally. The changes are only of concern
if you are writing your own flash driver.

When seperate I&D space is enabled, assembly constants should be placed in their own assembly block (or
done in C). See the Dynamic C User’s Manual for more information about using the compiler directive
“#asm const.”

5.3.2 Enable Separate I&D Space
To use separate I&D space, open the Options | Compiler dialog box (for Dynamic C versions prior to ver-
sion 8) and check the enable separate I&D space option. For later versions of Dynamic C the same option
is accessible on the Compiler tab of the Options | Project Options dialog. The Dynamic C command line
compiler equivalent is -id+ (enable I&D space) and -id- (disable I&D space). Please see the Dynamic
C User’s Manual for more information about the command line compiler.

The BIOS and the compiler take care of all the details so the user does not need to understand them. How-
ever, if you want to change the way an interrupt vector is handled or you need to write a flash driver, the
rest of this chapter provides you with the necessary information.

5.3.3 I&D Space Mappings in Dynamic C
The next two subsections show the default MMU settings that Dynamic C uses when separate I&D space
is enabled.

http://www.digi.com

22 digi.com

 5.3.3.1 Compiling to RAM
For RAM compiles, all banks (quadrants) are mapped to RAM. For 512 KB memories, the lower 256 KB
would be mapped to banks 0 and 2. The higher 256 KB are mapped to banks 1 and 3. In this configuration,
A16 is inverted to provide access to the constants and data in the next 64 KB area. The standard configura-
tion is to set the SEGSIZE register to 0xDD so that the base segment occupies the entire 52 KB region up
to the stack segment. Note that this configuration causes the DATASEG register to be irrelevant.

The BIOS sets the MMIDR to 0x21. Bit 5 of this register enables the instruction/data split and bit 0 causes
the inversion of A16 for data addresses.

��������	
�

����

������

�������

�������

���$���

�������

�������

���$���

���6	"�5�

����	"�5�

���6	"�-76�-67

���6	$�6�

����	"�5�
*�-6;-4�5?
�����*?	!6�*�7

���

���6	"�5�

���6	$�6�

"�-76�-67

����

!6�*�
��$���

��&���

������

������

������

��"���

��"���

������

������

���	���������	���

@$�	A	����
!&+!@B&		A	��$$
$���!&+	A	���	�;�����C�-6�

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 23

 5.3.3.2 Compiling to Flash
For flash compiles, flash memory is mapped to banks 0 and 1 (address range 0x00000 to 0x7FFFF). RAM
is mapped to banks 2 and 3 (address range 0x80000 to 0xFFFFF).

The BIOS sets the MMIDR to 0x29 to enable the I&D space for flash compilation. Bit 5 of this register
enables the I&D split, bit 0 enables inversion of A16 for the data space base segment (i.e., the logical
address space for constants) and bit 3 enables inversion of A19 for the data space data segment (i.e., the
logical address space for root data).

��������	
�

����

������

�������

�������

���$���

�������

�������

���6	"�5�

����	"�5�

���6	"�-76�-67

����	"�5�
*�-6;-4�5

���

���6	"�5�

���6	$�6�

"�-76�-67

����

!6�*�
��$���

��&���

������

������

������

��"���

��"���

������

������

�����

���6	"�5�

���6	"�5�

��1����

��1����

��1$���

!6�*�	!
�*�%
D�6*8	"�5�

���6	$�6�

!6�*�7?	�����*?
�6*�

���	���������	���

@$�	A	����
!&+!@B&		A	��$�
$���!&+	A	���

http://www.digi.com

24 digi.com

5.3.4 Writing a Flash Driver
If you are writing your own flash driver, please read Section 10.2, “Writing Your Own Flash Driver,” start-
ing on page 66. When using separate I&D space there are several additional things to consider:

• The flash driver must run in RAM so that any flash location can be written.

• The flash driver cannot run in the xmem window for two reasons. First, the driver uses the xmem win-
dow. Second, it would require the use of “load physical” instructions (ldp) which always write 2 bytes
and a flash unlock sequence requires 1-byte writes.

• Separate I&D space must be disabled while the flash driver is running due to the reasons stated above.

• While the flash driver is running you lose access to most of the application code and to all of its con-
stants.

The following figure illustrates what happens to the access of an application’s code and data when separate
I&D space is disabled to run the flash driver.

 !�!

����"

#
��

#
��

����

#
�������

 !�!

����"

����

#
��

$�

�#

$

#

���
��� ���
���

��
�������%���
�����	��&���

$�6�	!�<��-6

��7�	!�<��-6

��7�	!�<��-6

$�6�	!�<��-6

$�6�	!�<��-6

��7�	!�<��-6

��
�������%���
����'��&���

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 25

5.3.5 Customizing Interrupts
There are two methods to set the handling of an interrupt vector. The one you select depends on the needs
of your application. Most of the ISRs set up by the BIOS are fast and nonmodifiable by default. Modifi-
able interrupts are slower because 80 clocks are added to their execution time.

Here is a list of the defined interrupt vector names and the corresponding ISRs:

Table 5-1 Interrupt Vector and ISR Names

Interrupt Vector Name ISR Name Default Condition

periodic_intvec periodic_isr Fast and nonmodifiable

rst10_intvec User defined name User defined

rst18_intvec These interrupt vectors and their ISRs should never be altered
by the user because they are reserved for the debug kernel.

rst20_intvec

rst28_intvec

rst38_intvec User defined name User defined

slave_intvec slave_isr Fast and nonmodifiable

timera_intvec User defined name User defined

timerb_intvec User defined name User defined

sera_intveca

a. Please note that this ISR shares the same interrupt vector as DevMateSerialISR.
Using spa_isr precludes Dynamic C from communicating with the target.

DevMateSerialISR Fast and nonmodifiable

spa_isr User defined

serb_intvec spb_isr User defined

serc_intvec spc_isr

serd_intvec spd_isr

sere_intvec spe_isr

serf_intvec spf_isr

inputcap_intvec User defined name

quad_intvec qd_isr

ext0_intvec User defined name

ext1_intvec User defined name

http://www.digi.com

26 digi.com

 5.3.5.1 Method #1
To make an ISR fast and nonmodifiable, use the keyword interrupt_vector. The syntax is:

interrupt_vector <INT_VECTOR_NAME> <ISR_NAME>

INT_VECTOR_NAME is an interrupt vector name, either user-defined or from Table 5-1. ISR_NAME is
the name of the interrupt service routine, either user-defined or from Table 5-1. The interrupt vectors for
user-defined ISRs are fast and nonmodifiable when interrupt_vector is used during setup.

In an application, use as follows:

// Set up an Interrupt Service Routine for Timer B
#asm

timerb_isr::
; ISR code
...
ret

#endasm

main() {
// Variables
...

// Set up ISR
interrupt_vector timerb_intvec timerb_isr; // Compile time set up

// Code
...

}

Notice that the interrupt vector is set up at compile time. This will override any run-time set up done by the
function SetVectIntern(). Therefore, this function and the interrupt_vector keyword are
mutually exclusive. In other words, if you use both, the interrupt vector handling will be determined by
interrupt_vector and not by SetVectIntern(). Additionally, if interrupt_vector is
used multiple times for the same interrupt vector, the last one encountered by the compiler will override all
previous ones.

For more information on SetVectIntern(), please see the Dynamic C Function Reference Manual or
use the Function Lookup feature from Dynamic C’s Help menu.

The keyword interrupt_vector is syntactic sugar for using the origin directives and assembly code.
The line:

interrupt_vector timerb_intvec timerb_isr;

is equivalent to the following:

#rcodorg timerb_intvec apply
#asm
jp timerb_isr
#endasm
#rcodorg rootcode resume

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 27

 5.3.5.2 Method #2
If you want the ISR to be modifiable, you have to set it up as follows:

#rcodorg <INT_VEC_NAME> apply

#asm
INTVEC_RELAY_SETUP(intvec_relay + <INTERRUPT_OFFSET>)
#endasm

#rcodeorg rootcode resume

<INTERRUPT_OFFSET> is one of the following:

These were defined in sysio.lib until Dynamic C 9.22 when they were moved to sysiodefs.lib.

EXT0_OFS SERA_OFS
EXT1_OFS SERB_OFS
INPUTCAP_OFS SERC_OFS
PERIODIC_OFS SERD_OFS
QUAD_OFS SERE_OFS
RST10_OFS SERF_OFS
RST18_OFS SLAVE_OFS
RST20_OFS TIMERA_OFS
RST28_OFS TIMERB_OFS
RST38_OFS

http://www.digi.com

28 digi.com

5.4 How The Compiler Compiles to Memory
The compiler generates code for root code, root constants, extended code and extended constants. It allo-
cates space for data variables, but, except for constants, does not generate data to be stored in memory.
Any initialization of RAM variables must be accomplished by code since the compiler is not present when
the program starts in the field. (Please see #GLOBAL_INIT in the Dynamic C User’s Manual.)

Static variables are not zeroed out by default. Starting with Dynamic C version 7.30, the BIOS macro
ZERO_OUT_STATIC_DATA may be set to 1, which will zero out static variables on board power-up or
reset only. Zeroing out static variables is not compatible with the use of protected variables because
they will be zeroed out along with the rest of the static data.

5.4.1 Placement of Code in Memory
Code may be placed in either extended memory or root memory. Functions execute at the same speed, but
calls to functions in root memory are slightly more efficient than calls to functions in extended memory.

In all but the smallest programs, most of the code is compiled to extended memory. Since root constants
share the memory space needed for root code (when separate I&D space is disabled), as the memory
needed for root constants increases, the amount of code that can be stored in root memory decreases, and
code must be moved to extended memory.

Please see the Dynamic C User’s Manual regarding the compiler directive #memmap for more information
about controlling the placement of code in memory.

5.4.2 Paged Access in Extended Memory
The code in extended memory executes in the 8 KB window from E000 to FFFF. This 8 KB window uses
paged access. Instructions that use 16-bit addressing can jump within the page and also outside of the page
to the remainder of the 64 KB logical space. Special instructions, particularly lcall, ljp, and lret,
are used to access code outside of the 8 KB window. When one of these transfer-of-control instructions is
executed, both the address and the view through the 8 KB window change, allowing transfer to any
instruction in the 1MB physical memory space. The 8-bit XPC register controls which of two consecutive
4 KB pages the 8 KB window aligns with (there are 256 pages). The 16-bit PC controls the address of the
instruction, usually in the region E000 to FFFF. The advantage of paged access is that most instructions
continue to use 16-bit addressing. Only when a page change is needed does a 20-bit transfer of control
need to be made.

As the compiler compiles code in the extended code window, it checks at opportune times to see if the
code has passed the midpoint of the window or F000. When the code passes F000, the compiler slides the
window down by 4 KB so that the code at F000+x becomes resident at E000+x. This automatic paging
results in the code being divided into segments that are typically 4 KB long, but which can be very short or
as long as 8 KB. Transfer of control within each segment can be accomplished by 16-bit addressing.
Between segments, 20-bit addressing is required.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 29

5.5 Memory Planning
The design conventions for the memory configuration of a Rabbit 3000-based system specify both flash
and SRAM. However, you can design a board using RAM only. Details for doing so are discussed in
Section 5.6.

5.5.1 Flash
Code is typically stored in flash memory, so the size of the code must be anticipated. Usually code size up
to 512 KB is handled by one or two flash memory chips.

Static data tables can be conveniently placed in the same space using the xdata and xstring declara-
tions supported by Dynamic C, so the amount of space needed for static data can be added to the amount
of space needed for code.

5.5.2 Static RAM
C programs vary in how much RAM will be required. Many programs can subsist on 32 KB of RAM.
However, having more RAM is necessary for debugging. Since debugging and program testing generally
operate more powerfully and faster when sufficient RAM is available to hold the program and data, most
controllers based on the Rabbit 3000 use a dual footprint for RAM that can accommodate either a 32K x 8,
which is in a 28-pin package, or a 128K x 8 or 512K x 8, which is in a 32-pin package. The base RAM is
interfaced to /CS1 and /WE1, and /OE1.

RAM is required for the following items:

• Root Variables—maximum of 40-44 KB, and about 4 KB more if separate I&D space is enabled.

• Stack Pages—rarely more than 20 KB.

• Debugging—as a convenience on prototype units, 512 KB is usually enough to accommodate pro-
grams. It is not necessary to debug in RAM, but may be desirable.

• Extended Memory—such as data logging applications or communications applications. The amount
needed depends on application.

Table 5-2 Typical Interface Between the Rabbit 3000 and Memory

Primary Flash SRAM Secondary Flash

/CS0, /OE0 and /WE0 /CS1, /OE1 and /WE1 /CS2, /OE0 and /WE0

http://www.digi.com

30 digi.com

5.6 Making a RAM-Only Board
Some Rabbit 3000 customers are designing boards that have a single RAM chip and no flash memory.
Although this is not recommended, it may be safe as long as the board has a continuous power supply and
is set up to be field-programmable via the Rabbit 3000 bootstrap mode.

For example, a Rabbit 3000 board in a noncritical system such as a lawn sprinkler system may be moni-
tored from a remote location via the Internet or Ethernet, where the remote monitor has the ability to
reload the application program to the board. One way to achieve field programmability is with the Rabbit-
Link Network Gateway.

There are certain hardware and software changes that are required to make this work. If you are using
Dynamic C version 7.25, you will need to contact our Technical Support department if you wish to design
a RAM-only board

5.6.1 Hardware Changes
Ordinarily, /CS0, /OE0 and /WE0 of the Rabbit 3000 processor are connected to a flash chip, and /CS1,
/OE1 and /WE1are connected to RAM. However, if only RAM is to be used, /CS0, /OE0 and /WE0 must
be connected to the RAM. This is because on power up or reset, the Rabbit 3000 will begin fetching
instructions from whatever is hooked to /CS0, /OE0 and /WE0.

5.6.2 Software Changes
In order to program a RAM-only board from Dynamic C or the Rabbit Field Utility (RFU), several
changes are needed.

• Set the macro RAMONLYBIOS to 1 in RabbitBios.c.

• When Dynamic C or the RFU first start, they put the Rabbit 3000-based target board in bootstrap mode
where it awaits data sent via “triplets.” These programs then send triplets that map the lowest quadrant
of physical memory to /CS1, /OE1 and /WE1 in order to load a primary loader to RAM. The first set of
triplets loaded to the target is contained in a file called coldload.bin. This is the primary loader.

• A different coldload.bin is required to map the lowest memory quadrant to /CS0, /OE0 and /WE0.
The image file for this program is \BIOS\RAMONLYCOLDLOAD.BIN. To use it, rename COLD-
LOAD.BIN to COLDLOAD.BAK, and rename RAMONLYCOLDLOAD.BIN to COLDLOAD.BIN.
(Later versions of Dynamic C may have a GUI method of choosing the cold loader.)

• The primary loader loads a secondary loader, pilot.bin. A different pilot BIOS is needed: RAMon-
lypilot.bin. Rename pilot.bin to pilot.bak and rename RAMonlypilot.bin to
pilot.bin.

The secondary loader loads the Rabbit BIOS to RAM (from the application program image file in the case
of the RFU, by compiling the BIOS straight to the target in the case of Dynamic C).

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 31

6. The Rabbit BIOS

When Dynamic C compiles a user’s program to a target board, the BIOS (Basic Input-Output System) is
compiled first, as an integral part of the user’s program. The BIOS is a separate program file that contains
the code needed to interface with Dynamic C. Normally, it also contains a software interface to the user’s
particular hardware. Certain drivers in the Dynamic C libraries require BIOS routines to perform tasks that
are hardware-dependent.

The BIOS also:

• Takes care of microprocessor system initialization, such as the setup of memory.

• Provides the communications services required by Dynamic C for downloading code and perform-
ing debugging services such as setting breakpoints or examining data variables.

• Provides flash drivers.

A single, general-purpose BIOS is supplied with Dynamic C for the Rabbit 3000. This BIOS allows
Dynamic C to boot up on any Rabbit-based system that follows the basic design rules needed to support
Dynamic C. The BIOS requires both a flash memory and a 32 KB or larger RAM, or just a 128 KB RAM,
for it to be possible to compile and run Dynamic C programs. If the user uses a flash memory from the list
of flash memories that are already supported by the BIOS, the task will be simplified. A list of supported
flash devices is listed in Technical Note 226, available online at:

www.digi.com/support/techNotes_whitePapers.shtml

If the flash device is not already supported, the user will have to write a driver to perform the write opera-
tion on the flash memory. This is not difficult provided that a system with 128 KB of RAM and the flash
memory to be used are available for testing.

An existing BIOS can be used as a skeleton BIOS to create a new BIOS. Frequently it will only be neces-
sary to change #define statements at the beginning of the BIOS. In this case it is unnecessary for the
user to understand or work out the details of the memory setup and other processor initialization.

http://www.digi.com/support/supporttype?type=documentation
http://www.digi.com

32 digi.com The Rabbit BIOS

6.1 Startup Conditions Set by the BIOS
The BIOS sets up initial values for the following registers by means of code and declarations.

• The four memory bank control registers —MB0CR, MB1CR, MB2CR, and MB3CR—are 8-bit regis-
ters, each associated with one quadrant of the 1M memory space. Each register determines which
memory chip will be mapped into its quadrant, how many wait states will be used for accessing that
memory chip, and whether the memory chip will be write protected.

• The STACKSEG register is an 8-bit register that determines the location of the stack segment in the
1M memory.

• The DATASEG register is an 8-bit register that determines the location of the data segment in the
1M memory, normally the location of the data variable space.

• The SEGSIZE register is an 8-bit register holding two 4-bit values. Together the values determine
the relative size of the base segment, data segment and stack segment in the 64 KB root space.

• The MMIDR register is an 8-bit register used to control separate I&D space and to force /CS1 to be
always enabled or not. Having /CS1 always enabled reduces access time if /CS1 is routed through
an external battery backup device and the propagation delay through the external device may slow
the transition of /CS1 during memory cycles.

• The SP register is the system stack pointer. It is frequently changed by the user’s code. The BIOS
sets up an initial value.

In addition, a number of origin declarations are made in the BIOS to tell the Dynamic C compiler where to
place different types of code and data. The compiler maintains a number of assembly counters to place or
allocate root code, extended code, data constants, data variables, and extended data variables. Each of
these counters has a starting location and a block size.

For more information about the MMU and MIU registers please see the Rabbit 3000 Microprocessor
User’s Manual.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 33

6.2 BIOS Flowchart
The following flowchart summarizes the functionality of the BIOS:

Figure 6-1 BIOS Flowchart

NOTE: If the programming cable is connected at power-up, the Rabbit will never
get to the BIOS.

Start at
address 0

Setup memory

control and

basic BIOS ser-

vices.

Is the program-

ming cable con-

nected?

Start Dynamic C

communications

and state

machine.

Divert to BIOS

service?

Act as mas-

ter for clon-

ing.

Service diag-

nostic port.

(not yet

available)Call user appli-

cation program

(main).

BIOS services

for user appli-

cation program.

Application

No

No

Yes

Yes

 Program

http://www.digi.com

34 digi.com The Rabbit BIOS

6.3 Internally-Defined Macros
Some macros used in the BIOS are defined internally by Dynamic C before the BIOS is compiled. They
are defined using tests done in the bootstrap loading, or by reading variables set in the GUI or set by the
CLC (command line compiler).

See the Dynamic C User’s Manual for other internally-defined macros.

6.4 Modifying the BIOS
The BIOS can be modified to be more specific concerning the user’s configuration. This can be done one
step at a time, making it easier to detect any problems. The source code for the BIOS is in BIOS\RAB-
BITBIOS.C. Dynamic C uses this source code for the BIOS by default, but the user can specify another
BIOS for Dynamic C to use. To specify a different BIOS, look in the Options | Compiler dialog box for
versions of Dynamic C prior to version 8. For Dynamic C 8 or later, look on the Compiler tab in the
Options | Project Options dialog box and click on the Advanced button.

There are several macros at the top of RABBITBIOS.C that may be modified for custom designed boards
or for special situations involving off-the-shelf Rabbit 3000-based boards.

The following list is not exhaustive.

Table 6-1 Partial List of Compiler-Defined Macros

Macro Name Macro Description

_BOARD_TYPE_

This is read from the System ID block or defaulted to 0x100
(the BL1810 JackRabbit board) if no System ID block is
present. This can be used for conditional compilation based
on board type.

CC_VER
Gives the Dynamic C version in hex, i.e., version 7.25 is
0x0725.

_CPU_ID_
This macro identifies the CPU type, e.g., R3000 is the Rabbit
3000 microprocessor.

FLASH, _RAM_

Used for conditional compilation of the BIOS to distinguish
between compiling to RAM and compiling to flash. These are
set in the Options | Compiler dialog box for Dynamic C
versions prior to version 8. For later versions of Dynamic C
go to the Compiler tab in the Options | Project Options dialog.

_RAM_SIZE_,
_FLASH_SIZE_

Used to set the MMU registers and code and data sizes
available to the compiler. The values given by these macros
represent the number of 0x1000 blocks of memory available.

__SEPARATE_INST_DATA__ Flag for I&D space.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 35

Table 6-2 Macros defined in the BIOS

MACRO NAME MACRO DESCRIPTION

CLOCK_DOUBLED
Default value of 1 causes the clock speed to be doubled if the
crystal frequency is  26.4192 MHz. Setting this to zero means the
clock speed will not be doubled.

ENABLE_CLONING

Default value of 0 disables cloning. Setting this to 1 enables clon-
ing and slightly increases the code size of the BIOS. If cloning is
used, PB1 should be pulled up with 50K or so pull-up resistor. Var-
ious cloning options are available when ENABLE_CLONING is
set to one. For more information on cloning, please see Chapter 8,
“BIOS Support for Program Cloning,”in this manual and/or Tech-
nical Note 207, “Rabbit Cloning Board,” available at
www.digi.com.

DATAORG

Beginning logical address for the data segment. The default is
0x2000 when separate I&D space is enabled, and 0x6000
otherwise. This should only be changed to multiples of 0x1000.
Increasing it increases the root code space available, and decreases
root data space; decreasing it has the opposite effect. It can be
changed to as high as 0xB000. It can be changed to as low as
0x1000 when separate I&D space is enabled or as low as 0x3000
when separate I&D space is disabled.

RAM_SIZE

Sets the amount of RAM available. The default value is the
internally defined _RAM_SIZE_. The units are the number of
4 KB pages of RAM. In special situations, such as splitting RAM
between two coresident programs, this may be modified to a
smaller value than the actual available RAM.

FLASH_SIZE

Sets the amount of flash available. The default value is the
internally defined _FLASH_SIZE_ The units are the number of
4 KB pages of flash. In special situations, such as splitting flash
between two coresident programs, this may be modified to a
smaller value than the actual available flash.

CS1_ALWAYS_ON
Keeping CS1 active is useful if your system is pushing the limits
of RAM access time. It will increase power consumption a little.
Set to 0 to disable, 1 to enable.

WATCHCODESIZE
Defines the number of bytes available to the debugger for
compiling watch expressions. Defaults to 0x200. Decreasing it
increases the amount of RAM available for root data.

USE_TIMERA_PRESCALE
Enable this feature to run the peripheral clock off the CPU clock
instead of the default CPU clock/2, to allow higher baud rates.

USE_2NDFLASH_CODE
Uncomment this macro to allow compilation of a program into
two flash chips when it does not fit into the first. The macro is
commented out by default.

http://www.digi.com

36 digi.com The Rabbit BIOS

6.4.1 Advanced Options
The following macros are also defined in the Rabbit BIOS.

ENABLE_SPREADER
Set to 0 to disable spectrum spreader, 1 to enable normal spreading (default condition set by BI-
OS), or 2 to enable strong spreading.

NUM_RAM_WAITST, NUM_FLASH_WAITST
These define the number of wait states to be used for RAM and flash. The default value for both
is 0. The only valid values are 4, 2, 1 and 0.

MB0CR_INVRT_A18, MB1CR_INVRT_A18, MB2CR_INVRT_A18,
MB3CR_INVRT_A18

MB0CR_INVRT_A19, MB1CR_INVRT_A19, MB2CR_INVRT_A19,
MB3CR_INVRT_A19

These determine whether the MIU registers for each quadrant are set up to invert address lines
A18 and A19 after the logical to physical address conversion. This allows each 256 KB quadrant
of physical memory access up to four 256 KB pages on the actual memory device. These would
be used for special compilations of programs to be coresident on flashes between 512 KB and
1 MB in size. For more information, please see Technical Note 202, “Rabbit Memory Manage-
ment In a Nutshell.”

RAMONLYBIOS
Set to 1 if you are developing with a board with RAM on /CS0, /WE0, /OE0 and no flash. See
Section 5.6, “Making a RAM-Only Board,” on page 30 for details.

See the top of the BIOS source code (BIOS\RabbitBIOS.c) for more options.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 37

6.5 Origin Directives Used by the Compiler
The Dynamic C compiler uses the information provided by origin directives to decide where to place code
and data in both logical and physical memory. The origin directives are normally defined in the BIOS.
They may also be useful in an application program for certain tasks, such as compiling a pilot BIOS or a
cold loader, or special situations where a user wants two application coresident within a single 256K quad-
rant of flash. See Technical Note 218, “Implementing a Serial Download Manager for a 256K Byte Flash,”
for more information on the later. This document is available at:

http://www.digi.com/docs/app_tech_notes.shtml

6.5.1 Origin Directive Syntax
Origin directive syntax (in BNF) is:

origin-directive : #origin-type identifier origin-designator

origin-designator : action-expression | origin-declaration

origin-declaration : physical-address size [follow-qualifier][I&D-qualifier][action-
qualifier][debug-qualifier]

origin-type: rcodorg | xcodorg | wcodorg | wvarorg | rvarorg | rconorg

follow-qualifier : follows identifier [splitbin]

I&D-qualifier : ispace | dspace

action-qualifier : resume | apply

size : constant-expression

physical-address : constant-expression constant-expression

The non-terminals, identifier and constant-expression, are defined in the ANSI C specification. Basically,
an identifier is a sequence of letters and digits that must start with a letter. The underscore character is
considered a letter. The definition of constant-expression is more involved as it winds up the restricted
subset of operators that are allowed in the evaluation of the expression, but the result is a constant. For a
comphrensive definition of the non-terminals, identifier and constant-expression, please refer to Appendix
A in “The C Programming Language” by Kernighan and Ritchie.

http://www.digi.com

38 digi.com The Rabbit BIOS

6.5.2 Origin Directive Semantics
An origin directive associates a code pointer and a memory region with a particular type of code. The type
of code is specified by #origin-type.

All code sections (rcodorg, xcodorg code and wcodorg) grow up. All non-constant data sections
(rvarorg) grow down. Root constants are generated to the rcodorg region when separate I&D space
is disabled. When separate I&D space is enabled, root constants are generated to the rconorg region.
xdata and xstring are generated to the current xcodorg region.

All origin directives must have a unique ANSI C identifier. The scope of this identifier is only with other
origin directives or declarations.

 6.5.2.1 Defining a Memory Region

Each memory region is defined by calculating a physical address from an 8-bit base address (first constant-
expression of physical-address) and a 16-bit logical address (second constant-expression of physical-
address). The size of the memory region is determined by 20-bit size. Overflow of these three values is trun-
cated.

 6.5.2.2 Action Qualifiers

The keywords apply and resume are action-qualifiers. They tell the compiler to generate code or data
in the memory region specified by identifier. An apply action resets the code or data pointer for the spec-
ified region to the starting physical address of the region and makes the region active. A resume action
does not reset the code or data pointer, but does make the memory region active.

A region remains active (i.e., the compiler will continue to generate code or data to it) until another region
of the same origin-type is activated with an apply or resume action or until the memory region is full.

Table 6-3 Origin types recognized by the compiler

Origin Type Keyword

root code rcodorg

xmem code xcodorg

watch code wcodorg

watch code wvarorg

root data rvarorg

root constants rconorg

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 39

 6.5.2.3 I&D Qualifiers

The ispace and dspace qualifiers suppress compiler warnings regarding collisions between the two
logical regions and the physical memory space. When an ispace or dspace qualifier is used in an ori-
gin directive, that directive is no longer collision checked against origin directives in the other space. For
example, a rcodorg directive with the ispace qualifier is not checked against any origin directives
with a dspace qualifier.

 6.5.2.4 Follow Qualifiers

The option follow-qualifier is best described with an example. First, let us declare yourcode in an origin
statement containing an origin-declaration. A follow-qualifier can only name a region that has already
been declared in an origin-declaration.

#xcodorg yourcode 0x0 0x5000 0x500

then the origin statement:

#xcodorg mycode 0x0 0x5500 0x500 follows yourcode

tells the compiler to activate mycode when yourcode is full. This action does an implicit resume on
the memory region identified by yourcode. In this example, the implicit resume also generates a jump
to mycode when yourcode is full. For data regions, the data that would overflow the region is moved
to the region that follows. Combined data and code regions (like #rcodorg) use both methods, which
one is used depends on whether code or data caused the region to overflow. In our example, if data caused
yourcode to overflow, the data would be written to the memory region identified by mycode.

http://www.digi.com

40 digi.com The Rabbit BIOS

6.5.3 Origin Directive Examples
The diagram below shows how the origin directives define the mapping between the logical and physical
address spaces.

#define DATASEGVAL 0x91
#rvarorg rootdata (DATASEGVAL) 0xc5ff 0x6600 apply // grows down
#rcodorg rootcode 0x00 0x0000 0x6000 apply
#wcodorg watcode (DATASEGVAL) 0xc600 0x0400 apply
#xcodorg xmemcode 0xf8 0xe000 0x1a000 apply

// data declarations start here

Dynamic C defines macros that include information about compiling to RAM or flash and identifying
memory device types, memory sizes, and board type. The origin setup shown above differs from that
included in the standard BIOS included with Dynamic C as the standard BIOS uses additional macros val-
ues for dealing with a wider range of boards and memory device types.

NOTE: This mapping assumes separate I&D space is disabled.

xmemcode

stack

rootdata

rootcode

Logical Address Space

Physical Address Space

watcode

0x6000

0xC5FF
0xCDFF

0xE000

0x00000

0x06000

0x20000

0x97000

0x9DDFF

0xFFFFF

rootcode

xmemcode

rootdata
watcode

0xFFFF

0x0000

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 41

6.5.4 Origin Directives in Program Code
To place programs in different places in root memory or to compile a boot strapping program, such as a
pilot BIOS or cold loader, origin directives may be used in the user’s program code.

For example, the first line of a pilot BIOS program, pilot.c, would be

#rcodorg rootcode 0x0 0x0 0x6000 apply

A program with such an origin directive could only be compiled to a .bin file, because compiling it to
the target would overwrite the running BIOS.

6.5.5 Origin Directive to Reserve Blocks of Memory
In Dynamic C version 9.30 and later, the compiler generates an origin table that contains the blocks that
are reserved for code and data origin or other non-xalloc use. With this change, the method of reserving a
block of memory so that xalloc() does not use it has also changed. To reserve a block of memory in
DC 9.30 and later, the #resvorg should be used. All other orgs (e.g., #rcodorg, #rvarorg, etc.)
are also tracked by the compiler and those blocks are entered into the origin table generated by the com-
piler so they are not used by xalloc().

The #resvorg is used as follows:

#resvorg <NAME> segment offset size [reserve]

For example, the following code would reserve the entire flash memory in flash compile mode

#resvorg flashmem 0x0 0x0 0x80000 reserve

The reserve keyword must be added to the end to reserve the entire block of memory.

Some applications may require that fixed regions of RAM be reserved for their own use. For example,
you may want to reserve the upper half of a 512K RAM in Flash compile mode. To reserve this you need
to add the following line of code to \LIB\BIOSLIB\STDBIOS.C just below the "#resvorg remove-
flash 0x0 0x0 0x80000 reserve."

#ifdef RESERVE_UPPER_RAM
#resvorg reserveupperram 0xc0 0x0 RESERVE_UPPER_RAM

batterybacked reserve
#endif

This tells the compiler to reserve RESERVE_UPPER_RAM bytes from physical address 0xC0000 by add-
ing it to the origin table. This removes this memory block from the available xalloc memory.

In your Project Options | Defines tab enter the amount of memory you want to reserve. For example,

RESERVE_UPPER_RAM=0x40000

would reserve physical memory from 0xc0000-0xfffff and make it unavailable for xalloc. You can then
access this memory directly from your program as follows:

main() {
long addr;
addr = 0xC0000; // point to block reserved for my use

}

http://www.digi.com

42 digi.com The Rabbit BIOS

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 43

7. The System ID and User Blocks

The BIOS supports a System Identification block and a User block. These blocks are placed at the top of
the primary flash memory. Identification information for each device can be placed in the System ID block
for access by the BIOS, flash driver, and users. This block contains specific part numbers for the flash and
RAM devices installed, the product’s serial number, Media Access Control (MAC) address if an Ethernet
device, and so on. The earliest version of the System ID for Rabbit 3000 products is version 4, which is a
mirrored images type.

When mirrored, there are two combined ID/User blocks images placed contiguously at the top of the pri-
mary flash, from the top down as follows: ID “A” + User “A” + ID “B” + User “B.” Ordinarily, only one
of the ID/User blocks images is valid at a time, and the valid ID/User blocks image alternates between “A”
and “B” at each call to the writeUserBlock() function. If both “A” and “B” images are simultane-
ously marked valid, the “A” (topmost) image is taken to be correct.

If Dynamic C does not find a System ID block on a device, the compiler will assume that it is a BL1810
(Jackrabbit) board. It is recommended that board designers include System ID blocks in their products
with unused fields zeroed out to maximize future compatibility.

The System ID block has information about the location of the User block. The User block is for storage of
calibration constants and other persistent data the user wishes to keep in flash. It is strongly recommended
that the User block (using writeUserBlock()) or the Flash File System be used for storage of persis-
tent data. Writing to arbitrary flash addresses at run-time is possible using WriteFlash() or
WriteFlash2(), but could lead to compatibility problems if the code were to be used on a different
type of flash, such as a huge, non-uniform sector size flash.

For example, some flash types have a single sector as big as 128K bytes at the bottom. Writing to any part
of the sector generally requires erasing the whole sector, so a write to store data in that sector would have
to save the contents of the whole sector in RAM, modify the section to be changed, and write the whole
sector back. This is obviously impractical. Although Digi International does not currently sell products
with this type of flash, there is no guarantee that future flash market conditions won’t require that such
flash types be used. Other board designers may have to deal with the same flash market issues. The User
block is implemented in a way that preserves forward binary compatibility with a wide range of flash
devices.

http://www.digi.com

44 digi.com The System ID and User Blocks

7.1 System ID Block Details
The BIOS will read the System ID block during startup. If the BIOS does not find an ID block, it sets all
fields to zero in the data structure SysIDBlock. The user may access the information contained in the
System ID block by accessing SysIDBlock.

7.1.1 Definition of SysIDBlock
The following global data structure is defined in IDBLOCK.LIB and is loaded from the flash device dur-
ing BIOS startup. Users can access this struct in RAM if they need information from it. The definition
below is for a 132-byte ID block; the actual size can vary according to the value in idBlockSize. The
reserved[] field will expand and/or shrink to compensate for the change in size. Items marked ‘**’
are essential for proper functioning of the System ID block and certain features (e.g., TCP/IP needs the
MAC address). Items marked ‘*’ are desirable for future compatibility.

typedef struct {
int tableVersion; // version number for this table layout**
int productID; // Rabbit part #
int vendorID; // 1 = Rabbit
char timestamp[7]; // YY/M/D H:M:S
long flashID; // Manufacturer ID/ Product ID, 1st flash *
int flashType; // Write method
int flashSize; // in 1000h pages
int sectorSize; // size of flash sector in bytes
int numSectors; // number of sectors
int flashSpeed; // in nanoseconds *
long flash2ID; // Manufacturer ID/ Product ID, 2nd flash *
int flash2Type; // Write method, 2nd flash
int flash2Size; // in 1000h pages, 2nd flash
int sector2Size; // byte size of 2nd flash's sectors
int num2Sectors; // number of sectors
int flash2Speed; // in nanoseconds, 2nd flash *
long ramID; // Rabbit part #
int ramSize; // in 1000h pages *
int ramSpeed; // in nanoseconds *
int cpuID; // CPU type ID *
long crystalFreq; // in Hertz *
char macAddr[6]; // Media Access Control (MAC) address **
char serialNumber[24]; // device serial number
char productName[30]; // NULL-terminated string
char reserved[1]; // reserved for later use - size can grow
long idBlockSize; // number of bytes in the SysIDBlock struct **
unsigned userBlockSize; // User block size, in bytes (right below ID block)**
unsigned userBlockLoc; // offset in bytes of start of User block from this one**
int idBlockCRC; // CRC of this block (when this field is set to 0) **
char marker[6]; // should be 0x55 0xAA 0x55 0xAA 0x55 0xAA**

} SysIDBlock;

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 45

7.1.2 Reading the System ID Block
To read the ID block from the flash instead of getting the information from SysIDBlock, call
_readIDBlock().

_readIDBlock

int _readIDBlock(int flash_bitmap);

DESCRIPTION:

Attempts to read the system ID block from the highest flash quadrant and save it in the system ID
block structure. It performs a CRC check on the block to verify that the block is valid. If an error
occurs, SysIDBlock.tableVersion is set to zero.

Starting with Dynamic C version 8, this function supports combined System ID/User blocks sizes
of sizeof(SysIDBlock) and from 4KB to 64KB, inclusive, in 4KB steps. Prior versions of
DynamicC only supported mirrored combined block sizes of sizeof(SysIDBlock), 8KB,
16KB and 24KB or unmirrored combined System ID/User blocks sizes of sizeof(SysID-
Block) and from 4KB to 32KB, inclusive, in 4KB steps.

PARAMETER

flash_bitmap Bitmap of memory quadrants mapped to primary flash.

Examples:
0x01 = quadrant 0 only
0x03 = quadrants 0 and 1
0x0C = quadrants 2 and 3

RETURN VALUE:

0: Successful
-1: Error reading from flash
-2: ID block missing
-3: ID block invalid (failed CRC check)

LIBRARY

 IDBLOCK.LIB

http://www.digi.com

46 digi.com The System ID and User Blocks

 7.1.2.1 Determining the Existence of the System ID Block

In Dynamic C versions prior to 7.20, and for ID block versions 1 and 2, the following sequence of events
is used by _readIDBlock() to determine if an ID block is present:

1. The 16 bytes at the top of the primary flash are read into a local buffer. (If a 256 KB flash is installed,
the 16 bytes starting at address 0x3FFF0 will be read.)

2. The last six bytes of the local buffer are checked for an alternating sequence of 0x55, 0xAA, 0x55,
0xAA, 0x55, 0xAA. If this is not found, the block does not exist and an error (-2) is returned.

3. The ID block size (=SIZE) is determined from the first 4 bytes of the 16-byte buffer.

4. A block of bytes containing all fields from the start of the SysIDBlock struct up to but not including
the reserved field is read from flash at address 0x40000-SIZE, essentially filling the SysIDBlock
struct except for the reserved field (since the top 16 bytes have been read earlier).

5. The CRC field is saved in a local variable, then set to 0x0000. A CRC check is then calculated for the
entire ID block except the reserved field and compared to the saved value. If they do not match, the
block is considered invalid and an error (-3) is returned. The CRC field is then restored. The reserved
field is avoided in the CRC check since its size may vary, depending on the size of the ID block.

Determining the existence of a valid mirrored ID block may be slightly more complicated, requiring the
above sequence of events to be repeated at several locations below the top of the primary flash. See Sec-
tion 7.2 below for complete details.

Not all fields are filled in different versions of the ID block. The table below lists the first ID block version
that filled each field and whether that field is absolutely required by Dynamic C for normal operation.
(Much of the ID block data is useful, but not critical.)

Table 7-1 The System ID Block

Offset from
start of
block

Size
(bytes)

Description
Filled as

of Version
Required

00h 2 ID block version number 1 x

02h 2 Product ID 1 x

04h 2 Vendor ID 2

06h 7 Timestamp (YY/MM/D/H/M/S) 1

0Dh 4 Flash ID 2

11h 2 Flash size (in 1000h pages) 2

13h 2 Flash sector size (in bytes) 2

15h 2 Number of sectors in flash 2

17h 2 Flash access time (nanoseconds) 4

19h 4 Flash ID, 2nd flash 2

1Dh 2 Flash size (in 1000h pages), 2nd flash 2

1Fh 2 Flash sector size, 2nd flash (in bytes) 2

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 47

7.1.3 Writing the System ID Block
The WriteFlash() function does not allow writing to the System ID block. If the System ID block
needs to be rewritten, a utility to do so is available for download from the Digi International website:

www.digi.com/downloads/files/Write_idblock.zip

or contact Digi International’s Technical Support.

21h 2 Number of sectors in 2nd flash 2

23h 2
Flash access time, in nanoseconds, for the
2nd flash

4

25h 4 RAM ID 2

29h 2 RAM size, in 1000h pages 2

2Bh 2 RAM access time, in nanoseconds 4

2Dh 2 CPU ID 3

2Fh 4 Crystal frequency (Hertz) 2

33h 6 Media Access Control (MAC) address 1 x

39h 24 Serial number (as a null-terminated string)

51h 30 Product name (as a null-terminated string)

6Fh N Reserved (variable size)

SIZE -
10h

4 Size of System ID block, in bytes 1 x

SIZE -
0Ch

2 Size of User block, in bytes 1 x

SIZE -
0Ah

2
Offset, in bytes, of User block location from
start of this block

1 x

SIZE -
08h

2
CRC value of System ID block (when this
field = 0000h)

1 x

SIZE -
06h

6
Marker, should = 55h AAh 55h AAh 55h
AAh

1 x

Table 7-1 The System ID Block (Continued)

Offset from
start of
block

Size
(bytes)

Description
Filled as

of Version
Required

http://www.digi.com/support/supporttype?type=drivers
http://www.digi.com

48 digi.com The System ID and User Blocks

7.2 User Block Details
Starting with the System ID block version 3, two contiguous copies of the combined ID/User blocks are
used. Only one ID/User blocks image contains “valid” data at any time. When data is written to a mirrored
User block, the currently invalid User block image is updated first and then validated by changing its ID
block image’s marker[5] byte from 0x00 to 0xAA. Next, the previously valid ID/User blocks image is
invalidated by changing its ID block image’s marker[5] byte from 0xAA to 0x00. Finally, the newly
invalidated User block image is updated. In this way, there is only a short period of time in which both
combined ID/User blocks images are marked valid, and at no time are both data blocks marked invalid. If
a power failure occurs at any time during the User block update, the BIOS will still find a valid ID block
and the valid User block will contain data from the last completed update transaction. In addition to mak-
ing data more secure, this redundancy allows even very large sector flash types to be used without requir-
ing a large RAM buffer to temporarily store the contents of a sector, since sectors must be erased before
they can be written.

In Dynamic C 7.20 and later, the possibility of mirrored combined ID/User blocks requires that multiple
locations in flash must be checked for a valid ID block. In versions 7.20 through 7.3x, the sequence
described above in Section 7.1.2.1 is used to check not only the top of the primary flash, but also 8KB,
16KB and 24KB below the top, and an error is returned only if no valid ID block is found at any of these
locations. Note the implication here that mirrored combined ID/User blocks are limited to one of 8KB,
16KB, or 24KB in size. Dynamic C versions 8 and later check more locations in flash, from the top down,
at each lower 4KB boundary to 64KB below the top. This allows Dynamic C 8 and up to recognize a com-
bined ID/User blocks size that is any multiple of 4KB up to a maximum of 64KB.

If the version of the System ID block doesn't support the User block, or no System ID block is present,
then the 8 KB starting 16 KB from the top of the primary flash is designated as the User block. However,
to prevent errors arising from incompatible large sector configurations, this will only work if the flash type
is small sector. This is not a problem on boards with large sector flash that are manufactured by Digi Inter-
national because they will have valid System ID and User blocks.

7.2.1 Boot Block Issues
The System ID and User block implementations have been designed to accommodate huge, non-uniform
sector flash types, but it is necessary to use ‘T’ type parts with such flash types so that the smaller boot
block sectors at the top can be used for the blocks. ‘B’ parts have smaller boot block sectors at the bottom.

No code is included with Dynamic C to lock boot blocks, and users should not lock boot blocks unless
they are sure they will never write to the blocks after the System ID block is written. If a boot block lock is
irreversible, we strongly recommend never locking it.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 49

7.2.2 Reserved Flash Space
The macro MAX_USERBLOCK_SIZE (default 0x8000) in the BIOS tells the Dynamic C compiler how
much flash at the top of the primary flash is excluded from use by the compiler for xmem functions. For
any application, whether compiled to a single target board or for multiple target boards, the
MAX_USERBLOCK_SIZE macro value defined in RabbitBios.c must not be lower than the amount
of flash required for the System ID/User blocks on the target board with the largest requirement. Note that
in the case of mirrored combined ID/User blocks (version 3 and up), the amount of flash that must be
reserved is double the size of one combined ID/User block image. For example, if a target board has mir-
rored combined ID/User blocks and the size of one image is 16 KB (0x4000 bytes), then the minimum
value defined for the MAX_USERBLOCK_SIZE macro is 32 KB (0x8000 bytes).

If the MAX_USERBLOCK_SIZE macro value is less than the actual size used for a target board's
ID/User blocks, both Dynamic C and the RFU will fail to load to flash the part of an application
that extends into the ID/User blocks area. This is a limitation of the pilot BIOS to allow the RFU
to write a large USE_2NDFLASH_CODE bin file to a two-flash board (the pilot BIOS does the flash
writing on behalf of both Dynamic C and the RFU).

All of the default MAX_USERBLOCK_SIZE reserved space is not necessarily needed by the Sys-
tem ID and User blocks, but reserving this much space maximizes forward binary compatibility
should a product switch to any of various huge, non-uniform sector flash types. Some of these
types have sectors of 8 KB, 8 KB and 16 KB at the top, and the mirrored design of the User block
requires that these 3 sectors be used. If you do not need the User block and are not concerned with
foward binary compatibility, the MAX_USERBLOCK_SIZE macro value could be safely lowered
(protecting the sector containing the ID block) to as little as 0x4000 (16 KB), but only if the Sys-
tem ID block is rewritten to set the User block size to zero (i.e., no run-time flash writes can
occur, such as to the User block or to a flash file system).

Reducing the MAX_USERBLOCK_SIZE macro value will only increase available xmem code
space, not root code space which is generally in shorter supply. To increase available xmem code
space, the following general procedure should be followed:

1. Determine that binary forward compatibility with large sector flash types as described above is not an
issue. This means that the application will only ever run on target boards equipped with small sector
flash (i.e., uniform sectors of a size no larger than 4 KB).

2. Determine the application's minimum User block size requirement. If the application does not write to
the User block, this size is zero.

3. If the target board has factory calibration constants stored in the User block, add the size reserved for
these constants. Consult your hardware manual for the reserved size required.

4. Add the size of the System ID block, which is 132 bytes for versions 2 through 4.

5. Round this total size up to the next higher 4 KB block boundary.

6. If using mirrored combined (version 3 or 4) ID/User blocks, double the size.

7. Calculate the number of 4 KB blocks required for the total size.

8. Edit the write_idblock.c utility to set the required number of 4 KB blocks, and write a new ID
block onto the target board.

9. Repeat the previous steps for every board which is to be programmed with the application(s) compiled
using the updated MAX_USERBLOCK_SIZE macro value.

http://www.digi.com

50 digi.com The System ID and User Blocks

10.Edit the RabbitBios.c file to update the MAX_USERBLOCK_SIZE macro value.

Note that it is especially difficult to effectively reduce the MAX_USERBLOCK_SIZE macro value
below 0x4000 (16 KB) for the BL20xx or BL21xx board families, which have their combined
ID/User blocks size hard-coded in the FLASHWR.LIB and IDBLOCK.LIB libraries because their
stored calibration constants are in a nonstandard place. For this reason, Digi strongly recommends
not attempting to make System ID/User block changes on these board families.

7.2.3 Reading the User Block

readUserBlock

int readUserBlock(void *dest, unsigned addr, unsigned numbytes);

DESCRIPTION:

Reads a number of bytes from the User block on the primary flash to a buffer in root memory.

NOTE: portions of the User block may be used by the BIOS for your board to store values such
as calibration constants. See the manual for your particular board for more information before
overwriting any part of the User block.

PARAMETERS

dest Pointer to destination to copy data to.

addr Address offset in User block to read from.

numbytes Number of bytes to copy.

RETURN VALUE

0: Successful
-1: Invalid address or range
-2: No valid System ID block found

LIBRARY

IDBLOCK.LIB

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 51

readUserBlockArray

int readUserBlockArray(void *dests[], unsigned numbytes[], int
numdests, unsigned addr);

DESCRIPTION

Reads a number of bytes from the User block on the primary flash to a set of buffers in root
memory. This function is usually used as the inverse function of
writeUserBlockArray().

This function was introduced in Dynamic C version 7.30.

PARAMETERS

dests Pointer to array of destinations to copy data to.

numbytes Array of numbers of bytes to be written to each destination.

numdests Number of destinations.

addr Address offset in User block to read from.

RETURN VALUE

0: Success
-1: Invalid address or range
-2: No valid System ID block found (block version 3 or later)

LIBRARY

IDBLOCK.LIB

http://www.digi.com

52 digi.com The System ID and User Blocks

7.2.4 Writing the User Block

writeUserBlock

int writeUserBlock(unsigned addr, void *source, unsigned numbytes);

DESCRIPTION:

Rabbit boards are released with System ID blocks located on the primary flash. Version 2 and later
of this ID block has a pointer to a User block that can be used for storing calibration constants,
passwords, and other non-volatile data. This block is protected from normal writes to the flash de-
vice and can only be accessed through this function. This function writes a number of bytes from
root memory to the User block

NOTE: Portions of the User block may be used by the BIOS for your board to store values
such as calibration constants! See the manual for your particular board for more informa-
tion before overwriting any part of the User block.

Backwards Compatibility:

If the version of the System ID block doesn't support the User block, or no System ID block is
present, then the 8 KB starting 16 KB from the top of the primary flash are designated the User
block area. However, to prevent errors arising from incompatible large sector configurations, this
will only work if the flash type is small sector. This is not a problem on boards with large sector
flash that are manufactured by Digi International because they will have valid System ID and
User blocks.

If users create boards with large sector flash, they must install System ID block version 3 or great-
er to use this function, or modify this function.

PARAMETERS

addr Address offset in User block to write to.

source Pointer to destination to copy data from.

numbytes Number of bytes to copy.

RETURN VALUE

0: Successful
-1: Invalid address or range
-2: No valid User block found (block version 3 or later)
-3: Flash writing error

 LIBRARY

IDBLOCK.LIB

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 53

writeUserBlockArray

int writeUserBlockArray(unsigned addr, void* sources[], unsigned
numbytes[], int numsources);

DESCRIPTION

Rabbit boards are released with System ID blocks located on the primary flash. Version 2 and later
of this ID block has a pointer to a User block that can be used for storing calibration constants,
passwords, and other non-volatile data. The User block is protected from normal write to the flash
device and can only be accessed through this function or writeUserBlock().

This function writes a set of scattered data from root memory to the User block. If the data to be
written is in contiguous bytes, using the function writeUserBlock()is sufficient. Use of
writeUserBlockArray() is recommended when the data to be written is in noncontiguous
bytes, as may be the case for something like network configuration data. See the Rabbit Micro-
processor Designer's Handbook for more information about the System ID and User blocks.

This function was introduced in Dynamic C version 7.30.

Backwards Compatibility:

If the System ID block on the board doesn't support the User block, or no System ID block is pres-
ent, then the 8K bytes starting 16K bytes from the top of the primary flash are designated User
block area. This only works if the flash type is small sector. This is not a problem on boards with
large sector flash that are manufactured by Digi International because they will have valid Sys-
tem ID and User blocks.

If users create boards with large sector flash, they must install System ID blocks version 3 or great-
er to use this function, or modify this function.

PARAMETERS

addr Address offset in the User block to write to.

sources Array of pointer to sources to copy data from.

numbytes Array of number of bytes to copy for each source. The sum of the lengths
in this array must not exceed 32767 bytes, or an error will be returned.

numsources Number of data sources.

RETURN VALUE

0: Successful.
-1: Invalid address or range.
-2: No valid User block found (block version 3 or later).
-3: Flash writing error.

LIBRARY

IDBLOCK.LIB

http://www.digi.com

54 digi.com The System ID and User Blocks

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 55

8. BIOS Support for Program Cloning

The BIOS supports copying designated portions of flash memory from one controller (the master) to
another (the clone). The Rabbit Cloning Board connects to the programming port of the master and to the
programming port of the clone. This simple circuit can easily be incorporated into test fixtures for fast pro-
duction.

Figure 8-1 Cloning Board

8.1 Overview of Cloning
If the cloning board is connected to the master, the signal CLKA is held low. This is detected in the BIOS
after the reset ends, invoking the cloning support of the BIOS. If cloning has been enabled in the master’s
BIOS, it will cold boot the target system by resetting it and downloading a primary boot program. The
master then sends the entire user program along with other user selected portions of flash memory to the
clone, where the boot program receives it and stores it in RAM then copies it to flash. Optionally, the
cloned program can begin running on the slave.

For more details on cloning, please see Technical Note 207 “Rabbit Cloning Board,” available at:
www.digi.com.

(� (�
���

+,$

"�#�

 **

%�&!&�

���

,%"

!���'!

!
($&�

!
($&�

���

+,$

"�#�

 **

%�&!&�

���

,%"

!���'!

!
($&�

!
($&�

�'�')����)'�

#*+,'��)�)-�

.0�	�

#
�����

�
�#�
��.�

/�
���!!	��

/
��

#
�����

�
�������.�

/�
���!!	��

/
��

http://www.digi.com

56 digi.com

8.2 Creating a Clone
Before cloning can occur, the master controller must be readied. Once this is done, any number of clones
may be created from the same master.

8.2.1 Steps to Enable and Set Up Cloning
The step-by-step instructions to enable and set up cloning on the master are in Technical Note 207. In
brief, the steps break down to: attaching the programming cable, running Dynamic C, making any desired
changes to the cloning macros, and then compiling the BIOS and user program to the master.

The only cloning macro that must be changed is ENABLE_CLONING, since the default condition is clon-
ing is disabled.

8.2.2 Steps to Perform Cloning
Once cloning is enabled and set up on the master controller, detach the programming cable and attach the
cloning board to the master and the clone. Make sure the master end of the cloning board is connected to
the master controller (the cloning board is not reversible) and that pin 1 lines up correctly on both ends.
Once this is done, reset the master by pressing Reset on the cloning board. The cloning process will begin.

8.2.3 LED Patterns
While cloning is in progress the LED on the Cloning board will toggle on and off every 1-1.5 seconds.
When cloning completes, the LED stays on. If any error occurs, the LED will start blinking quickly. Older
versions of cloning used different LED patterns, but the Rabbit 3000 is only supported by versions that use
the pattern described here.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 57

8.3 Cloning Questions
The following sections answer questions about different aspects of cloning.

8.3.1 MAC Address
Some Ethernet-enabled boards do not have the EEPROM with the MAC address. These boards can still be
used as a clone because the MAC address is in the system ID block and this structure is shipped on the
board and is not overwritten by cloning unless CL_INCLUDE_ID_BLOCKS is set to one.

If you have a custom-designed board that does not have the EEPROM or the system ID block, you may
download a program at:

www.digi.com/support/

to write the system ID block (which contains the MAC address) to your board.

To purchase a MAC address go to:

http://standards.ieee.org/regauth/oui/index.shtml

8.3.2 Different Flash Types
Since the BIOS supports a variety of flash types, the flash EPROM on the two controllers do not have to be
identical. Cloning works between master and clone controllers that have different-type flash chips because
the master copies its own universal flash driver to the clone. The flash driver determines the particulars of
the flash chip that it is driving.

8.3.3 Different Memory Sizes
It is recommended that the cloning master and slave both have the same RAM and flash sizes.

8.3.4 Design Restrictions
Digital I/O line PB1 should not be used in the design if cloning is to be used.

http://www.digi.com/support/
http://standards.ieee.org/regauth/oui/index.shtml
http://www.digi.com

58 digi.com

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 59

9. Low-Power Design and Support

With the Rabbit 3000 microprocessor it is possible to design systems that perform their tasks with very
low power consumption. The Rabbit has several features that contribute to low power consumption. They
are summarized here and explained in greater detail in the following section.

• Special chip select features minimize power consumption by external memories.

• The Rabbit operates as low as 1.8 V (maximum operating voltage is 3.6 V).

• The main crystal oscillator may be divided by 2, 4, 6 or 8.

• When the main crystal oscillator is divided by 4, 6 or 8, the short chip select option is available.

• The 32 kHz oscillator may be used instead of the main oscillator; this is sleepy mode. The 32 kHz
oscillator may be divided by 2, 4, 8 or 16. This is ultra sleepy mode. The self-timing chip select
option is available in both sleepy and ultra sleepy modes.

Before looking at the Rabbit 3000 low-power features in greater detail, please note that some of the power
consumption in an embedded system is unaffected by the clever design features of the microprocessor. As
shown in the table below, the current (and thus power) consumption of a microprocessor-based system
generally consists of a part that is independent of frequency and a part that depends on frequency.

Table 9-1 Factors affecting power consumption in the Rabbit 3000
microprocessor.

Current Consumption
Independent of Frequency

Current Consumption
Dependent on Frequency

Current leakage. CMOS logic switching state.a

a. Ordinary CMOS logic uses power when it is switching from one state to
another. The power drawn while switching is used to charge capacitance or is
used when both N and P field effect transmitters (FETs) are simultaneously on
for a brief period during a transition.

Special circuits (e.g. pull-up
resistors).

Circuits that continuously draw
power.

http://www.digi.com

60 digi.com Low-Power Design and Support

9.1 Details of the Rabbit 3000 Low-Power Features
This section goes into more detail about the Rabbit 3000 low-power features.

9.1.1 Special Chip Select Features
Unlike competitive processors, the Rabbit 3000 has two special chip select features designed to minimize
power consumption by external memories. This is significant because, if not handled well, external memo-
ries can easily become the dominant power consumers at low clock frequencies. Primarily because most
memory chips draw substantial current at zero frequency. (When the chip select and output enable are held
enabled and all other signals are held at fixed levels.)

In situations where the microprocessor is operating at slow frequencies, such as 2.048 kHz, the memory
cycle is about 488 µs and the memory chip spends most of its time with the chip enable and the output
enable on. The current draw during a long read cycle is not specified in most data sheets. The Hynix
HY62KF08401C SRAM, according to the data sheet, typically draws 5mA/MHz when it is operating.
When performing reads at 2.048 kHz, we’ve found that this SRAM consumes about 14 mA. At the same
frequency, with the short chip select enabled, the SRAM consumes about 23 µA—a substantial reduction
in power consumption.

As shown, both special chip select modes (i.e. short chip select and self-timed chip select) reduce memory
current consumption since the processor spends most of its time performing reads (i.e., instruction
fetches).

The self-timed chip select feature is available in sleepy and ultra sleepy mode; i.e., when the processor is
running off the 32 kHz oscillator, or when the oscillator is divided by 2, 4, 8 or 16.

The short chip select feature may be used when the main oscillator is divided by 4, 6, or 8. This division
can be done regardless of whether the clock doubler is on or off. Currently, interrupts must be disabled
when both the short chip select feature is enabled and an I/O instruction is used. Interrupts can be disabled
for a single I/O instruction by using code such as:

push ip ; save interrupt state
ipset 3 ; interrupts off
ioe ld a,(hl) ; typical I/O instruction
pop ip ; reenable interrupts

NOTE: Short chip selects and self-timed chip selects only take place during memory
reads. During writes the chip selects behave normally.

For a detailed description of the chip select features, please see the Rabbit 3000 Microprocessor User’s
Manual.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 61

9.1.2 Reducing Operating Voltage
The power consumption is proportional to the clock frequency and to the square of the operating voltage.
The operating current is reduced in proportion to operating voltage. Therefore, lowering the operating
voltage will greatly reduce current consumption and power. Dropping to 2.7 V from 3.3 V will result in
70% current consumption and 60% of the power. Dropping further to 1.8 V will reduce current to 40% and
power to 20% compared to 3.3 V. Naturally this complicates the selection of memories, especially at 1.8 V.

It is important to know that the lowest speed crystal will not always give the lowest power consumption.
This is because when the crystal is divided internally, the short chip select option can be used to reduce the
chip select duty cycle of the flash memory or fast RAM, greatly reducing the static current consumption
associated with some memories.

Some applications, such as a control loop, may require a continuous amount of computational power.
Other applications, such as slow data logging or a portable test instrument, may spend long periods with
low computational requirements interspersed with short periods of high computational load. To get the
most computation for a given power level, the operating voltage should be approximately 3.3 V. At a given
operating voltage, the clock speed should be reduced as much as possible to obtain the minimum power
consumption that is acceptable.

9.1.3 Preferred Crystal Configuration
The preferred configuration for a Rabbit 3000 based system is to use an external crystal or resonator that
has a frequency ½ the maximum internal clock frequency. The oscillator frequency can be doubled and/or
divided by 2, 4, 6 or 8, giving a variety of operating speeds from the same crystal frequency. In addition,
the 32.768 kHz oscillator that drives the battery-backable clock can be used as the main processor clock.
To save the substantial power consumed by the fast oscillator, it can be turned off and the processor can
run entirely off the 32.768 kHz oscillator at 32.768 kHz or at 32.768 kHz divided by 2, 4, 8 or 16. This
mode of operation (sleepy mode) has a clock speed in the range of 2 kHz to 32 kHz, and an operating sys-
tem current consumption in the range of 10 to 120 µA, depending on frequency and voltage.

Figure 9-1 Rabbit 3000 Clock Distribution

���

���

��	
����

���	�

��	����

���������������

�������
���

���� ���
��!�
"�#��"�
�	�������	�
�$�#�	%�

�!"���!�����&'	�%"��!$	(���)�
�"�$

��)��$"�����	�

��
��!�
"�
��*���#

+���
�"��,��
-.
�
/#�"��0#����"�	

$�#"���

1���
�"��2"#�
0#����"�	

��������������3����
�)
3�
�"$�

http://www.digi.com

62 digi.com Low-Power Design and Support

9.2 To Further Decrease Power Consumption
In addition to the low-power features of the Rabbit 3000 microprocessor, other considerations can reduce
power consumption by the system.

9.2.1 What To Do When There is Nothing To Do
For the very lowest power consumption the processor can execute a long string of mul instructions with
the de and bc registers set to zero. Few if any internal registers change during the execution of a string of
mul zero by zero, and a memory cycle takes place only once in every 12 clocks.

9.2.2 Sleepy Mode
Power consumption is dramatically decreased in sleepy mode. The current consumption is often reduced to
the region of 17 µA 3.3 V and 32.768 kHz. The Rabbit 3000 executes about 6 instructions per millisecond
at this low clock speed. Generally, when the speed is reduced to this extent, the Rabbit will be in a tight
polling loop looking for an event that will wake it up. The clock speed is increased to wake up the Rabbit.

In sleepy mode, most of the power is consumed by:

• memory

• the processor core

• recommended external 32 kHz crystal oscillator circuit

Using the flash memory SST39LF020-45-4C-WH and a self-timed 106 ns chip select, the memory con-
sumed 22 µA at 32 kHz and 1.4 µA at 2 kHz. For a current list of supported flash, please see Technical
Note 226 “Supported Flash Devices.” This document is available at:

www.digi.com/support/

The supported flash devices will give approximately the same values as the flash device that was used for
testing. The processor core consumes between 3 and 50 µA at 3.3 V as the frequency is throttled from
2 kHz to 32 kHz, and about 40% as much at 1.8 V. The crystal oscillator circuit consumes 17 µA at 3.3 V.
This drops rapidly to about 2 µA at 1.8 V.

Additional power consumption in sleepy mode may come from a low-power reset controller which may
consume about 8 µA and CMOS leakage which may consume several µA. The power consumed by
CMOS leakage increases with higher temperatures.

NOTE: Periodic interrupts are automatically disabled when the processor is placed in
sleepy mode.

Debug is not directly supported in sleepy modes. Please see Section 9.2.7 for more
information.

http://www.digi.com/support/supporttype?type=documentation
http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 63

9.2.3 External 32 kHz Oscillator
Unlike the Rabbit 2000, the Rabbit 3000 has no internal 32 kHz oscillator. Instead there is a clock input.
The recommended external crystal oscillator circuit and the associated battery backup circuit are discussed
in Technical Note 235 available on our website: www.digi.com.

9.2.4 Conformal Coating of 32.768 kHz Oscillator Circuit
The 32.768 kHz oscillator circuit consumes microampere level currents. The circuit also has very high
input impedance, thus making it susceptible to noise, moisture and environmental contaminants. To avoid
leakage due to moisture and ionic contamination it is recommended that the oscillator circuit be conformal
coated. This is simplified if all components are kept on the same side of the board as the processor.
Feedthroughs that pass through the board and are connected to the oscillator circuit should be covered with
solder mask that will serve as a conformal coating for the back side of the board from the processor. Please
see Technical Note 303, “Conformal Coating,” and Technical Note 235 “External 32.768 kHz Oscillator
Circuits” on the Digi International website for more information.

9.2.5 Software Support for Sleepy Mode
In sleepy mode the microprocessor executes instructions too slowly to support most interrupts. Data will
probably be lost if interrupt-driven communication is attempted. The serial ports can function but cannot
generate standard baud rates when the system clock is running at 32.768 kHz or below.

The 48-bit battery backable clock continues to operate without interruption.

Usually the programmer will want to reduce power consumption to a minimum for a fixed time period or
until some external event takes place. On entering sleepy mode by calling use32kHzOsc(), the peri-
odic interrupt is completely disabled, the system clock is switched to 32.768 kHz, and the main oscillator
is powered down. The device may be run even slower by dividing the 32kHz oscillator by 2, 4, 8, or 16
with the set32kHzDivider() call. When the 32kHz oscillator is divided, these slower modes are
called ultra sleepy modes.

On exiting sleepy mode by calling useMainOsc(), the main oscillator is powered up, a time delay is
inserted to be sure that it has resumed regular oscillation, and then the system clock is switched back to the
main oscillator. At this point the periodic interrupt is reenabled.

While in sleepy mode the user may call updateTimers() periodically to keep Dynamic C time vari-
ables updated. These time variables keep track of seconds and milliseconds and are normally used by
Dynamic C routines to measure time intervals or to wait for a certain time or date. updateTimers()
reads the real-time clock and then computes new values for the Dynamic C time variables. The normal
method of updating these variables is the periodic interrupt that takes place 2048 times per second.

NOTE: In ultra sleepy modes, calling updateTimers() is not recommended.

http://www.digi.com/
http://www.digi.com/support/supporttype?type=documentation
http://www.digi.com

64 digi.com Low-Power Design and Support

Functions are provided to power down the Realtek Ethernet chip as well. By calling the pd_powerup()
and pd_powerdown() functions, the Realtek chip can be placed in and awakened from its own power-
down mode. Note that no TCP/IP or Ethernet functions should be called while the Realtek is powered
down.

9.2.6 Baud Rates in Sleepy Mode
The available baud rates in sleepy mode are 1024, 1024/2, 1024/3, 1024/4, etc. Baud rate mismatches of
up to 5% may be tolerated. The baud rate 113.77 is available as 1024/9 and may be useful for communicat-
ing with other systems operating at 110 bps - a 3.4% mismatch. In addition the standard PC compatible
UART 16450 with a baud rate divider of 113 generates a baud rate of 1019 bps, a 0.5% mismatch with
1024 bps. If there is a large baud rate mismatch, the serial port can usually detect that a character has been
sent to it, but can not read the exact character.

9.2.7 Debugging in Sleepy Mode
Debugging is not supported in sleepy modes. However, running with no polling (Alt-F9) will avoid the
loss of target communications when execution enters sections of code using sleepy mode, and debug com-
munications will resume when the normal operation mode is reenabled.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 65

10. Supported Flash Memories

There are many flash memories that have been qualified for use with the Rabbit 3000 microprocessor.
Both small and large sector flash devices are supported. To incorporate a large-sectored flash into an end
product, the best strategy is have a small-sectored development board.

The list of supported flash memories is available in Technical Note 226, “Supported Flash Memories.”
This document is available online:

www.digi.com/support/

TN226 also contains information concerning the limitations of the supported flash types.

10.1 Supporting Other Flash Devices
If a user wishes to use a flash memory not listed in TN226, but still uses the same standard 8-bit JEDEC
write sequences as one of the supported flash devices, the existing Dynamic C flash libraries may be able
to support it simply by modifying a few values. Not all flash devices can be supported, and the degree of
support will vary depending on the flash characteristics.

There are two or three modifications to be made, depending on the version of Dynamic C that you are
using. Step through the list below and perform each action that corresponds to your flash type:

1. Complete this step for all versions of Dynamic C:

The flash device needs to be added to the list of known flash types. This table can be found by
searching for the label FlashData in the file LIB\BIOSLIB\FLASHWR.LIB. The format is
described in the file and consists of the flash ID code, the sector size in bytes, the total number of
sectors, and the flash write mode. See Section 10.2.1 and the comments above the “FlashData::” table
in FLASHWR.LIB for more information.

2. Complete this step for Dynamic C 7.30 and later:

The same information that was added to the FlashData table needs to be added to the FLASH.INI
file (in the main directory where Dynamic C was installed) for use by the compiler and pilot BIOS. See
the top of the file for more information.

3. Complete this step for Dynamic C versions prior to 7.30:

Near the top of the main BIOS file (BIOS\RABBITBIOS.C for most users), in the line:

#define FLASH_SIZE _FLASH_SIZE_

change _FLASH_SIZE_ to a fixed value for your flash (the total size of the flash in 4096-byte pages).

http://www.digi.com

66 digi.com

4. Complete this step for Dynamic C versions prior to 7.02:

The macro _SECTOR_SIZE_ near the top of LIB\BIOSLIB\FLASHWR.LIB needs to be hard-
coded in a manner similar to step 2 above. In the line:

#define MAX_FLASH_SECTORSIZE _SECTOR_SIZE_

_SECTOR_SIZE_ should be replaced with the sector size of your flash in bytes.

Note that prior to Dynamic C 7.20, the BIOS only supported flash devices with equally-sized sectors of
either 128, 256, 512, 1024, or 4096 bytes (i.e., small sector flash). If you are using an older version of
Dynamic C (prior to version 7.20) and your flash device does not fall into that category, it may be possible
to support it by rewriting the BIOS flash functions. See Section 10.2 for more information.

10.2 Writing Your Own Flash Driver
To use a flash memory that is not listed in TN226 and that does not use the same standard 8-bit JEDEC
write sequences as one of the supported flash memories, in addition to making the required changes listed
in Section 10.1, two functions need to be rewritten: _InitFlashDriver and _WriteFlash. They
are in the library that implements the Rabbit flash driver, FLASHWR.LIB.

To use separate I&D space requires additional modification to the flash driver. Please read Section 5.3.4,
“Writing a Flash Driver,” on page 24 for details.

10.2.1 Required Information for Flash Memory
Below is the data structure used by the flash driver to hold the required information about the installed
flash memory. The _InitFlashDriver function is called early in the BIOS to fill this structure before
any accesses to the flash.

struct {
char flashXPC; // XPC required to access flash via XMEM
int sectorSize; // byte size of one flash memory sector
int numSectors; // number of sectors on flash
int flashSize; // size of flash in 4 KB blocks
char writeMode; // write method used by the flash
void *eraseChipPtr; // pointer to erase chip function in RAM
 // (eraseChipPtr is currently unused)
void *writePtr; // ptr to write flash sector function (RAM)

} _FlashInfo;

The field flashXPC contains the XPC required to access the first flash physical memory location via
XMEM address E000h. The pointer writePtr should point to a function in RAM to avoid accessing
the flash memory while working with it. You will probably be required to copy the function from flash to a
RAM buffer in the flash initialization sequence.

The field writeMode specifies the method that a particular flash device uses to write data. Currently,
two common small sector write modes are defined: “sector-writing” mode, as used by the SST SST29 and
Atmel AT29 series (_FlashInfo.writeMode = 1); and “byte-writing” mode, as used by the
Mosel/Vitelic V29 series (_FlashInfo.writeMode = 2). Large and/or nonuniform sector flash with
“byte-writing” mode, as used by the AMD AM29F00X series, have _FlashInfo.writeMode >
0x10. The writeMode value is the “Sector Data::” table entry with the sector map that is appropriate for

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 67

the flash. New flash devices may require new writeMode and “SectorData::” table entries to be defined.
All other values of the writeMode field are currently undefined, although they may be defined by
Rabbit as new flash devices are used.

10.2.2 Flash Driver Functions
This section describes _InitFlashDriver and _WriteFlash, the two functions that must be
rewritten if you are writing your own flash driver. Replace these two functions in the library that imple-
ments the Rabbit flash driver, FLASHWR.LIB.

_InitFlashDriver

This function is called from the BIOS. A bitmap of quadrants mapped to flash is passed to it in HL. The
bitmap is defined as:

0x01 corresponds to the 1st quadrant
0x02 corresponds to the 2nd quadrant
0x04 corresponds to the 3rdquadrant
0x08 corresponds to the 4th quadrant
0x0C corresponds to the topmost two quadrants

 _InitFlashDriver needs to perform the following actions:

1. Load _FlashInfo.flashXPC with the proper XPC value to access flash memory address 00000h
via XMEM address E000h. The quadrant number for the start of flash memory is passed to the func-
tion in HL and can be used to determine the XPC value, if desired. For example, if your flash is located
in the third memory quadrant, the physical address of the first flash memory location is 80000h.
80000h - E000h = 72000h, so the value placed into _FlashInfo.XPC should be 72h.

2. Load _FlashInfo.sectorSize with the flash sector size in bytes.

3. Load _FlashInfo.numSectors with the number of sectors on the flash.

4. Load _FlashInfo.flashSize with the number of sectors on the flash.

5. _FlashInfo.writePtr should be loaded with the memory location in RAM of the function that
will perform that action. The function will need to be copied from flash to RAM at this time as well.

6. This function should return zero if successful, or -1 if an error occurs.

http://www.digi.com

68 digi.com

_WriteFlash

This function is called from the BIOS (the user will normally call higher level flash writing functions) as
well as from several libraries, and should be written to conform to the following requirements:

• The number of bytes to be written should be passed in BC.

• A fixed 4096-byte block of XMEM is used for the flash buffer. It can be accessed via macros
located at the top of FLASHWR.LIB. These macros include FLASH_BUF_PHYS, the unsigned
long physical address of the buffer; FLASH_BUF_XPC and FLASH_BUF_ADDR, the logical
address of the buffer via the XMEM window; and FLASH_BUF_0015 and FLASH_BUF_1619,
the physical address of the buffer broken down to be used with the LDP opcodes.

• It should assume that the flash address to be written to is passed as an XMEM address in A:DE.
The amount of data being written (typically an entire sector) must fit within one physical sector on
the flash device, and must be aligned on a sector boundary for devices using sector write mode.

• It should check to see whether the sector being written contains the System ID or User blocks. If so,
it should exit with an error code (see below). Otherwise, it should perform the actual write opera-
tion required by the particular flash used.

• Interrupts should be turned off (set the interrupt level to 3) whenever writes are occurring to the
flash. Interrupts should not be turned back on until the write is complete—an interrupt may attempt
to access a function in flash while the write is occurring and fail.

• It should not return until the write operation is finished on the chip.

• It should return a zero in HL if the operation was successful, a -3 if a time-out occurred during the
wait, or a -4 if an attempt was made to write over the System ID block.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 69

11. Troubleshooting Tips for New
Rabbit-Based Systems

If the Rabbit design conventions were followed and Dynamic C cannot establish target communications
with the Rabbit 3000-based system, there are a number of initial checks and some diagnostic tests that can
help isolate the problem.

11.1 Initial Checks
Perform the first two checks with the /RESET line tied to ground. For the 128-pin LQFP package, the
/RESET line is pin 46.

1. With a voltmeter check for VDD and Ground (including VBATT) on the appropriate pins.

2. With an oscilloscope check the 32.768 kHz oscillator on CLK32K (pin 49). Make sure that it is oscillat-
ing and that the frequency is correct.

3. With an oscilloscope check the main system oscillator by observing the signal CLK (pin 2). With the
reset held high and no existing program in the flash memory attached to the processor, this signal
should have a frequency one eighth of the main crystal or oscillator frequency.

11.2 Diagnostic Tests
The cold boot mode may be used to communicate with the target system without using Dynamic C. As dis-
cussed in Section 4.1, in cold boot mode triplets may be received by serial port A or the slave port. To load
and run the diagnostic programs, the easiest method is to use the programming cable and a specialized ter-
minal emulator program over asynchronous serial port A. To use the slave port requires more setup than
the serial port method and it is not considered here. Since each board design is unique, it is not possible to
give a one-size-fits-all solution for diagnosing board problems. However, using the cold boot mode allows
a high degree of flexibility. Any sequence of triplets may be sent to the target.

11.2.1 Program to Transmit Diagnostic Tests
The file SerialIO_1.zip is available for download at:

www.digi.com/support/downloads/

The zip file contains the specialized terminal emulator program serialIO.exe and several diagnostic
programs. The diagnostic programs test a variety of functionality, and allow the user to simulate some of
the behavior of the Dynamic C download process.

http://www.digi.com/support/supporttype?type=documentation
http://www.digi.com

70 digi.com Troubleshooting Tips for New Rabbit-Based Systems

After extracting the files, double click on serialIO.exe to display the following screen.

Click on Help at the top left-hand side of the screen for directions for using this program.

A diagnostic program is a group of triplets. You can open the provided diagnostic programs (those files
with the extension .diag) with Dynamic C or any simple text editor if you would like to examine the
triplets that are sent to the target. Also serialIO.exe has the option of sending the triplets a line at a
time so you can see the triplets in the one-line window next to the Transmit button before they are sent.

NOTE: Connecting the programming cable to the programming connector pulls both
SMODE pins high. On reset this allows a cold boot from asynchronous serial port A. The
reset may be applied by pushing the reset button on the target board, or by checking then
unchecking the box labeled DTR when using serialIO.exe.

In the following pages, two diagnostic programs are looked at in some detail. The first one is short and
very simple: a toggle of the status line. Information regarding how to check the results of the diagnostic are
given. The second diagnostic program checks the processor/RAM interface. This example provides more
detail in terms of how the triplets were derived. After reading through these examples, you will be able to
write diagnostic programs suited for your unique board design.

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 71

11.2.2 Diagnostic Test #1: Toggle the Status Pin
This test toggles the status pin.

1. Apply the reset for at least ¼ second and then release the reset. This enables the cold boot mode for
asynchronous serial port A if the programming cable is connected to the target’s programming connec-
tor.

2. Send the following sequence of triplets.

80 0E 20 ; sets status pin low
80 0E 30 ; sets status pin high
80 0E 20 ; sets status pin low again

3. Wait for approximately ¼ second and then repeat starting at step #1.

While the test is running, an oscilloscope can be used to observe the results. The scope can be triggered by
the reset line going high. It should be possible to observe the data characters being transmitted on the RXA
pin of the processor or the programming connector. The status pin can also be observed at the processor or
programming connector. Each byte transmitted has 8 data bits preceded by a start bit which is low and fol-
lowed by a stop bit which is high (viewed at the processor or programming connector). The data bits are
high for 1 and low for 0.

The cold boot mode and the triplets sent are described in Section 4.1 on page 12. Each triplet consists of a
2-byte address and a 1-byte data value. The data value is stored in the address specified. The uppermost bit
of the 16-bit address is set to one to specify an internal I/O write. The remaining 15 bits specify the
address. If the write is to memory then the uppermost bit must be zero and the write must be to the first 32
KB of the memory space.

The user should see the 9 bytes transmitted at 2400 bps or 416 µs per bit. The status bit will initially toggle
fairly rapidly during the transmission of the first triplet because the default setting of the status bit is to go
low on the first byte of an opcode fetch. While the triplets are being read, instructions are being executed
from the small cold boot program within the microprocessor. The status line will go low after the first trip-
let has been read. It will go high after the second triplet is read and return to low after the third triplet is
read. The status line will stay low until the sequence starts again.

If this test fails to function it may be that the programming connector is connected improperly or the
proper pull-up resistors are not installed on the SMODE lines. Other possibilities are that one of the oscil-
lators is not working or is operating at the wrong frequency, or the reset could be failing.

 11.2.2.1 Using serialIO.exe

This test is available as StatusTgl.Diag, one of the diagnostic samples downloaded in
ser_io_rab20.zip.

http://www.digi.com

72 digi.com Troubleshooting Tips for New Rabbit-Based Systems

11.2.3 Diagnostic Test #2
The following program checks the processor/RAM interface for an SRAM device connected to /CS1,
/OE1, /WE1. The test toggles the first 16 address lines. All of the data lines must be connected to the
SRAM and functioning or the program will not execute correctly.

A series of triplets are sent to the Rabbit via one of the bootstrap ports to set up the necessary control regis-
ters and write several instructions to RAM. Finally the bootstrap termination code is sent and the program
begins executing instructions in RAM starting at address 0x00.

The following steps illustrate one way to create a diagnostic program.

1. Write a test program in assembly:

main(){

;
#asm
boot:
 ld hl,1
 ld b,16
loop:
 ld a,(hl)
 add hl,hl ; shift left
 djnz loop ; 16 steps
 jp 0 ; continue test
#endasm

}

2. Compile the program using Dynamic C and open the Assembly window. The disassembled code looks
like this:

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 73

3. The opcodes and their data are in the 2nd column of the Assembly window. Since we want each triplet
loaded to RAM beginning at address zero, create the following sequence of triplets.

; code to be loaded in SRAM

00 00 21
00 01 01
00 02 00
00 03 06
00 04 10
00 05 7E
00 06 29
00 07 10
00 08 FC
00 09 C3
00 0A 00
00 0B 00

4. The code to be loaded in SRAM must be flanked by triplets to configure internal peripherals and a trip-
let to exit the cold boot upon completion.

80 14 05 ; MB0CR: Map SRAM on /CS1 /OE1 /WE1 to Bank 0
80 09 51 ; ready watchdog for disable
80 09 54 ; disable watchdog timer
.
. ; code to be loaded in SRAM goes here
.
80 24 80 ; Terminate boot strap, start executing code at address zero

The program, serialIO.exe, has the ability to automatically increment the address. Instead of typing
in all the addresses, you can use some special comments. They are case sensitive and must be at the begin-
ning of the line with no space between the semicolon and the first letter of the special comment.

;Address nnnn
;Triplet

The first special comment tells the program to start at address nnnn and increment the address for each
transmitted data byte. The second special comment disables the automatic address mode and directs the
program to send exactly what is in the file. The triplets shown in #3 may be rewritten as:

;Address 0000
21 01 00 ;ld hl,1
06 10 ;ld b,16
7E ;ld a,hl
29 ;add hl,hl
10 FC ;djnz loop
C3 00 00 ;jp 0

;Triplet

http://www.digi.com

74 digi.com Troubleshooting Tips for New Rabbit-Based Systems

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 75

Appendix A: Supported Rabbit 3000
Baud Rates

This table contains divisors to put into TATxR registers. All frequencies that allow 57600 baud up to
30MHz are shown (as well as a few higher frequencies). All of the divisors listed here were calculated
with the default equation given on the next page.

Crystal
Freq. (MHz)

2400
baud

9600
baud

19200
baud

57600
baud

115200
baud

230400
baud

460800
baud

1.8432 23 5 2 0 a

a. Baud rate is not available at given frequency.

- -

3.6864 47 11 5 1 0 - -

5.5296 71 17 8 2 - - -

7.3728 95 23 11 3 1 0 -

9.2160 119 29 14 4 - - -

11.0592 143 35 17 5 2 - -

12.9024 167 41 20 6 - - -

14.7456 191 47 23 7 3 1 0

16.5888 215 53 26 8 - - -

18.4320 239 59 29 9 4 - -

20.2752 b

b. Baud rate is availabe with further BIOS modification.

65 32 10 - - -

22.1184 * 71 35 11 5 2 -

23.9616 * 77 38 12 - - -

25.8048 * 83 41 13 6 - -

27.6480 * 89 44 14 - - -

29.4912 * 95 47 15 7 3 1

36.8640 * 119 59 19 9 4 -

44.2368 * 143 71 23 11 5 2

51.6096 * 167 83 27 13 6 -

http://www.digi.com

76 digi.com

The default equation for the divisor is:

If the divisor is not an integer value, that baud rate is not available for that frequency (identified by a “-” in
the table). If the divisor is above 255, that baud rate is not available without further BIOS modification
(identified by a “*” in the table). To allow that baud rate, you need to clock the desired serial port via timer
A1 (by default they run off the peripheral clock / 2), then scale down timer A to make the serial port divi-
sor fall below 256.

Timer A can be clocked by the peripheral clock (PCLK) in addition to the default, which is the peripheral
clock/2 (PCLK/2). Furthermore, the asynchronous serial port data rate can be 8x the clock in addition to
the default of 16x the clock. Therefore, in addition to the equation above, the following equations may be
used to find the asynchronous divisor for a given clock frequency.

Timer A clocked by PCLK/2, serial data rate = 16 x clock

Timer A clocked by PCLK, serial data rate = 16 x clock:

Timer A clocked by PCLK/2, serial data rate = 8 x clock:

Timer A clocked by PCLK, serial data rate = 8 x clock:

divisor
CPU frequency in Hz

32 baud rate
--- 1–=

divisor
CPU frequency in Hz

16 2 baud rate
--- 1–=

divisor
CPU frequency in Hz

16 baud rate
--- 1–=

divisor
CPU frequency in Hz

8 2 baud rate
--- 1–=

divisor
CPU frequency in Hz

8 baud rate
--- 1–=

http://www.digi.com

Rabbit 3000 Designer’s Handbook digi.com 77

Index

A

A16 and A19 inversion 20
A18 and A19 inversion 36
access times 5, 8, 9, 15, 32, 35, 46, 47
assembly constants ... 21

B

base segment 17, 18, 19, 32
baud rates ... 1, 3, 4, 35

divisor .. 13, 76
sleepy mode ... 64

binary compatibility ... 49
BIOS .. 31

conditional compilation 34
flowchart .. 33
modifying ... 34
setting startup conditions 32
wait loop .. 7

board type .. 34
boot blocks ... 48
boot ROM .. 12

C

calibration constants .. 43
capacitance ... 5, 9, 59
ceramic resonator ... 4
chip select .. 3, 30

self-timed mode ... 60
short mode .. 60

CLK (pin 2) .. 69
clock input ... 63
CLOCK_DOUBLED 35
clocks 1, 7, 10, 18, 21, 60, 61

common crystal frequencies 3
speed .. 5, 9, 35

cloning ... 3, 4, 35, 55
CMOS .. 59, 62
cold boot ..11, 12, 70
conformal coating .. 63
crossover current .. 5
crystal ... 3
crystal oscillator ... 3

32 kHz crystal oscillator external logic 63
CS1 .. 32, 35
CS1_ALWAYS_ON 8, 35

D

DATAORG ... 16, 19, 35
DATASEG register 14, 22, 32
debug mode ... 14, 62
design conventions .. 3

memory chips .. 4
oscillator crystals ... 4
programming cable connector 4

DHCP_CLIENT_ID_MAC 36
diagnostic tests .. 69
DTR line .. 13
Dynamic C start sequence 13
Dynamic C version .. 34

E

EMI .. 10
ENABLE_CLONING 35
ENABLE_SPREADER 36
extended code .. 17
extended constants ... 17
extended memory .. 17

F

FETs .. 8, 59
finite state machine .. 14
firmware .. 11
flash

custom driver ... 24, 66
supported devices .. 65
write method .. 14

FLASH_SIZE .. 35
Fletcher algorithm ... 14
floating inputs .. 8

H

hardware reset .. 4

I

I&D space .. 19–27
Interrupts ... 18
interrupts 14, 16, 21, 25, 63, 68

M

MAC address 44, 47, 57

http://www.digi.com/
http://www.digi.com

78 digi.com Index

macros, defined internally
__SEPARATE_INST_DATA__34
_BOARD_TYPE_ ..34
_CPU_ID_ ..34
FLASH ...34
_FLASH_SIZE_ ...34
RAM ...34
_RAM_SIZE_ ..34
CC_VER ...34

MAX_USERBLOCK_SIZE49
MB0CR_INVRT_A1836
MB0CR_INVRT_A1936
memory

access time ..9
bank control registers32
basic configuration16
code in 2 flash chips35
code placement ...28
code size ...29
data segment logical address35
definition of terms ..17
flash available ...35, 49
I&D space ...19
line permutation ..10
map of 16-bit address space16
organization ..15
paged access ...28
physical ...15
RAM available ...35
segment locations ...32
segments ...16
shutdown circuitry ..15

MMIDR register ...32
MMU/MIU ...13

N

NUM_FLASH_WAITST36
NUM_RAM_WAITST36

O

operating voltages ..5, 61
origin directives ..37

in user code ...41
oscillator ...3, 4, 7, 69
output enable ..3, 30

P

periodic interrupt ..62, 63
power consumption5, 59, 61
programming cable2, 3, 11, 13, 14, 70
programming cable connector4

R

RAM
access time ...35
wrap-around test ...14

RAM_SIZE ..35
RAM-only board ..30
Realtek Ethernet chip64
reset ..14, 70
root code ..17
root constants ...17
root memory ...17
root variables ..17, 29

S

SEGSIZE register19, 20, 22, 32
separate I&D space ..19
serial port A ...3
sleepy mode

enter and exit ..63
interrupts ..63

SMODE pins ..12, 13, 70
SP register ..32
STACKSEG register ..32
surface-mount ..6
System ID block ...34, 43

reading ..45
sizes of ...45
writing ..47

T

target communications protocol14
through-hole ...6
triplets ..13, 71
troubleshooting tips ..69

U

USE_2NDFLASH_CODE35
USE_TIMER_PRESCALE35
User block ..43

reading ..50
sizes of ...45
writing ..52

W

wait states ...9, 13, 36
watch expressions ..35
WATCHCODESIZE35
write enable ..3, 30
write method ..14, 66

http://www.digi.com

	Table of Contents
	Chapter 1. Introduction
	1.1 Summary of Design Conventions

	2. Rabbit Hardware Design Overview
	2.1 Design Conventions
	2.1.1 Rabbit Programming Connector
	2.1.2 Memory Chips
	2.1.3 Oscillator Crystals

	2.2 Operating Voltages
	2.3 Power Consumption
	2.4 Through-Hole Technology
	2.5 Moisture Sensitivity

	3. Core Design and Components
	3.1 Clocks
	3.2 Floating Inputs
	3.3 Basic Memory Design
	3.3.1 Memory Access Time
	3.3.2 Interfacing External I/O with Rabbit 3000 Designs

	3.4 PC Board Layout and Memory Line Permutation
	3.5 PC Board Layout and Electromagnetic Interference
	3.5.1 Rabbit 3000 Low EMI Features

	4. How Dynamic C Cold Boots the Target System
	4.1 How the Cold Boot Mode Works In Detail
	4.2 Program Loading Process Overview
	4.2.1 Program Loading Process Details

	5. Rabbit Memory Organization
	5.1 Physical Memory
	5.1.1 Flash Memory
	5.1.2 SRAM
	5.1.3 Basic Memory Configuration

	5.2 Memory Segments
	5.2.1 Definition of Terms
	5.2.2 The Base (or Root) Segment
	5.2.2.1 Types of Code Best-Suited for the Base Segment

	5.2.3 The Data Segment
	5.2.4 The Stack Segment
	5.2.5 The Extended Memory Segment

	5.3 Separate I&D Space
	5.3.1 Suggestions and Restrictions
	5.3.2 Enable Separate I&D Space
	5.3.3 I&D Space Mappings in Dynamic C
	5.3.3.1 Compiling to RAM
	5.3.3.2 Compiling to Flash

	5.3.4 Writing a Flash Driver
	5.3.5 Customizing Interrupts
	5.3.5.1 Method #1
	5.3.5.2 Method #2

	5.4 How The Compiler Compiles to Memory
	5.4.1 Placement of Code in Memory
	5.4.2 Paged Access in Extended Memory

	5.5 Memory Planning
	5.5.1 Flash
	5.5.2 Static RAM

	5.6 Making a RAM-Only Board
	5.6.1 Hardware Changes
	5.6.2 Software Changes

	6. The Rabbit BIOS
	6.1 Startup Conditions Set by the BIOS
	6.2 BIOS Flowchart
	6.3 Internally-Defined Macros
	6.4 Modifying the BIOS
	6.4.1 Advanced Options

	6.5 Origin Directives Used by the Compiler
	6.5.1 Origin Directive Syntax
	6.5.2 Origin Directive Semantics
	6.5.2.1 Defining a Memory Region
	6.5.2.2 Action Qualifiers
	6.5.2.3 I&D Qualifiers
	6.5.2.4 Follow Qualifiers

	6.5.3 Origin Directive Examples
	6.5.4 Origin Directives in Program Code
	6.5.5 Origin Directive to Reserve Blocks of Memory

	7. The System ID and User Blocks
	7.1 System ID Block Details
	7.1.1 Definition of SysIDBlock
	7.1.2 Reading the System ID Block
	7.1.2.1 Determining the Existence of the System ID Block

	7.1.3 Writing the System ID Block

	7.2 User Block Details
	7.2.1 Boot Block Issues
	7.2.2 Reserved Flash Space
	7.2.3 Reading the User Block
	7.2.4 Writing the User Block

	8. BIOS Support for Program Cloning
	8.1 Overview of Cloning
	8.2 Creating a Clone
	8.2.1 Steps to Enable and Set Up Cloning
	8.2.2 Steps to Perform Cloning
	8.2.3 LED Patterns

	8.3 Cloning Questions
	8.3.1 MAC Address
	8.3.2 Different Flash Types
	8.3.3 Different Memory Sizes
	8.3.4 Design Restrictions

	9. Low-Power Design and Support
	9.1 Details of the Rabbit 3000 Low-Power Features
	9.1.1 Special Chip Select Features
	9.1.2 Reducing Operating Voltage
	9.1.3 Preferred Crystal Configuration

	9.2 To Further Decrease Power Consumption
	9.2.1 What To Do When There is Nothing To Do
	9.2.2 Sleepy Mode
	9.2.3 External 32 kHz Oscillator
	9.2.4 Conformal Coating of 32.768 kHz Oscillator Circuit
	9.2.5 Software Support for Sleepy Mode
	9.2.6 Baud Rates in Sleepy Mode
	9.2.7 Debugging in Sleepy Mode

	10. Supported Flash Memories
	10.1 Supporting Other Flash Devices
	10.2 Writing Your Own Flash Driver
	10.2.1 Required Information for Flash Memory
	10.2.2 Flash Driver Functions

	11. Troubleshooting Tips for New Rabbit-Based Systems
	11.1 Initial Checks
	11.2 Diagnostic Tests
	11.2.1 Program to Transmit Diagnostic Tests
	11.2.2 Diagnostic Test #1: Toggle the Status Pin
	11.2.2.1 Using serialIO.exe

	11.2.3 Diagnostic Test #2

	Appendix A: Supported Rabbit 3000 Baud Rates
	Index

